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' ABSTRACT

This paper is the second of three which seek to evaluate the hypothesis that deep water whitecapping is
predictabie in terms of a threshold mechanism involving the vertical acceleration.

The geometro-statistical computations of Part I of the series proceeded via direct integration of the joint
‘probability densities for the vertical acceleration. In Part II we explore a second technique for computing
whitecap statistics. This technique involves the Monte Carlo simulation of the vertical acceleration field and
of the corresponding “breaking” variable field. Subsequent collation of various whitecap statistics parallels the
analysis of whitecap photographs to be described in Part III.

Linear simulations for two types of JONSWAP spectra (Trals 1 and 2) and for a Pierson-Moskowitz
spectrum (Trial 3) are presented. The resulting statistics, generated with limited resources, are sparse but
pertinent. Significant improvement in the reliability of these statistics could be effected by using a vector

processing computer.

1. Introduction

In Part I of this series we introduced the concept
of a “breaking” variable. This variable assumes the
values one or zero depending on whether or not
breaking is present on the water surface at a specified
space-time location, that is, on whether or not the
corresponding downward acceleration exceeds a crit-
ical value. The breaking variable is a random field
variable which contains a complete description of the
surface geometry and surface geometrical statistics of
the whitecapping process.

The statistics of the downward acceleration are
described (to the linear approximation) by a joint
Gaussian probability density function determined by
the directional wave spectrum. Accordingly, the
breaking variable statistics are expressible as integrals
of this jointly Gaussian probability density function
in which a threshold value is a limit of the integral.
As discussed in Part I, however, the evaluation of
these multi-dimensional integrals is neither analyti-
cally nor numerically trivial.

Examination of the statistics of interest, in partic-
ular, the geometrical moment statistics defined in
Part I, suggests that in most cases it is numerically
simpler to estimate these statistics from experimental
data than it is to evaluate them analytically. It is in
just such a case that the “method of statistical trials”
[i.e., the Monte Carlo approach (Shreider, 1966)] be-
comes useful.

In the present case, this method generates (by an-
alytical simulation) ensemble members of a stochastic
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process with the same statistical properties as the ver-
tical acceleration field. Each ensemble member is
searched for regions in space and time in which the
critical value is exceeded. In those regions a binary
breaking variable is set to one, indicating the presence
of a whitecap.

Section 2 describes the linear field simulation
method used and briefly describes a method for in-
corporating nonlinear effects into.the simulation. Sec-
tion 3 presents a set of statistics describing the deep
water whitecap obtained from the Monte Carlo type
simulations. Section 4 presents the results and Section
5 summarizes the resulting conclusions.

2. Simulation of wave fields

The Monte Carlo approach has found extensive
use in the evaluation of complex engineering and
physical problems. Methods of generating time series
with preassigned statistics have been discussed in both
physical and engineering literature. [For example, see
Shreider (1966); Thompson (1973); Borgman (1969);
and Eby (1970), as well as the reference lists of these
works.]

In the present case it is necessary to synthesize the
threshold field variable by generating time series at
specific spatial locations. Two methods were imple-
mented, both similar to that proposed by Borgman
(1969). One of the methods closely parallels the paper
by Eby (1970). This approach yielded satisfactory
variables for the linear field cases but did not readily
accommodate the addition of nonlinear effects. To
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allow for this addition, a second method was imple-

mented. We discuss the latter method only.

The synthesis of the vertical acceleration field is

based on analytical models of that field variable. Our
success in generating a field, largely indistinguishable
from data, was possible because of the advanced state
of the modeling of surface gravity waves. Because of
the weak nonlinearities of the gravity wave field, we
anticipate that linear analysis alone should yield a
high-quality description of the actual ocean surface.

Following Hasselmann (1961), we represent the
first-order surface elevation in the form

Gilx, 1) = % {Z1(k) expli(k - x — w1)]

+ Z7(k) explitk-x + wt)]}. (1)

The complex Fourier amplitudes are independent
Gaussian random variables satisfying the orthogo-
nality conditions:

(ZFR)*ZF(K')) = Yalky Ay F (K)o
(ZHK)Zi(K')) = O,
(ZT(K)ZT(k)) = 0,

where Fp(k) is the spectral density function (direc-
tional wave spectrum) and &y, is the Kronecker delta
function. Also because ¢, is real, we have

Zi(k)* = Z7(-Kk).

We next consider the change of independent vari-
ables k — (w, ) with w? = gk, and rewrite (1) in the
form

=2 2 (ZH(w, )

w>0 6
X exp{i[w’g™'(x; cosf + x; sinf) — wi]}
+ Z1(w, 0) exp{ilw’g™'(x; cosd + x, sinf) + wi]}),

where Zi(w, 8) are complex amplitudes related to
Zi(k). We note that the outer sum is over positive w
only:

Z1(w, 0), w>0
Zl_(—w9 0) = ZT(_"), 0+ W),

We may rewrite this representation in the simpler
form :

r(x, t) = E z Zl(w’ 0)
w 0 .

Z(w, 0) = {

w<0.

X exp{i[w’g!(x, cosf + x, sinf) — wi]}, (2)

where the outer sum runs over both positive and neg-
ative w. The real and imaginary parts of the complex
amplitudes Z,(w, #) are independent Gaussian vari-
ables with the variance
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(IRe(Z)P) = ([Im(Z))F*)
= UAWAGE:(w, 8), >0,

where
Ex(w, 0) = 2w’g 2Fa(K).

The synthesis procedure may now be summarized as
follows:

1) Choose a directional spectrum evaluated at a
discrete set of frequencies and angles.

2) Determine the real and imaginary parts of the
Fourier coefficients by choosing from a set of random
numbers having zero mean, independent Gaussian
amplitude distribution and variance:

U AWABE A w, 6).
3) Evaluate the surface elevation from the expres-
sion
M-1

g—l (xy t) =

m=0

N-1

eem{ 3 Z(wnm, 6,)
n=0

X expliwk,g '(x, cosh, + x; sind,)]}.

The term in the braces is evaluated numerically for
each w,,. The surface elevation is then determined by
a Fast Fourier Transform (FFT) at x for the times £,
where

t,=pAt, p=0,1,... ., M~ 1
27

At =
MAw

In addition, the FFT requires that
Z(@m, 0n) = ZH@prr-m> 0n)-
4) Evaluate the vertical acceleration by letting
A(w, 0) = ~wnZ(Wm, 0,),

and evaluating

M-1 N-1
A](X, t) = Z e_i”’"'{ 2 Al(wmy 0’1)
m=0 n=0

X expliwZ,g '(x; cosf, + x; sind,)]}.

A basic approach to synthesizing higher order non-
resonant fields is to construct higher order non-
resonant corrections to the linear field synthesized
above. This may be accomplished directly from Has-
selmann (1961), or equivalently by expressing the to-
tal field variable as a function power series of the first-
order field. [Details of this latter procedure are given
by Kennedy (1978).] While the resulting second-order
correction appears straightforward, it would clearly
be several orders of magnitude more time consuming
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to evaluate than the linear expression. Accordingly,
a second-order simulation was not attempted.

The space-time samples of the field variables are
drawn from a stochastic process having a given di-
rectional spectrum. To the linear approximation, this
spectrum is completely specified by the covariance
matrix of the surface elevation. Thus, we may use a
cross-spectral density matrix estimated from samples
of the simulated surface elevation to verify the sim-
ulation itself (by comparing the estimated values with
the theoretical matrix derived from the assumed di-
rectional spectra). Using this method, the quality of
the simulations was closely checked and found to be
high (Kennedy, 1978).

3. Monte Carlo experiment design

The experimental plan requires specification of
three sets of items: independent variables, experi-
mental parameters, and experimental statistics of in-
terest. In the present case, the independent variables
are time (¢), and two space dimensions, downwind
(x;) and crosswind (x,). Both sample intervals and
the total field of view must be specified for each vari-
able. ‘

Similarly, there are three experimental parameters
to be considered: the directional spectrum, the ver-
tical acceleration critical value, and the highest fre-
quency to be considered.

The experimental outcomes are the statistics of the
breaking variable; i.e., statistics discussed in Part 1.
A principle objective of the experiment is to deter-
mine changes in breaking variable statistics caused
by a change in an experimental parameter. This em-
phasis contrasts with attempting to determine precise
statistics (which would require considerably more
data.)

A principal limitation to the numerical experiment
was the cost of simulating the field variables. As will
be shown in this section, the required number of
space-time data points is quite large. For example, a
typical “trial” required over two million data points,
and the total experiment had three trials. Simulation
costs severely restricted experimental objectives; thus,
ultimate experiment design was a compromise be-
tween objectives and cost.

The primary factor controlling the cost of a par-
ticular object is statistical accuracy. For example,
while 25 whitecaps might be required to estimate the
mean whitecap duration with a 20% error, 100
whitecaps would be required to obtain 10% errors.

Three types of directional spectra were employed.
These are the JONSWAP spectrum (Hasselmann and
others, 1973) chosen as representative of a fetch-lim-
ited sea (Trials 1 and 2) and the Pierson-Moskowitz
spectrum (Pierson and Moskowitz, 1964), chosen as
an example of a fully developed sea (Trial 3), and a
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third experimentally determined spectrum, from the
field experiment, presented in Part IIl. Because of
several problems with the third simulation, it will not
be discussed in detail.

The first two spectra are defined as follows:

1) Pierson-Moskowitz spectrum’

5 -4
De(w) = 0.0081g%w™* exp[— 2 (g) ] ,
where
= £
Q = 0.088 W

2) JONSWAP spectrum

-4 -y
Dp(w) = eglw™ exp[— % (g) ]‘Yexp[ 200 ] s

where = 228793y = 3.3, ¢ = 0.08, @ = QW/g,
¢ = 0.57%7%%, and X is a nondimensional fetch.

In both theoretical spectra Ey(w, 8) was taken to
be of the form

' Ep(w, 6) = Dy(w)H(6).

The spreading function significantly influences the
geometrical shape of the whitecap. A frequency-in-
dependent form which does not allow any waves trav-
eling against the wind was employed. The form is

A cos', —%st?sg
H() =
0, elsewhere.

A is evaluated such that
f doH(6) = 1.

Exponent values of 2 and 4 were used to study the
effect of the spreading function on the statistics of the
breaking variable.

The integral of the acceleration spectra is non-con-
vergent. This makes it necessary to choose an upper
cutoff frequency. The consequence of choosing such
a frequency on whitecap shape is discussed below.
(See also the discussion in Part 1.)

The highest frequency of interest to this study is
taken to be the spatial resolution of the observer. In
the numerical experiments to be described, the “cam-

! A modified form of the Pierson-Moskowitz spectrum is em-
ployed so that Q retains its identity as the frequency of peak energy.
W is the wind speed.



1496

era” height is always adjusted so that the field of view
is a rectangle whose sides are approximately a half-
wavelength of the principal wave component of the
surface elevation field. Numerical experiments were
carried out to determine what the highest frequency
should be relative to this point of view. Employing
qualitative criteria, it was concluded that a highest
frequency of three times the frequency of peak energy
adequately described the larger whitecaps. Higher fre-
quencies did not significantly alter the shape of the
large breakers, but rather only added small-scale in-
cipient whitecaps.

It should also be noted that there is a strong eco-
nomic motivation to keep the highest frequency in-
cluded as small as possible. The higher the cutoff fre-
quency the more frequency bands involved in the
superposition and (because of the correspondingly
smaller spatial resolution) the more grid points
needed in the simulation field.

Throughout the Monte Carlo experiments several
critical values of acceleration were chosen. It is useful,
however, to obtain a rough estimate of a critical value
from field data. The BOMEX directional spectra of
Regier and Davis (1977) were measured simulta-
neously with measurements of percentage whitecap
coverage by Monahan (1971). The fraction of the sur-
face covered by breaking water is directly calculable
from the acceleration spectra and a critical value as
shown in Part 1. Thus, knowing the acceleration spec-
tra and the percentage whitecap coverage allows one
to calculate the critical value.

Comparison of the percentage whitecap coverage
during the BOMEX experiment with the BOMEX
acceleration values indicates that a single critical
value will not match all of the data. This is because
the whitecap data show an order of magnitude change
in whitecap coverage over the wind speed range of
5-10 m s™! (i.e., 0.2-2%) while the acceleration value
changed only 11% over this same range. If one were
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to choose an independent critical value to best match
the data at the wind speeds, one would obtain 0.52g
at 5 ms', 0.51g at 7.5 m s!, and 0.40g at 10
m s~'. While these values are all of the order of 0.5g,
they appear to decrease with increasing wind speed.
This decrease may reflect uncertainties in the
BOMEX/Monahan data or it might be real, in which
case a possible explanation for the change is that the
surface drift current, which increases with wind speed,
reduces that critical value by the mechanism dis-
cussed by Phillips and Banner (1974).

The experimental outcomes were quite sensitive
to the choice of critical value and a “reasonable
range” of values was quite evident. When the critical
value chosen was too low, it manifested itself by a set
of whitecaps which had shapes contrary to observa-
tions. On the other hand, if the chosen values were
too high, the percentage of whitecap coverage rapidly
became zero. It is quite satisfying that the range of
“reasonable” values closely matched the values esti-
mated from the BOMEX data. The experimental val-
ues used are 35%, 40%, 45% and 50% of the gravi-
tational constant for Trials 1 and 2, and 25%, 30%,
35% and 40% for Trial 3.

A summary of the experimental conditions for
each of the three trials implemented is given in
Table 1.

In an effort to provide a direct comparison with
the experimental statistics to be generated in Part III,
the third and final Monte Carlo simulation was ef-
fected using the experimentally determined direc-
tional spectrum for runs 13, 14, 15 from December
1972 (see Fig. 3 of Part III). Two problems signifi-
cantly degrade this comparison: 1) The experimen-
tally determined directional spectrum extended only
to twice the peak frequency which is a poor match
with the corresponding cutoff frequency associated
with the photographic threshold. 2) Because the ob-
served whitecap coverage for the experimental runs

TABLE 1. Experimental parameter summary.

Non- Wind Frequency Highest Spatial sampling
Trial  Directional spectra  dimensional speed Spreading Critical  of peak energy  frequency interval
No. type fetch (ms™') function values (rad s7') (rad s7') (m)
1 JONSWAP 10° 10 0.35 221 6.75 0.2
o cos’d, 6] < % 0. 40§
0, elsewhere 0.45¢
0.50g
2 JONSWAP 10° 10 0.35 2.21 6.75 0.2
0 cos*d, |6} <12r- 0. 40§
0, elsewhere 0.45g
0.50g
3 Pi -Moskowitz — 10 0.25 0.981 2.94 1.02
erson-Moskowi cos, [6] < % 0‘30§
0, elsewhere 0.35¢

0.40g
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is typically an order of magnitude smaller than in the
previous simulations, an order of magnitude increase
in the length of the simulations is required for com-
parable statistical reliability. As such an increase was
not practical we decided instead to attempt the sim-
ulation at a reduced threshold value (0.15g and 0.2g).
The resulting whitecap statistics (which will not be
presented) do not compare favorably with the results
of the field experiments. (Although there is reasonable
agreement between some of the moment statistics.)
Because the sense of the discrepancies are typically
in keeping with the lower cutoff frequency and the
lower threshold levels for the simulation, we believe
they are probably the result of these factors and do
not represent a failure of the threshold model.

A principal difficulty with performing a whitecap
experiment, either in the field or numerically, is the
fleeting, random nature of the event. Accordingly,
space-time observations require high resolution and
a large field of view. A large space-time field of view
is needed to acquire a reasonable number of events,
while high resolution is required to adequately de-
scribe each event. These conflicting requirements ne-
cessitate accumulating a large number of samples.

In order to fix the resolution, a space-time corre-
lation function of the breaking variable was com-
puted. The space-time interval was chosen such that
a space~time delay of one sample interval yielded a
positive normalized correlation value of about 50%.
A JONSWAP-type one-dimensional directional spec-
tra with a cos®d spreading function and typical critical
* values were used in this development. This compu-
tation suggested that a temporal sample interval
should be ~2% of the period of the frequency of peak
energy and the downwind spacial interval was also
2% of the wavelength of the frequency of peak energy.
As anticipated from visual observations of whitecaps,
this dimension was almost twice as large in the cross-
wind direction (3.5%). It would thus be possible to
have different sampling intervals in the downwind
and crosswind directions. However, because of the
trial-to-trial variability of the correlation values and
the desire to describe the spatial shapes as closely as
possible, the downwind and crosswind sampling in-
tervals were both set equal to 2% of the wavelength
of the frequency of peak energy.

The two-dimensional spatial aperture was then
chosen to be as large as computer size and costs would
allow. The number of breaking variable “sensors”
(i.e., spatial points) increases as the square of the ap-
erture. A realistic number turned out to be a 24-by-
24 element array, yielding 576 “‘sensors”. The spatial
aperture thus turned out to be just short of half a
wavelength of the frequency of peak energy. The tem-
poral length of an experimental run was about 10
periods of the frequency of peak energy.

A typical experimental run consisted of 512 time
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samples at each of the 576 “sensors.” There were
seven runs per trial, and three trials.

4. Results

In this section we present the statistical description
of the breaking variable from the Monte Carlo sim-
ulations. The statistics estimated are either discussed
at length in Part I or are self-explanatory. Each sta-
tistic is estimated for a set of critical values. The ex-
perimental parameters and critical value set are listed
in Table 1.

Before proceeding with a detailed look at the re-
sults, special note should be made of the conditions
of Trial 3 which used a Pierson-Moskowitz spectrum
(evaluated for a 10 m s™! wind speed and a cosine-
squared spreading function). This change in spectrum
type from the JONSWAP spectrum of Trials 1 and
2 significantly changes the surface elevation field; in
particular, it reduces the mean-square vertical accel-
eration and therefore the whitecap coverage. This re-
duction is primarily a result of the decreased value
of the Phillips equilibrium constant and of the peak
enhancement factor (equal to 1) for the Pierson-Mos-
kowitz spectrum. A consequence of this approach is
the reduction in whitecap coverage for a given critical
value. The occurrences of the larger whitecaps are
infrequent, which reduces the efficiency of the sim-
ulation procedure. To increase the number of
whitecaps in the trials to a reasonable number, the
range of critical values was changed to 0.25g-0.40g
for Trial 3. This did increase the number of whitecaps
observed during the experiment but, since the break-
ers are occurring at a smaller critical value, the intra-
trial comparisons must be made cautiously.

The most fundamental of the primary statistics is
the percentage whitecap coverage or, equivalently, the
probability of breaking. This statistic may be easily
calculated analytically as shown in Part I (Fig. 5). The
results of this calculation are compared with the data
from all 21 runs of the numerical experiments in Fig.
1 as a function of A\,/A.. An important point to be
noted from this figure is the highly sensitive dependence
of the whitecap coverage on Q.

The dependence of the probability of breaking on
critical value is illustrated in Fig. 2, where trial av-
erages are used. The directional spectrum type is also
shown in Fig. 2 which illustrates that A, (which suc-
cessfully coalesces the data) is the only spectral pa-
rameter of importance.

As would be anticipated, the number of new
whitecaps observed in a trial depends critically on the
assumed threshold value. A 30% reduction in critical
value increased the number of whitecaps by 517%.
Since the number of whitecaps counted occurred over
a specific space and time interval, the meaningful sta-
tistic is the number of whitecaps per unit area and
time. These values are given in Table 2.
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FIG. 1. Whitecap coverage versus rms acceleration.

A very useful and basic statistic estimated is the
space-time correlation function of the breaking vari-
able (see Part I for the explicit definition). Figs. 3 and
_ 4 illustrate a typical normalized correlation function.
The independent variables for Fig. 3 are downwind
separation and time delay, while in Fig. 4 they are

O - TRIAL1
A - TRIAL 2

" O - TRIAL3

g 0.5 o

3 )

\

g 0.4

2

8 0.3

E

é 0.2 oa

d o

™

0.1

§ A

& o n

& 0 3.0 3.5 4.0 4.5

AC/ )‘rm:
FIG. 2. Whitecap coverage vs. critical value.

crosswind separation and time delay. The third di-
mension in both figures is the value of the normalized
correlation function for various combinations of the
two independent variables. Note that combination
values of downwind and crosswind separation were
not evaluated; that is, the spatial separation was never
oblique to the wind.

Because of the expense of the correlation calcula-
tion, it was not repeated at each critical value. The
correlation function was calculated at 0.4g for Trials
1 and 2, and 0.3g for Trial 3.

i

TABLE 2. Summary of number of whitecaps per
unit area per unit time.

Non- Trial 1 Trial 2 Trial 3
dimensional JONSWAP JONSWAP Pierson-
critical value %=10° x=10 Moskowitz

AJg cos? cos*d cos?d

0.25 — —_ 0.00039

0.30 —_ - 0.00013

0.35 0.020 0.015 0.00005

0.40 0.010 0.008 0.00001

0.45 0.004 0.004 —

0.50 0.003 0.003 —
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FiG. 3. Downwind-time correlation of breaking variable.

Various length and time scales were obtained from
the correlation functions. Two types of correlation
scales are given.

One is an integral scale defined as the integral of
the normalized correlation function. The second type
of scale is a 50% scale. This is defined as the space
or time separation required for the correlation func-
tion to decline by 50% of its maximum value (which
occurs at zero space and time separation). The trial
average of the above length scales is determined by
averaging the individual runs.

A breaking variable propagation velocity is also
obtained by taking the slope of the “ridge” of the
downwind-time correlation function. Fig. 3 illus-
trates this procedure. The essence of the process is
that one determines the separation required to spa-
tially keep up with the breakers’ downwind move-
ment. The ratio of this length to time defines the
desired velocity.

Of primary interest is the dependence of the length
and time scales and the whitecap propagation velocity
on the choice of directional spectrum type. As will
be shown, the wavelength and period of the com-
ponent of the field having the frequency of peak en-

‘ergy of the spectrum is an important parameter.

However, the spreading function clearly alters the
crosswind-length scales. Thus a simple param-
eterization of this dependence is important. To
develop a parameter, which expresses the length scale
dependence on the spreading. function, we proceed
as follows:

Let the field {(x, £) observed near the origin of the
coordinate system (x) be due to a superposition of
plane waves having the same amplitudes and wave-
number. We consider two “sensors” placed symmet-
rically about the origin and oriented either downwind
or crosswind. A correlation function between these
two sensors may now be defined as
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" FIG. 4. Crosswind-time correlation of breaking variable.

Col€, 0) = (§(—2E, D$*('1E, 1)).

If the sensors are crosswind of one another we have

6
Cpr ~ f " d9 exp(ikt, sind),

-8y

where # is the extent of the spreading function. Sim-
ilarly if they are downwind of one another

8
Cpp ~ f " 46 exp(ik, cosh).

—8y

We now define the length scales associated with a
spreading function width of 8;;. Specifically, these are
- the values required for the normalized correlation to
be 50% of its maximum value; £, satisfies the integral
equation

2 [t .

— cos(k&. sinf)de = 1.

O Jo

20

15

10 20 30 40 50

6 4 (DEGREES)

F1G. 5. Length scales parameterizing directional spectrum type.
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TABLE 3. Length scale.
Spreading function . . . .
Nondimensional Nondimensional
Principal dependent scale Length scale length scale length scale
wave-
length Downwind Crosswind Downwind Crosswind Downwind Crosswind Downwind  Crosswind
(m) (m) (m) (m) (m)
a. Integral length scale.
Trial 1 12.2 2.2 5.0 0.22 0.39 0.018 0.032 0.099 0.077
Trial 2 12.2 2.1 6.6 0.21 0.51 0.017 0.042 0.100 0.077
Trial 3 64.1 11.7 26.5 1.01 1.76 0.016 0.028 0.086 0.066
b. Fifty percent correlation length scale.
Trial 1 12.2 2.2 5.0 0.18 0.32 0.015 0.026 0.082 0.064
Trial 2 12.2 2.1 6.6 0.18 0.42 0.015 0.034 0.086 0.064
Trial 3 64.1 11.7 26.5 0.88 1.48 0.014 0.023 0.075 0.056

In a similar manner, the downwind length scale ¢,
satisfies the integral equation

0
! cos(kgy cosf)db = 1.
0r Jo

The latter equation is not single valued in &,;, and
thus we will choose the smallest value. Fig. 5 sum-
marizes the solutions to the above integral equation.

Table 3 summarizes both the integral length scales
and the 50% correlation scales. Table 4 does the same
for the time scales. Both tables clearly show that the
space and time scales of a whitecap are completely
determined by the space and time scales of the wave
component having the frequency of peak energy and
(in the case of the crosswind length scale) by the
spreading function width (6).

The whitecap propagation velocity is seen (Table
5) to be significantly smaller than the phase speed of
the component of the field having the frequency of
peak energy. The magnitude is close to the group
velocity associated with the frequency of peak energy.
This similarity is probably coincidental, as there ap-
pears to be no reason to believe that group velocity
is a pertinent parameter. Most likely the velocity of

the whitecap which coincides with the velocity of the
negative peaks of the vertical acceleration field reflects
the importance of the higher frequencies to the break-
ing process.

It is instructive to classify the statistics into two
groups. This type of classification is an advantage
because of the two different types of data analysis
encountered. In some cases, the statistics of interest
may be determined from the value of the breaking
variable in a fixed space-time coordinate system.
Such statistics will be referred to as “‘breaking variable
statistics” of which the above statistics are examples.
Other statistics, which describe characteristics of the
evolution of a whitecap, are most efficiently estimated
by “collecting” many whitecaps occurring at various
times and places, and subsequently moving them to
a relative coordinate system in which they are aligned
such that the initial breaking point occurs at the or-
igin. Thus each whitecap becomes an ensemble mem-
ber of the same stochastic process. Such statistics will
be referred to as “event statistics.”

It has been mentioned several times throughout
the text that the length and number of simulations
was limited by the expense of the process. This limit
has been felt most severely in the area of event sta-

TABLE 4. Time scale.

Principal Fixed coordinate Nondimensional Moving coordinate Nondimensional
period time scale fixed coordinate time scale moving coordinate
(s) (s) time scale (s) time scale
a. Integral time scale summary.
Trial 1 2.79 0.096 0.034 0.267 0.096
Trial 2 2.79 0.104 0.037 0.276 0.099
Trial 3 6.41 0.204 0.032 0.631 0.098
b. Fifty percent correlation time scale summary.
Trial 1 2.79 0.085 0.030 0.232 0.083
Trial 2 2.79 0.089 0.032 0.276 0.099
Trial 3 6.41 0.180 0.028 0.771 0.120
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TABLE 5. Whitecap propagation velocity summafy.

Phase velocity Whitecap
of principal component velocity = Nondimensional
(ms™) (ms™!)  whitecap velocity
Trial 1 4.36 2.27 0.52
Trial 2 4.36 1.90 0.44
Trial 3 10.01 4.25 0.43

tistics, since only whitecaps which are complete in
the space-time field of view of the simulation can be
used in the estimations. The number of complete
events per trial is in some cases quite small, and the
corresponding statistical error large, which can ob-
scure small intra-trial differences.

In general all event statistics displayed an insen-

sitivity to the critical value. In no case was a critical -

value dependence reliably observed over the range of
critical values employed. While small differences
must surely exist, the lack of data (degrees of freedom)
at the higher critical values prevented our observing
them. The physical insight to be gained here is that
higher peaks rise rapidly through the range of critical
values, making the statistic relatively insensitive to
the critical value.

The simplest of the event statistics is the average
zero-order space-time moment ((Mooo)) which mea-
sures the space~time extent of the whitecaps. Table
6 illustrates the collapsing of these data by nondi-
mensionalizing by the scales of the frequency of peak
energy.

The second statistic of interest is the instantaneous
area covered by a whitecap. It is described by the

moment My,. Examples of this area, as a function.

of time, are shown in Fig. 6. Fig. 7 shows the en-
semble average dependence, where the average was
taken over all whitecaps for a particular trial at a
given critical value. Only those critical values having
more than 10 whitecaps are shown. Nondimension-
alization by k, and Q clearly coalesces the data.

A statistic related to the time-dependent whitecap
area is the average whitecap temporal duration. The
large difference of values between Trials 1 and 2 with
Trial 3 is readily reduced by scaling by Q. This statistic
is shown in Table 7.

TABLE 6. Nondimensional zero-order space-time moment
(Table entries are ko>Q Moo).

Critical value
Ac/g
0.25 ,0.30 0.35 0.40 0.45 -0.50
Trial 1 —_ — 0.166 0.129  0.203 0.096
Trial 2 —_ — 0.209 0.230 0.230 0.268
Trial 3 0.153 0.136 0.098 0.028 —_ —
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FIG. 6. Examples of total whitecap area as a function of time.
Trial 1—critical value: 0.4g.

Total swept/area is a physically important quantity,
since it measures the amount of water surface
“churned up” by the whitecap. This statistic is shown
in Table 8.

A measure of the propagation velocity of the white-
cap is obtained by determining the velocity of the

A lg=0.36
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020
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A
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cos*0
0 -

TRIAL 3
PIERSON - MOSKOWITZ

0?0

Qr

FIG. 7. Average total area as a function of time.
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TABLE 7. Nondimensional whitecap duration
(Table entries are QT).

Critical value
Ac/g
0.25 0.30 0.35 0.40 0.45 0.50
Trial 1 —_ —_ 1.50 143 1.61 1.65
Trial 2 —_ —_ 1.67 1.76 1.98 2.20
Trial 3 1.53 1.69 1.56 0.98 — —

center of mass of the whitecap. Typical values of the
downwind and crosswind center of masses are shown
as a function of nondimensional time in Fig. 8. The
downwind movement is seen to be as constant as the
crosswind movement is variable. A velocity was de-
fined as the difference between the final and initial
position divided by the whitecap duration. Scaling
the mean values by the phase speed of the spectral
component having the frequency of peak energy in-
dicated that the average downwind velocities of the
three trials were 46, 44 and 45% of the respective
phase speeds. This is consistent with the results found
from the breaking variable correlation function.

The second central moments, AM,, and My,, de-
scribe the downwind and crosswind extent of a white-
cap. Examples of typical time dependence are shown
in Fig. 9. The time average of the quantities can be
found for each whitecap; then the ensemble average
of this time average yields an overall average. Scaling
the mean values of this statistic by k, does a reason-
able job of coalescing the data, as shown in Table 9.
Although the scatter is large, comparison of Trial 1
and 2 results shows the difference between the cos?d
and cos*d spreading functions. The data were then
nondimensionalized by a factor reflecting the differ-
ent spreading factor (see Fig. 5). The result of this
scaling is shown in Table 10. Here we see good col-
lapse of both downwind and crosswind data.

5. Conclusions

A summary of the principal results of the experi-
ments is as follows: A

1) The percentage whitecap coverage (or, equiva-

TaBLE 8. Nondimensional total swept area
(Table entries are k2 (4,)).

Critical value
Ac/g
0.25 0.30 0.35 0.40 0.45 0.50
Trial 1 —_ —_ 0.433 0270 0.370 0.277
Trial 2 —_ —_— 0.363 0424 0.504 0.489
Tral 3 0307 0428 0.255 0.101 — —
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FIG. 8. Examples of center of mass time dependence.

lently, the probability of breaking) is a highly sensitive
function of the root-mean-square acceleration level.

2) The propagation velocity of the whitecap was
typically 0.45% of the phase velocity associated with
the frequency of peak energy. While this velocity is

.15
g ©
E g .10 .—.,/‘“"s,—l
£ S LTS N
| .
8 f; .05 £ "‘-.\

TRIAL 2

.15 e N
\~—— TRIAL 3

Vit ] \l/

CROSSWIND

[ 1.0 3.0

Qr

F1G. 9. Examples of second central moments as a function of time.
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TABLE 9. Second central moment scaled by 4.

Critical value
Ac/g

JOURNAL OF PHYSICAL OCEANOGRAPHY

0.25 0.30 0.35 0.40 045 0.50

a. Nondimensional downwind second central moment
(Table entries are ko(M0).)

Trial 1 — —_ 0.035 0.035 0025 0.010
Trial 2 — — 0.025 0.035 0.044  0.049
Trial 3 0032 0.045 0034 0.016 — -

b. Nondimensional crosswind second central moment
(Table entries are ko(Mp;).)

Trial 1 — — 0.069 0.069 0.084  0.069
Trial 2 — — 0079 0.099 0.113 0.118
Trial 3  0.098 0.092 0.074 0.032 — —

close to the group velocity, the similarity between the
two velocities is probably coincidental, as there ap-
pears to be no reason to believe that group velocity
is a pertinent parameter. The low velocity of the
whitecaps probably reflects the importance of the
higher frequency wave components to the breaking
process.

3) The amplitude distribution of the event statis-
tics shows no statistically significant differences over
the range of critical values. This is a consequence of
two factors: first, the statistic appears to be relatively
insensitive to the critical value as opposed to the
highly sensitive nature of the percent whitecap cov-
erage, and, second, the lack of data (degrees of free-
dom) at the higher critical values does not allow the
statistical resolution necessary to observe the differ-
ences which surely must exist. The physical insight
to be gained here is that higheér peaks rise rapidly
through the range of critical values making the du-
ration relatively insensitive to the critical value.

TABLE 10. Second central moment scaled by k.

Critical value

Aclg
0.25 0.30 0.35 0.40 0.45 0.50
a. Downwind second central moment
(Table entries are k,(M,o).)
Trial 1 — — 0.18 0.18 0.13 0.05
Trial 2 J— — 0.14 0.20 0.25 0.28
Trial 3 0.17 0.24 0.18 0.08 — —
b. Crosswind second central moment
(Table entries are k(Mo ).)
Trial 1 —_ —_ 0.17 0.17 0.20 0.17
Trial 2 — — 0.14 0.18 0.20 0.21
Trial 3 0.18 0.22 0.18 0.08 — —
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4) The directional spectrum dependence of all
event statistics is dominated by the space and time
scales of the spectral component having the frequency
of peak energy. The crosswind extent of the white-
caps, however, also depends on the effective angular
width of the spreading function. This same conclu-
sion applies to the space-time scales of the breaking
variable correlation function.

Several inadequacies of the model should be
pointed out. While it is difficult to’ quantitatively as-
sess the seriousness of these omissions, they are noted
as follows:

e There is no feedback between the breaker and
the wave field which would allow a whitecap to mod-
ify the form of the wave field.

e It was not possible for the critical value to be
locally changed; that is, conditions of the acceleration
field could not modify the critical value. .

e While a method of incorporating nonlinear ef-
fects into the calculations was developed, it was not
used.

o A depth-dependent drift current was not in-
cluded.

o Computation of whitecap statistics via Monte
Carlo simulation of the wave field is practical if some-
what expensive. Use of a vector processing computer
would significantly reduce the simulation time (by at
least an order of magnitude).
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