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Abstract--Refraction of surface gravity waves in major ocean currents is investigated by applying the 
geometrical optics approximation to deep water waves in steady nonuniform currents. Assuming 
the group speed c~ relative to the current is much greater than the current speed, the radius of 
curvature R of the wave rays is given by R = c;/L where ~ is the vertical component of the vorticity 
of the current. The magnitude of R decreases with decreasing group speed (increasing frequency) 
relative to the current and with increasing vorticity. The sign of R is given by the sign of L and the 
radius of curvature is positive (negative) ff the ray is concave to the left (fight) when looking in the 
direction of energy propagation. Applications to the ocean indicate that both the trapping of surface 
waves in currents and the total reflection of waves by currents should he possible under the appropriate 
conditions. Some ob6ervations of swell propagating across the Pacific are not inconsistent with a 
wave--current refraction mechanism. 

I N T R O D U C T I O N  

Trm ~rECTS of a following or opposing current on the propagation of surface gravity 
waves were first worked out by UNNA 0942) and SWRDRUP (1944) and their results 
were applied mainly to waves in tidal entrances. JOHNSON (1947) found the effects 
on waves which enter a uniform current at an angle and he suggested that "major 
ocean currents, such as the Gulf Stream, may have an appreciable effect on the 
height, length, and direction of waves approaching the shore and under some circum- 
stances may cause almost complete reflection." ARTmnt (1950) investigated the 
combined effect of nonuniform currents and bottom topography on the propagation 
of shallow water waves and made an application to waves entering an intense rip 
current. 

In the present paper the approximation of geometrical optics for an inhomogeneous 
moving medium is applied to surface gravity waves propagating in nonuniform 
steady currents. The basic ideas involved have been discussed by LANOAU and 
Ln~mTz (1959), WHITHAM (1960), and BACKUS (1962). Only the kinematical effects 
of currents on the wave number are applied to the ocean in the present paper; the 
dynamical effects of currents on wave amplitude are not investigated. The applica- 
tions to the ocean indicate that refraction effects of deep water surface waves in 
major ocean currents could be significant; in particular the trapping of waves in 
currents and the total reflection of waves by currents should both be possible. 

T H E O R Y  

The ray equations for wave propagation in a steady inhomogeneous medium are 
(LANDAU and Li~Hrrz,  1959) 

(ix ~H Ok ~H (I) 

dt ~k dt 6x 
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where to = H(k, x) is a known function of wave number k and position x. The first 
equation of (1) describes the rays, which are paths traced out by points which move 
with the group velocity % = 6to/fk. The second equation describes the change in 
wave number along the rays. For given initial conditions on k and x the rays and 
wave number along the rays are determined by simultaneous integration of equations 
(1). In a steady medium 3to/rt = 0 and therefore dto/dt = 0 from (1) and the 
frequency to is constant along the rays. Equations (1) hold under the geometrical 
optics approximation that the wave amplitude and frequency vary slowly over 
distances of the order of a wave length. 

For a steady inhomogeneous moving medium the frequency is given by 

to = to' + k .U = too = constant (2) 

where ~o' is the frequency relative to a coordinate system moving with the current 
velocity U(x) and to is the frequency relative to a fixed coordinate system. 

A useful relationship can be derived from (1) and (2) when k is constrained to 
be a two-dimensional vector and to' = ¢o'(k), where k = Ik l  . Let k lie in the xy- 
plane. Then an approximate expression for the radius of curvature of the rays R is 

R = c'd~ (3) 

t where cg = 6w' / fk  is the wave group speed relative to the current and ~ is the com- 
ponent of current vorticity in the positive z-direction. The sign ofthe radius ofcurvature 
is defined such that as a point moves along the ray in the direction of energy propaga- 
tion the radius of  curvature is positive (negative) if the ray is concave to the left 
(right). Equation (3) is a slightly modified special case of LANDAU and LIFSHITZ 
(1959, p. 261) equation (1) for propagation of dispersive waves in two dimensions. 
The derivation of (3) requires that the group speed relative to the current be much 
greater than the current speed. Equation (3) is exact when the current velocity 
vanishes, whether or not the vorticity vanishes, because the terms neglected in (3) 
are proportional to the current velocity. The radius of curvature is infinite (the rays 
are straight lines) where the current velocity is constant as (3) shows, but if the vorti- 
city vanishes when the current is not constant, then R becomes large but not infinite 
in general due to the neglect of higher order terms involving derivatives of the current 
velocity. (Equation (3) can also be derived by starting with the exact expression for 
the radius of curvature given at the end of the next section). 

Several properties of the wave-current refraction can be seen immediately from (3), 
The magnitude of the radius of curvature of the rays is a characteristic length scale 
for the refraction and it decreases with increasing current vorticity and with decreasing 
group speed relative to the current. Since the sign of R is the same as the sign of (, 
(3) shows that for waves which propagate with (against) a variable current the rays 
will bend in the direction of decreasing (increasing) current speed. Therefore, under 
the right conditions it is possible for waves which propagate with (against) a current 
to be trapped about a local minimum (maximum) in current speed. It is also possible 
that waves which propagate with (against) a current could be reflected from a local 
maximum (minimum) in current speed. 

For deep water surface gravity waves the dispersion relation is 

to' = (gk) t/a (4) 
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and equation (3) becomes 

R = g/(2to'0 (5) 

where g is the acceleration of gravity. Equation (5) shows that the radius of curvature 
decreases with increasing frequency relative to the current. Therefore, for deep water 
surface gravity waves refraction increases with increasing frequency. 

S H E A R  C U R R E N T S  

For ocean applications it is useful to consider the propagation of deep water 
surface gravity waves in one-dimensional shear currents. This geometry has been 
discussed previously by LONGU~T-HIC~INS and STEWART (1961). Let the horizontal 
current U(x, y) be for all x 

U={o(y  ) y>~O 
y < 0 (6) 

V= 0 

where U(y), the current component in the x-direction, is an arbitrary function of y. 
Then the ray equations (l) show that, besides the frequency being constant (steady 
medium), the x-component of  the wave number is also constant. Dividing one con- 
stant by the other results in Shell's law which can be written in the form (JoHNsoN, 
1947) 

sinq~o [ ]2 (7) 
si--'n ~ -- 1-- coU sin ~o 

where ~b is the angle between the wave number and the current normal (y-axis) and c o 
is phase speed of the waves where the current vanishes. The index of refraction, the 
right side of (7), depends on the current speed and the wave frequency (Co = g/o~o) 
and direction ~b o of the wave number where the current vanishes. Equation (7) shows 
that for waves which propagate from still water into a following U > 0 (opposing 
U < 0) current the index of refraction < l  (>  1) and the wave number bends away 
from (toward) the current normal. 

Total reflection of waves entering a following current (U > 0) from still water 
occurs when the initial angle ~b o is greater than or equal to the critical angle q~oc, 
which is found from (7) for a given value of U/co when ~b = r~/2. Several examples 
are given in Table 1 ; the first column gives ~boc and the last column gives 2 U/co. Total 
internal reflection of waves in a current can occur when the waves propagate against 
the current (U < 0). The critical angle the for total internal reflection for a given U/co 
is found from (7) when ~b o = n/2. The two critical angles ~b c and ~boc are nearly 
equal when U/c o is small as can be shown from (7). 

Assume now that the current (6) has constant shear s (positive or negative) 

U(y)  = y < o. 

Then the ray equations (1) can be integrated analytically once the initial conditions 
are specified. Let the initial conditions be that the rays pass through the point x = 0, 
y = 0 at time t = 0 with initial angle ~b o = cot-  1 kyo/k~ at the edge of the current 
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x=° f y = O  
kx = k~o t = 0. (9) 

ky = k,o 

The integration of  equations ( I )  using (4), (8), and (9) gives 

k , ( t ' )  = k~ot '  

y(t ' )  = 2R o (sin 4)0)- I/2 [(I  + t'2) I /4- (s in  ~bo)- 1/2] 

x(t') = - y t ' + 2 J 3  Re (sin ~bo)- 1/2 {t '(l  + t'2) 1 / 4 -  (10) 

cot ~bo(sin ¢#o) - 1/2 + 2 -  I/2[F(O, K) - F(® o , K]} 

where the parameter  t '  = cot  4 e - S t ,  F(O, I 0  is the elliptic integral o f  the first kind, 
cos ® = (1 + t ' 2 )  - i f4,  cos Oo = (sin ~po) z/2, and K = 2 -1/2. In (I0) R o = - g / 2 s ~  o 
is the (exact) initial radius of  curvature  of  the rays f rom (5) and (8), where co o is the 
initial wave frequency. The  x -componen t  of  the wave number  and the frequency are  
constants  o f  the motion.  

Shell 's law (7) can be put  in the fo rm x - - x ( y )  for the current  (8) by using 
tan ~b = dx/dy 

x0 ' )  = Re (2/sin $o) 1/2 EF(O, K ) - F ( O  o, K)] (11) 

where cos O = sin q~o(l + 2 y  sin q~o/Ro) -2,  x = 0 at  y = 0, and the notat ion is the 
same as above.  The  curves (11) are tangent  to the wave numbers  and perpendicular  
to the wave fronts. 
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Fig. 1. Rail  (solid) and curves (dashed) tangent to the wave number for deep water surface gravity 
waves of initial frtqueney c% which enter a following ctax~nt of constant tihcar s at the indicated 

angles. The initial radius of curvature of the rays Ro -~ --g/2acoo. 
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Fig. 2. Rays (solid) and curves (dashed) tangent to the wave number for dccp water surface gravity 
waves of initial frequency ~o0 which enter an opposing current of constant shear s at the indicated 

angles. The initial radius of curvature of the rays Ro = g/21s~,. 

The rays (solid) in (I0) and the (dashed) curves (11) are shown in Fig. 1 for a 
following current (s > 0) and in Fig. 2 for an opposing current (s < 0) for several 
values of the initial angle 0 ~< ~o ~< rr/2. Figures I and 2 are valid for all initial 
frequencies and constant shears since the coordinates are made non-dimensional by 
the initial radius of curvature Ro. The direction of the wave number at a point on a 
ray is found from the corresponding dashed curve (same initial angle) at the same 
value of the ordinate. It can be seen from Figs. 1 and 2 that the wave number at a 
point on a ray is not parallel to the rays in general, which is expected from equations 
(1) and (2). The rays which enter the current (8) at right angles are curved, as expected 
from (3), and have the form x = -y2 /2Ro;  the wave number remains perpendicular 
to the current as seen from (7). 

All waves which enter the following current (8) (s > 0) are totally reflected. For a 
given initial angle there is one point on the ray (dy/dt = O, dx/dt  > 0 at t = cot dPo/S), 
the point of  reflection, at which the wave number, current velocity, and the ray tangent 
are all parallel. The coordinates of this point for several initial angles are given in 
Table 1. The x-coordinates (column 2) depend on the current shear, whereas the 
y-coordinates (column 3) depend on the current speed. The values in column 3 also 
given the ratio of current speed at the point of reflection to the initial group speed 
of  the waves U/cso = 2U/co. The spring length of the ray is defined to be the distance 
between the point where the ray enters the current and the point where the reflected 
ray leaves the current. The spring length is found by doubling the x values in column 2 
and it decreases with increasing shear for a given initial frequency. 

All rays which enter the opposing current (8) (s < 0) become perpendicular to 
the current and then bend back toward the current as shown in Fig. 2. The points 
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Coordinates of  maximum cross-stream penetration of  rays entering a following 
current. 

Initial angle 4o 
(deg) x/IRol y~ iRol 

0 O0  O0  

10 23"2 6"72 
20 6" 17 2"43 
30 2'86 1"17 
40 1"63 0'617 
50 1"01 0"326 
60 0.636 0.160 
70 0-379 0"0652 
80 0" 178 0.0155 
90 0 0 

Table 2. Coordinates of  maximum up-stream penetration of  rays entering an opposing 
current. 

Initial angle 4o 
(deg) x / Ro y / Ro 

0 0 0 
10 0.0147 0-166 
20 0-0541 0-295 
30 0.110 0.381 
40 0.176 0.434 
50 0-251 0.467 
60 0.337 0.488 
70 0.438 0.499 
80 0-560 0-506 
90 0"714 0.507 

at which the rays become normal to the current occur when the x-component of the 
group velocity relative to the current is equal and opposite to the current velocity 
(see (1) and (2)). The coordinates of these points (dx/dt = O, dy/dt > 0) are given 
in Table 2. 

The analytical form of the rays in (10) can be used to compute the exact radius 
of curvature which can then be compared to the approximate relation (5). The exact 
radius of curvature r is given by r = - - { - ( J ~ 2 - l - j ) 2 ) 3 1 2 / ( x ) ; - j ) x ) ,  where ~ = dx/dt etc. 
If  r and R from (5) are evaluated at the turn around point (t = cot Cko/S) of the rays 
for the following current, then R/r = sin q~o/[2-(sin ~0)1/2] 2, and 0 ~< R/r <~ I. 
A comparison with Table 1 shows that when the current speed is less than about 5% 
of the initial group speed, the error in using (5) is less than about 10~/o. Also it can 
be shown that r -* R o as t -* 0 so that equation (5) becomes exact when the current 
vanishes as mentioned above. 

APPLICATION TO THE OCEAN 

The refraction of deep water surface gravity waves in inhomogeneous currents is 
applied to wind generated waves in major ocean currents. The Gulf Stream is chosen 
as an example because of its large current speeds and shears. Four possible effects 
will be considered: (1) waves which enter the Gulf Stream from the southeast could 
be totally reflected and therefore not reach the coast, (2) waves which enter the 
Stream from the southwest could be totally reflected and therefore be trapped between 
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the current and the coast, (3) waves which propagate against the Stream could be 
trapped in the current, and (4) waves could propagate through the Stream without 
experiencing any net changes. It is assumed that the Gulf  Stream is a steady unidirec- 
tional current surrounded by an ocean environment which is at rest. The Stream is 
assumed to be uniform in the direction of flow, to be independent of depth, and to 
have a single maximum current speed. 

The total reflection of waves which enter the model Gulf  Stream from the south- 
east or southwest depends on the maximum current speed and not on the current 
shear. Let the maximum current speed U max be 2 m/see. For a wave of initial 
period To = 2n/COo = 8 sec, U max/co ~ 1/6 and the critical angle ~o, from (7) is 
about 50 °. Therefore waves of period 8 see which enter the Gulf  Stream with an 
initial angle between the direction of propagation and the current normal which is 
greater than or equal to about 50 ° will be totally reflected. For waves of initial 
period T O = 16 see, U max/co ~ 1/12 and the critical angle is about 60*. These 
critical angles are smaller than might be expected from the fairly small ratios of 
maximum current speed to initial phase speed, and this is due to the (squared) form 
of the index of refraction in (7). The length scale of the reflection in the current 
direction depends on the current shear and can be estimated from Fig. 1 and Table 1. 
Let the half width of the Gulf  Stream be 50 km and the maximum speed be 2 m/see. 
This gives an average shear of 4 x  10-5/see which is assumed constant. Then the 
initial radius of curvature of the rays from (5) and (8) for waves with initial periods 
of 8 and 16 see is 156 and 312 km, respectively. The spring length of the reflected 
rays for 8 and 16 sec waves (with initial angles of 50 ° and 60 °, respectively) is about 
310 and 400 km respectively, as seen from Table 1. For comparison, it is easily seen 
that if the radius of curvature were constant at its initial value Ro, then the spring 
length of the particular ray with initial angle 60 ° would also be Ro. Table 1 shows 
that for this ray the spring length is actually about 1.27 R 0, which is partly due to the 
increase in the radius of curvature along the ray associated with the increase in wave 
length and therefore increase in group speed relative to the current, as seen from (5). 

Trapping of waves in the Gulf  Stream can occur if the waves propagate against 
the current with sufficiently large angles between the wave number and the current 
normal. Trapping (total internal reflection) depends on the maximum current speed 
and not on the current shear. The critical angle ~bc for trapping from (7) for a wave of  
period 8 see (at the edge of the current where the velocity vanishes) is about 48 °, 
taking the maximum current speed as 2 m/see. Therefore, all waves whose period at 
the edge of the current is 8 see will be trapped if the angle between the wave number 
and the current normal at the position of maximum current speed is greater than or 
equal to about 48 °. The critical angle for a 16 see wave is about 59 °. These critical 
angles are nearly the same as those for total reflection mentioned above since the 
ratio of maximum current speed to initial wave phase speed is small. The length scale 
of the trapping in the current direction depends on the current shear and can be 
estimated from Fig. 2 and Table 2. According to the one-dimensional current model 
assumed, in order to be trapped the waves must be generated within the boundaries 
of the Gulf  Stream. However, since the Gulf  Stream itself is actually curved it is 
possible that waves generated outside the Stream could also be trapped. 

Waves which are neither trapped in nor totally reflected from the Gulf  Stream 
will pass through the Stream with no net change in wave length or direction (or 



1030 KEI~E. KIENYON 

amplitude), assuming that no wave breaking occurs. This follows from the ray 
equations for the model current assumed. To the extent that the Gulf Stream cannot 
be represented by the model current small net changes in wave properties might be 
possible. 

The above examples indicate that a significant fraction of the wave energy which 
enters the Gulf Stream from the south could be reflected by the current, and also a 
significant fraction of the wave energy which propagates against the Gulf Stream 
could be trapped in the current. 

COMPARISON WITH OBSERVATIONS 

The above application of wave-current refraction to surface gravity waves in the 
Gulf Stream indicates that major ocean currents may have an important influence in 
changing the propagation direction of the waves. In particular the reflection and 
trapping of waves by currents should be possible under the appropriate conditions. 
I know of no observations which are pertinent to the Gulf Stream, but the observa- 
tions of MUNK, MILLER, SNODGRASS and BARBER (1963) and SNODGRASS, GROVES, 
HASSELMANN, MILLER, MUNK and PowERs (1966) on waves which were generated 
near the Circumpolar Current may be relevant. 

MtrNK, MILLER, SNODGRASS and BARBER (1963) and SNODORASS, GROVES, HASSEL- 
MANN, MILLER, MtmK and PoweRs (1966) made observations on ocean swell propagat- 
ing across the Pacific in which directional information is available. One curious fact, 
which was noted in both studies, is that the storm position inferred from the direction 
of the waves at the recording station was typically to the left (when looking toward 
the storm from the recording station) by a few degrees (few hundred kin) of the 
storm position inferred from the weather maps. This discrepancy cannot be explained 
by the effect of the Earth's rotation (BACKUS, 1962) nor by the Earth's oblateness 
(SNoDGRASS, GROVES, H ~ ,  MmI.ER, MUNK and PowERs, 1966). MUNK, 
MILLER, SNODGRASS and BARBER (1963) think the discrepancy may be produced by 
local refraction due to the decreasing water depth near the recording station. Since 
many of the storms occurred in or near the Circumpolar Current, there is a possibility 
that some bending of the wave rays by the current shear may have occurred. MUNK, 
MILLER, SNOtmRASS and BARBER (1963) mention that the discrepancy in storm posi- 
tion is less for the lower frequencies, which is consistent with current refraction 
because the current shear refracts the higher frequencies to a greater extent than the 
lower frequencies, whereas bottom refraction affects the lower frequencies to a 
greater extent than the higher frequencies. 

A detailed comparison of theory and measurement is not attempted because the 
velocity structure of the Circumpolar Current is poorly known. An idealized model 
of the Circumpolar Current is chosen to illustrate the possible effects of refraction. 
The Antarctic region is approximated by a plane tangent to the south pole. The 
model current in this plane is a horizontal nondivergent circular ring of current with 
two regions of constant shear. 

f s(r-ro) ro <~ r <~ r o + d 
V =  ~ ; ( r t - r )  r o + d < ~ r  <~r, 

r < r o, r >r  i (12) 
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where V is the azimuthal velocity component (positive in the clockwise direction), 
s > 0 is constant, r is the radius from the south pole in the plane, ro is the inner 
radius and rl is the outer radius of the current, and the width of  the current is 2d. 
The current is a maximum in the center of  the ring (r = to+d) ,  decreases linearly to 
zero at the edges of  the ring, and vanishes outside the ring. 

The ray equations (1) were integrated numerically for the current (12) and two 
examples are shown in Figs. 3 and 4. The following values of  the constants were 
chosen: r o = 4000 km, d - - 5 0 0  kin, ands  = 10-6/see, which means the maximum 
current speed is 50 cm/sec. (REID and NowLrN, 1971, have observed speeds up to 
40 cm/sec in the Drake passage). Figure 3 shows the rays for waves of  5, 10 and 15 
sec period which all emerge from the current at an angle of 60 ° to the current normal. 
Looking in the direction from which the waves came, the dashed straight line is the 
projected ray based on the assumption of no current. Figure 3 shows that the current 
can cause the rays to deviate from the dashed line by several hundred kilometers, 
and the dashed line is to the left of the rays in agreement with the observations of  
MUNK, MILLER, SNODGRASS and BARBER (1963) and SNODGRASS, GROVES, HASSEL- 
MANN, MILLER and POWERS (1966). Figure 3 also shows that the rays of  the higher 
frequency waves are bent more than those of  the lower frequency waves. 

/ . / "  

/ ' -  / " /  / / "  
/ . /  

/ / 

/ /  / / /  / /  

/ / 
/ / 

/ / 
~ / /  1 / 
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/ 

/ i 
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Fig. 3. Rays for surface waves of indicated periods which all emerge at an angle of 60 ° from the idealized 
Circumpolar Current in equation (12). The dashed straight line is the ray for a wave of any period 

projected back from the point of emergence assuming there is no current. 

Figure 4 is essentially the same as Fig. 3 except that the rays emerge from the 
current at 5 5  ° instead of  60 °. The bending of  the rays of  the I0 and 15 see period 
waves is quite different, even though the angle of  emergence has been changed by 
only 5 ° , and the change in sign of  the radius of  curvature is due to the penetration of  
the rays into the inner half of  the current where the sign of  the vorticity is reversed 
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Fig. 4. Rays for surface waves of  indicated periods which all emerge at an angle of  55 ~ from the 
idealized Circumpolar Current in equation (12). The dashed straight line is the ray for a wave of  any 

period projected back from the point of emergence assuming there is no current. 

[see (3)]. The projected ray for zero current is still mainly to the left of the rays but 
the deviation is less for the lower frequencies. 

SNODGRASS, GROVES, HASSELMANN, MILLER, MUNK and POWERS (1966) discuss 
an observation in which waves were recorded at two stations including Yakutat, 
Alaska, although both stations were totally shadowed. They mention that the great- 
circle route between the storm and Yakutat intersects the Antarctic continent south 
of Australia, but that a bending of the ray by orly 3 ° would give Yakutat sufficient 
aperture to receive the waves. They suggest wave-wave scattering or scattering by 
the Antarctic Pack Ice as possible explanations. The type of bending illustrated by 
the rays for waves of 10 and 15 sec period in Fig. 4 might also be a possible explana- 
tion. 

SNODGRASS, GROVES, HASSELMANN, MILLER, M UNK and POWERS (1966) measured 
the attenuation of swell which propagated along a great circle route between New 
Zealand and Alaska. They found that there was negligible attenuation of the low 
frequencies (50 to 70 mc/s, periods of 15 to 20 sec) between New Zealand and Alaska 
but that the higher frequencies (70 to 100 mc/s, periods of 10 to 15 sec) were attenuated 
within one storm diameter (1000 km). They found this lack of  attenuation in the far 
zone and strong attenuation in the near zone to be not inconsistent with considera- 
tions involving only wave-wave scattering and island absorption. Wave refraction 
by currents may be another possibility. The higher frequencies are selectively refracted 
more than the lower frequencies and a significant bending of the rays can take place 
in a storm diameter as Fig. 3 shows. This might partly explain the strong attenuation 
of the high frequencies in the near zone in those cases in which the storm generated 



Wave refraction in ocean currents 1033 

waves in a narrow directional beam in or near the Circumpolar Current. A qualitative 
explanation for the lack of attenuation in the far zone can also be given, since it 
is not expected that the equatorial currents, for example, would have any net effect 
on the waves which propagate through them. This follows from the fact that for the 
storm and receiving stations involved, the waves would enter the equatorial currents 
at too small an angle to be totally reflected and would therefore pass through with 
very little net effect, as was first mentioned by DRENT (1959). 

DISCUSSION 

The above applications suggest that refraction effects may be important when 
surface gravity waves propagate in major ocean currents. A quantitative comparison 
between the refraction model and ocean measurements has not been given. However, 
a qualitative comparison showed that some of the observations of MUNK, MILLER, 
SNODGRASS and BARBER (1963) and SNODGRASS, GROVES, HASSELMANN, MILLER, 
MUNK and POWERS (1966) were not inconsistent with a mechanism involving only 
wave-current refraction, although other physical processes mentioned by the authors 
may alsc be important. 

Refraction effects might be important in ocean currents other than the Gulf  
Stream and the Circumpolar Current. For example, waves generated by the trade 
winds might be trapped in the Equatorial Counter Current between the North and 
South Equatorial Currents in the Pacific and Atlantic oceans. 

Waves could be trapped by currents in situations which involve also curvature of 
the current, reflecting boundaries, or bottom topography. For example waves might 
be trapped along coasts by the shear in longshore or tidal currents in a manner 
analogous to the trapping of edge waves by bottom topography. If the effect of 
current shear were to dominate over the effect of bottom topography, then the trapped 
waves could only propagate along the coast in one direction for a given sign of  the 
shear. 

Currents, such as the Gulf  Stream, could have a shielding effect in preventing 
some wave energy from reaching the coast by either reflecting or trapping waves, 
as was suggested by JOHNSON (1947). 

In applying refraction to wind waves in ocean currents certain simple current 
geometries have been assumed. However, even if the velocity structure of  ocean 
currents were known in detail, in which case the ray equations could be easily integrated 
numerically, the refraction effects would be expected to be qualitatively the same 
as for the model currents. The basic assumption of geometrical optics that the currents 
vary slowly over distances comparable to a wave length is probably a good one for 
major ocean currents (width ~ I00 km) and for wind waves (wave length < 500 m). 

The assumption that the currents do not vary with depth may not be appropriate 
if ocean currents vary appreciably over the depth of penetration of the waves, which 
is about half a wave length for deep water waves (about 200 m for a wave period of  
16 sec). The consequence of relaxing this assumption has not been investigated. 
The assumption is probably a good one for the Circumpolar Current, which is a deep 
current, but may not be as good for the Gulf  Stream. Probably the largest vertical 
shear near the surface (order 10-2/sec in the upper 100 m) is associated with the 
Equatorial Undercurrent (KNAuSS, 1960), but SNODGRASS, GROVES, HASSELMANN, 
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MILLER, MLrNK and POWERS (1966) did  not  observe any marked  diss ipat ion o f  energy 
or  change in p ropaga t ion  direct ion o f  waves which crossed the equa tor  in the Pacific. 
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