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Abstract

In this paper, we derive an unsteady refraction–diffraction model for narrowbanded water waves for use in computing

coupled wave–current motion in the nearshore. The end result is a variable coefficient, nonlinear Schrödinger-type wave driver

(describing the envelope of narrow-banded incident waves) coupled to forced nonlinear shallow water equations (describing

steady or unsteady mean flows driven by the short-wave field). Comparisons with experimental data show that good accuracy

can be obtained for cases of nonbreaking wave transformation. Numerical simulations show that the interaction of wave groups

with longshore topographic nonuniformities generates strong edge wave resonances, providing a generating mechanism for

low-order edge waves.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction average and treated separately, with or without feed-
Surface waves breaking nearshore generate a wide

range of steady and unsteady motions, resulting from

a forcing mechanism associated with spatial and

temporal variations in wave-induced momentum

fluxes or radiation stresses (Longuet-Higgins and

Stewart, 1964). The existence of the radiation stress

formulation has led to a long history of development

of nearshore circulation models in which wave and

current processes are separated through a suitable time
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back of current information. The wave field is com-

puted using a suitable wave driver, which calculates a

representative wave field in some fashion and derives

the radiation stress forcing, and a circulation model,

which uses the radiation stress forcing to drive a

steady or quasi-steady (when compared to the wave

time scale) circulation. Recent examples of this type

of modeling application range from narrowly defined

process studies (Allen et al., 1996; Özkan-Haller and

Kirby, 1999) to fully documented modeling systems

aimed at general application (Svendsen et al., 2002,

for example).

Steady forcing resulting from monochromatic

waves can lead to a range of motions including steady

longshore currents (Bowen, 1969a) or, especially in
d.
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the presence of perturbed bottom configurations, rip

currents and circulation cells (Bowen, 1969b; Dal-

rymple and Lozano, 1978). These motions may them-

selves be steady, or they may evolve through a variety

of instability mechanisms (Bowen and Holman, 1989;

Haller and Dalrymple, 2001) into unsteady motions

with periodic, quasi-periodic or chaotic behavior

(Allen et al., 1996; Chen et al., 1999). For field

conditions, the forcing resulting from the shoaling

and breaking of broadbanded spectral sea states is

often represented in terms of a time average over a

number of waves in order to obtain a quasi-stationary

estimate of forcing. Thus, aside from a smearing of

the break point due to the probabilistic nature of

individual wave breaking events, the forcing condi-

tions in broadbanded seas are treated in a manner

which is qualitatively similar to the approach for

monochromatic waves, providing a steady driving

term for stationary spectral sea states. The range of

motions resulting from this extension to the theory is

thus also qualitatively similar to the monochromatic

case since they are not tied to any apparent or implied

time scales in the incident wave field.

In contrast, wave fields with narrowbanded fre-

quency structure have pronounced groupiness, or

variation of wave height on time scales slower than

the dominant wave period. Pronounced groupiness

leads to a concurrent pronounced variation in radia-

tion stress forcing with time scales typically of O(100

s), leading to a variety of infragravity motions in the

nearshore, including surf beat (Schäffer, 1993) and

edge waves (Gallagher, 1971; Schäffer, 1994; Lipp-

mann et al., 1997). These motions can be predicted for

broad spectral sea states as well, but it becomes

unclear whether the resulting motions are to be

represented as part of the wave field or circulation

field in the modeling systems.

For the case of monochromatic waves, Stokes

theory has often provided a successful approach to

the derivation of the wave driver. The leading order

approximation provides the familiar mild slope equa-

tion (Berkhoff, 1972) and its forward-scattering

approximations, usually based on the parabolic equa-

tion method (Radder, 1979; Lozano and Liu, 1980).

Extending the Stokes theory to third order, Kirby and

Dalrymple (1983) derived a model for periodic wave

propagation over variable depth in the form of a cubic

Schrödinger equation and verified the resulting model
in comparison to laboratory data (Berkhoff et al.,

1982) for the case of wave propagation over a

submerged shoal (Kirby and Dalrymple, 1984). The

inclusion of wave–current interaction effects and the

extension of the parabolic equation formulation to

allow a larger range of incident wave angles are

described by Kirby (1986). Kirby and Dalrymple

(1986) treated the singularity in Stokes theory in the

limit of small water depth using an empirical modifi-

cation to the cubic Schrödinger nonlinear term to be

described below, where the cubic term is replaced by

an empirical term mimicking shallow water phase

speed corrections. These modifications to the original

theory have produced a robust model for computing

monochromatic, phase-resolved wave refraction,

shoaling, diffraction and breaking in the nearshore.

The resulting model (or others of similar form) serves

as the wave driver in a number of circulation models,

including the SHORECIRC model of Svendsen et al.

(2002) mentioned above.

The theoretical basis for a wave driver for groupy,

narrowbanded waves, using the Stokes theory and

leading to a time-dependent, extended cubic Schrö-

dinger equation at third order, has existed for a number

of years, but no practical modeling codes have been

documented or introduced for standard usage. The

purpose of the present paper is to describe the deriva-

tion of a propagation model for unsteady, narrow

frequency band waves which is suitable for use as a

wave driver for nearshore circulation modeling. The

model is capable of handling interaction with a vari-

able bathymetry and current field, to which it is

coupled through spatially and temporally varying

radiation stress forcing. The model is an extension of

the nonlinear Davey and Stewartson (1974) equation,

or nonlinear Schrödinger (NLS) equation extended to

two horizontal dimensions, coupled to a forced long-

wave equation. In application, the simple long-wave

model given by the derivation here is replaced by any

of a number of models for wave-driven circulation,

most of which are formulated in terms of nonlinear

long-wave equations with suitable modifications for

bottom friction, wave forcing, turbulent mixing and

dispersive effects of three-dimensional current struc-

ture. The semi-empirical extension of Kirby and Dal-

rymple (1986) is included to modify wave nonlinearity

in shallow water in order to eliminate the singularity in

Stokes theory in the limit of shallow water.
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In the following derivation, the current and slowly

varying water level are specifically treated as O(1)

quantities. This approach was pioneered in the context

of Schrödinger equations by Foda and Mei (1981),

who studied the resonant growth of surf beat driven

by shoaling wave groups, and by Turpin et al. (1983),

who examined the evolution of wave groups in the

presence of strong wave–current interaction. The

model is formulated in terms of a modulated carrier

wave propagating along rays defined by linear refrac-

tion theory, following the original formulation of Chu

and Mei (1970); similar results for the case with no

strong currents have been presented by Liu and

Dingemans (1989). The present derivation parallels

that of Liu and Dingemans in many respects, but

extends the formulation to include wave–current

interaction effects.

A discussion of the governing equations and scal-

ing arguments is given in Section 2, followed by a

description of the derivation in Section 3. A brief

description of the numerical scheme being used at

present is given in Section 4. An example of applica-

tion of the model in a steady, periodic wave case is

given in Section 5. Section 6 examines edge wave

generation through the interaction of wave groups

with topographic longshore irregularities. Subsequent

papers are to examine such topics as the influence of

wave groups on mean and fluctuating properties in rip

currents.
2. Governing equations and scaling

We begin by assuming potential flow for both the

wave and current motion. The fluid velocity vector is

defined by a velocity potential / according to (u, v,

w)uj(3)/(x, y, t), where j(3)u (B/Bx, B/By, B/Bz).

The potential satisfies Laplace’s equation

jð3Þ2/ ¼ 0; �hVzVg ð1Þ

where h(x, y) is the still water depth and g(x, y, t) is the
free surface elevation.

For a solid bottom boundary, a tangential flow

condition must be satisfied

jh �j/ þ /z ¼ 0; z ¼ �h ð2Þ

where ju (B/Bx, B/By).
The free surface elevation’s position in time is

governed by a kinematic condition

gt þjg �j/ � /z ¼ 0; z ¼ g ð3Þ
or, equivalently, by using Eqs. (1) and (2)

gt þj �
Z g

�h

j/dz ¼ 0 ð4Þ

The evolution of fluid velocity is governed by an

unsteady form of Bernoulli’s equation

/t þ gg þ 1

2
ð/2

x þ /2
y þ /2

z Þ ¼ 0; z ¼ g ð5Þ

where g is the downwards positive gravitational

forcing.

The two surface conditions may be combined to

give a single evolution equation

/tt þ g/z þ
B

Bt
þ 1

2
j/ �jþ 1

2
/z

B

Bz

� �
�
�
/2
x þ /2

y þ /2
z

�
¼ 0; z ¼ g ð6Þ

Now, we explicitly separate the flow field and free

surface into wave and current portions, / =/w +/c,

g= gw + gc. The time evolution of the long-wave quan-

tities (gc,/c) are to come from the current portion of the

model, which could be anyone of a number of existing

models. Since these models invariably do not expand

quantities in terms of amplitude, we will do likewise.

This is to say that we will assume that (gc, j/c) are

O(1) quantities and do not have series expansions in

terms of their amplitudes. (We will, however, expand

/c dispersively about the long-wave limit at one point.)

As the full unsteady problem is intractable for any

reasonably sized domain, we now make scaling

assumptions based on a knowledge of the various

components of the flow. To decide which terms to

keep or omit, we will briefly switch to dimensionless

variables, but will soon revert to dimensional quanti-

ties for the remainder of this paper.

The wave portion of the flow is subject to standard

Stokes scaling,

x ¼ ksx*; y ¼ ksy*; z ¼ ksz*; gw ¼ gw*
a
;

/w ¼ ks/w*

a
ffiffiffiffiffiffiffi
gks

p ; t ¼
ffiffiffiffiffiffiffi
gks

p
t* ð7Þ

where ks is a typical wave number, a is a typical wave

amplitude and superscripts here indicate dimensional

quantities.
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The current portion of the flow follows shallow

water scaling, with quantities scaled by a typical wave

number, k0, and water depth, h0:

X ¼ k0x*; Y ¼ k0y*; Z ¼ z*=h0; fc ¼ g*=h0;

Uc ¼ /c*

ffiffiffiffiffiffiffi
gh0

p

k0

� 	�1

; T ¼ t*
ffiffiffiffiffiffiffi
gk0

p
; H ¼ h*=h0

ð8Þ

We should thus note explicitly that the dimensionless

current and wave portions of the equations use different

variable definitions. However, since we are only using

the dimensionless equations for order of magnitude

estimates and will revert to dimensional quantities as

soon as this is complete, we will not let this worry us.

Introducing the nonlinear parameter, eu ksa, a

dispersive parameter lu k0h0 and defining a relation-

ship between the two typical wave numbers, k0 = mks,
we arrive at a dimensionless equation for the free

surface evolution. For greater clarity, we will present

these equations in one horizontal dimension only, as

these show all features of interest for order of magni-

tude considerations, but are considerably less complex.

After dividing by a common factor, we get

e/wtt þ
ffiffiffiffi
l
m

r
lUcTT

� 	
þ e/wz þ

ffiffiffiffi
l
m

r
1

l
UcZ

� 	

þ 2

ffiffiffiffi
l
m

r
lUcXUcXT þ leUcXT/wx þ

ffiffiffiffi
l
m

r
UcZUcZT

�

þ eUcZT/wz

	
þ 2

ffiffiffiffi
l
m

r
UcX þ e/wx

� 	
e/wxt

�

þ 1ffiffiffiffiffi
lm

p UcZ þ e/wz

� 	
e/wzt

�
þ

ffiffiffiffi
l
m

r
UcX þ e/wx

� 	

�
ffiffiffiffi
l
m

r
UcX þ e/wx

� 	
ð ffiffiffiffiffi

lm
p

UcXX þ e/wxxÞ
�

þ 1ffiffiffiffiffi
lm

p UcZ þ e/wz

� 	 ffiffiffiffi
m
l

r
UcXZ þ e/wxz

� 	�

þ 1ffiffiffiffiffi
lm

p UcZ þ e/wz

� 	 ffiffiffiffi
l
m

r
UcX þ e/wx

� 	�

�
ffiffiffiffi
m
l

r
UcXZ þ e/wxz

� 	
þ 1ffiffiffiffiffi

lm
p UcZ þ e/wz

� 	

� 1

l

ffiffiffiffi
m
l

r
UcZZ þ e/wzz

� 	�
¼ 0;

Z þ z ¼ fc þ egw ð9Þ
Looking ahead, we will now borrow some well-

known results from long-wave theory (e.g. Nwogu,

1993, Eqs. (18) and (20)) for the magnitudes of the

current components

UcX ¼ Uð0Þ
cX þ Oðl2Þ

UcZ ¼ l2Uð2Þ
cZ þ Oðl4Þ

¼ �l2½ðZ þ HÞ/ð0Þ
cX 
X þ Oðl4Þ

UcXZ ¼ Oðl2Þ

UcZZ ¼ l2Uð2Þ
cZZ þ Oðl4Þ

¼ �l2Uð0Þ
cXX þOðl4Þ ð10Þ

where Uc
(0) is the long-wave velocity potential at the

bed. This will allow us to discard some terms now that

otherwise would have to be carried further in the

derivation. These results (Eq. (10)) will be verified

later.

All that is left is to relate the various independent

nonlinear and dispersive scaling parameters. We as-

sume

OðlÞ ¼ OðmÞ ¼ Oðe2Þ ð11Þ

This assumes that nonlinearity is mild, and long

waves are two orders of magnitude longer than the

short waves.

With these scaling assumptions, and dropping the

superscript on UcX
(0)
, the ordered dimensionless equa-

tions become

e½/wtt þ /wz þ 2UcX/wxt þ U2
cX/wxx
 þ e2½2/wx/wxt

þ 2/wz/wzt
 þ e2½2UcX ð/wx/wxx þ /wz/wxzÞ

þ e2½UcTT þ Ucz þ 2UcXUcXT þ U2

cXUcXX 

þ e3½2Uð2Þ

cZ /wzt þ 2UcXT/wx þ 2UcXUcXX/wx

þ 2Uð2Þ
cZ UcX/wxz
 þ e3½/wxð/wx/wxx þ /wz/wxzÞ

þ /wzð/wx/wxx þ /wz/wzzÞ
 ¼ 0;

Z þ z ¼ fc þ egw ð12Þ

keeping terms up to O(e3).
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Expanding to two horizontal dimensions and

reverting to dimensional variables, but keeping the

ordering, we arrive at

e½C/w
 þ e2½Dðjð3Þ/w �jð3Þ/wÞ þ C/c

þ e3½2/ð2Þ

cz D/wz þ 2Dcðj/c�j/wÞ þjð3Þ/w�jð3Þ

� ðjð3Þ/w �jð3Þ/wÞ
 ¼ 0; z ¼ gc þ gw ð13Þ

where differential operators

DuB=Bt þj/c �j ð14Þ

and

CuD2 þ gB=Bz

¼ B
2

Bt2
þ 2 /cx

B
2

BxBt
þ /cy

B
2

ByBt

� 	
þ /2

cx

B
2

Bx2

þ 2/cx/cy

B
2

BxBy
þ /2

cy

B
2

By2
þ g

B

Bz
ð15Þ

The subscript in Dc means that the operator only

operates on the current portion of the argument.

The system may then be expanded in a Taylor

series about the long-wave water level, gc.

/ jz¼gcþgw ¼/ jz¼gc þegw/z jz¼gc þe2
g2w
2

/zz jz¼gc

þ Oðe3Þ ð16Þ

to arrive at

e½Cw/w
 þ e2½Dðjð3Þ/w �jð3Þ/wÞ þ C/c

þ gwCw/wz
 þ e3 2/ð2Þ
cz D/wz þ 2DCðj/c �j/wÞ

�
þjð3Þ/w �jð3Þðjð3Þ/w �jð3Þ/wÞ þ ggw/czz

þ g2w
2

Cw/wzz þ gwDð2jð3Þ/wz �jð3Þ/wÞ
�
¼ 0;

z ¼ gc ð17Þ

To remove the free surface entirely from the system,

Eq. (5) is then used. After some order of magnitude
calculations similar to those previous, and making use

of Eq. (16), we arrive at

gc þ egw

¼ � 1

g
/ct þ

1

2
ð/2

cx þ /2
cyÞ

� �

� e
1

g
½/wt þj/c �j/w


� e2
1

g
� 1

g
/wt/wzt þ

1

2
ðjð3Þ/w �jð3Þ/wÞ

� �
þ Oðe3Þ; z ¼ gc: ð18Þ
3. Derivation of evolution equations by multiple

scales

We proceed using the multiple-scale approach

following Chu and Mei (1970) and subsequent

investigators. The dimensions x, y, t are expanded

in the form (x, y)=(x, y) + e(X1, Y1) + e
2(X2, Y2) + . . .,

t= t + eT1 + e
2T2 + . . .. This applies to all equations,

including the continuity condition, the bottom

boundary condition and all free surface boundary

conditions. Wave quantities are then expanded in

power series in wave steepness e, and written in

Fourier series form as

/w ¼
Xl
n¼1

en�1
Xn
m¼�n

/ðn;mÞðX1;X2; Y1; Y2; z; T1; T2Þ

� expðmiwðx; y; tÞÞ; mp 0 ð19Þ

gw ¼
Xl
n¼1

en�1
Xn
m¼�n

gðn;mÞðX1;X2; Y1; Y2; z; T1; T2Þ

� expðmiwðx; y; tÞÞ; mp 0 ð20Þ

with no zero-mode Fourier components as these are

represented by (/c, gc). Since we are dealing with real-
valued physical variables, Fourier series coefficients

are conjugate symmetric, i.e. /(n,� m) =/(n,m)*. The

phase function w has derivatives

jw ¼ k ¼ ðk; lÞ ð21Þ

wt ¼ �x ð22Þ
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and we further define the total wave number juAkA.
A corollary of the wave number definition gives

j� k ¼ 0 ð23Þ

These definitions can be used to find an evolution

equation for the local wave number vector

kt ¼ �jx ð24Þ

The entire system is thus written in a set of ordered

equations in terms of the short-wave velocity potential

at the long-wave water level gc. These may be solved

at successively higher orders using the lower-order

solutions as forcing.

For long-wave motion, the velocity potential is

expanded nondimensionally and dispersively in the

form

Uc ¼
Xl
n¼0

UðnÞ
c ðZ þ HÞn ð25Þ

as is standard for long waves (e.g. Wei et al., 1995) and

is consistent with the assumed scaling. The long-wave

surface elevation, gc, is not expanded. In contrast to

Eqs. (19) and (20), Eq. (25) is not an amplitude

expansion and as such does not violate our earlier

assumption that the current magnitude is O(1).

The coefficients, Uc
(n), are set by using the long-

wave scaled continuity condition together with the

bottom boundary condition

UcZZ þ l2j2Uc ¼ 0; �H < Z < gc ð26Þ

UcZ þ l2jH �jUc ¼ 0; z ¼ �h ð27Þ

remembering O(l) =O(e2).
Omitting the details, which are standard (e.g. Wei

et al., 1995), we arrive at

Uc ¼ Uð0Þ
c � l2ðH þ ZÞjHjUð0Þ

c � l2

� ðH þ ZÞ2

2
j2Uð0Þ

c þ Oðl4Þ ð28Þ

and thus

jUc ¼ jUð0Þ
c þ Oðl2Þ

UcZ ¼ �l2j�½ðZ þ HÞjUð0Þ
c 
 þ Oðl4Þ
UcXZ ¼ Oðl2Þ

UcZZ ¼ �l2j�Uð0Þ
c þ Oðl4Þ ð29Þ

confirming the earlier assumed results of Eq. (10).

Again, after transforming back to dimensional

quantities, the leading order long-wave velocity po-

tential, /c
(0), will simply be written as /c.

At each perturbation level, the short-wave system

takes the form of a set of equations

j2/ðn;mÞ þ /ðn;mÞ
zz ¼ Rðn;mÞ; �hVzVgc ð30Þ

/ðn;mÞ
z ¼ Fðn;mÞ; z ¼ �h ð31Þ

Cw/ðn;mÞ ¼ Gðn;mÞ; z ¼ gc ð32Þ

where forcing to the right-hand sides is provided by

solutions from lower-order n� 1, n� 2, etc.

To solve the system at each order, it is first

necessary to solve the forced and free flow fields

defined by Eqs. (30) and (31). The resulting velocity

field is then substituted into Eq. (32) to arrive at

dispersion relations, evolution equations and such.

It is possible to combine these two steps to yield

directly solvability conditions (e.g. Chu and Mei,

1970; Liu and Dingemans, 1989); however, we feel

that it is instructive to keep the two processes separate,

and will proceed in this way.

The solution to Eqs. (30) and (31) is (Chu and Mei,

1970)

/ðn;mÞ ¼ Aðn;mÞcoshmQþ 1

mj
Fðn;mÞsinhmQ

þ 1

mj2
sinhmQ

Z Q

0

Rðn;mÞcoshmQVdQV

�

� coshmQ

Z Q

0

Rðn;mÞsinhmQVdQV


ð33Þ

where Qu j(h+ z).
This is then substituted into the free surface

boundary condition Eq. (32) which, depending on

the level of approximation and Fourier mode, will

either define the frequency–wave number relation-

ship, fix a previously free coefficient or define an

evolution equation.
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3.1. Order (e)

For m = 1, forcing functions are

Rð1;1Þ ¼ Fð1;1Þ ¼ Gð1;1Þ ¼ 0 ð34Þ

From Eq. (33), this yields

/ð1;1Þ ¼ Að1;1ÞcoshQ

¼ �ig

2r
A
coshQ

coshq

¼ ABcoshQ ð35Þ

where qu j(h + gc). The redefinition of the free

coefficient A(1,1) is not strictly necessary, but is

performed since A now represents the local wave

amplitude, and with foreknowledge that it simplifies

somewhat the rest of the derivation.

Substituting Eq. (35) into Eq. (32) yields the well-

known linear dispersion relation for plane waves on a

current

r2 ¼ gjtanhðqÞ ð36Þ

where the intrinsic frequency rux�k�j/c.

3.2. Order (e2)

At O(e2), m = 1 yields forcing

Rð2;1Þ ¼ �2½/ð1;1Þ
X1x

þ /ð1;1Þ
Y1y




Fð2;1Þ ¼ 0

Gð2;1Þ ¼ �2

�
/ð1;1Þ
tT1

þ ½/cxð/
ð1;1Þ
xT1

þ /ð1;1Þ
X1t

Þ þ /cyð/
ð1;1Þ
yT1

þ /ð1;1Þ
Y1t

Þ
 þ /cx/cx/
ð1;1Þ
xX1

þ /cx/cxð/
ð1;1Þ
yX1

þ /ð1;1Þ
xY1

Þ þ /cy/cy/
ð1;1Þ
yY1


ð37Þ

As defined, slow derivatives do not in general com-

mute, e.g. /xX2
p /X2

x. However, in this particular

case, we have made use of the fact that /xX1
=/X1

x to

simplify the equations somewhat.

From Eq. (33), the second-order velocity potential

becomes

/ð2;1Þ ¼ Að2;1ÞcoshQ� i
Bj1A�

2
QsinhQ ð38Þk
j

The second term is the particular solution, while the

first term is the homogeneous solution to the conti-

nuity equation, as was found in Eq. (35). This

homogeneous term could present complications if

not dealt with, as it is a free parameter. Chu and

Mei (1970) specified this term based on deep water

solutions, while Liu and Dingemans (1989) incorpo-

rated it in a redefinition of the dependent variable, A.

For the present case, this last technique is functionally

the same as specifying A(2,1) = 0 and thus we will

specify all A(n,1) = 0, n p 1.

Substituting Eq. (38) into Eq. (32) gives an evolu-

tion equation

AT1 þ ðCg þj/cÞj1A ¼ 0 ð39Þ

which describes the transport of wave energy at the

local group velocity where

CguCg ð40Þ

and

Cgu
r
2j

1þ 2q

sinh2q

� 	
ð41Þ

At m = 2, the forcing is

Rð2;2Þ ¼ 0

Fð2;2Þ ¼ 0

Gð2;2Þ ¼ �Dðjð3Þ/ð1;1Þ �jð3Þ/ð1;1ÞÞ

þ 1

g
ð/ð1;1Þ

t þj/c �j/ð1;1ÞÞC/ð1;1Þ
z ð42Þ

giving a velocity potential

/ð2;2Þ ¼ Að2;2Þcosh2Q ð43Þ

Inserting this into Eq. (42) yields the well-known

second harmonic for a second-order Stokes plane

wave on a current

/ð2;2Þ ¼ �i
3

16
rA2 cosh2Q

sinh4q

¼ BjA2 3

8

cosh2Q

sinh3q
: ð44Þ

k
j
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3.3. Order (e3)

By a basic assumption of the derivation, all low

frequency (m = 0) motion is encapsulated in (/c, gc)
and thus the time variations of these quantities include

forcing from all perturbation levels up to O(e3). Thus,

only one low frequency evolution equation is needed

for all perturbation levels if we use Eq. (6). However,

we shall instead develop separate equations for the

evolution of free surface elevation and velocity, as this

is standard practice for nearshore circulation models.

The conservation of mass Eq. (4) yields, for low

frequency motion,

e2½gct þj �ððhþ gÞj/cÞ
 þ e3½j �Q
 ¼ 0; z ¼ gc

ð45Þ

where Q represents short-wave volume flux, given by

Q ¼ g

2

AA2A
c

ðcosa; sinaÞ ð46Þ

The Bernoulli equation for conservation of energy

gives

e2 /ct þ gg þ 1

2
ð/2

cx þ /2
cyÞ

� �
þ e3½SWFtmp
 ¼ 0;

z ¼ gc ð47Þ

where the short-wave forcing is left in schematic form.

We have deliberately been vague about the form of

these equations for several reasons. Firstly, we intend

to use them in the surf zone, where our theory is

formally invalid for even moderate wave nonlinearity.

Thus, semi-empirical modifications to the forcing

terms may be necessary. The second reason for this

lack of detail is that Eq. (47) by definition cannot

model vertical vorticity in the current. Since vorticity

is an integral part of nearshore currents induced by

wave breaking (see, e.g. Peregrine, 1998), modifica-

tions must be made to our theory to allow for this.

In common with our goal of providing forcing for

nearshore circulation models, instead of Eq. (47), we

will use

Ũt þ gjg þ ðŨ �jÞŨþ RS ¼ 0 ð48Þ

which is simply the nonlinear shallow water equations

including forcing from short-wave radiation stresses.
The mass transport velocity ŨuU +Q/(h+ g) is used,
as it makes computations considerably simpler. This

approach was taken by Longuet-Higgins (1970a,b)

and is almost universally used in whole or in part by

existing wave-driven nearshore circulation models.

This also simplifies the conservation of mass equa-

tion, which becomes

gt þj �½ðhþ gÞŨ
 ¼ 0: ð49Þ
For nonbreaking waves, the radiation stress forcing

takes the form

RS ¼ 1

hþ gc
ð½Smcos2a þ Sp
x þ ½Smsinacosa
y;

½Smsin2a þ Sp
y þ ½Smsinacosa
xÞ ð50Þ

where a is the angle between the wave direction and

the positive x-axis, and

Sm ¼ 1

4
gAA2Að1þ GÞ ð51Þ

Sp ¼
1

4
gAA2AG ð52Þ

where

Gu
2q

sinh2q
: ð53Þ

The angle of incidence, a, is defined by

a ¼ arctan
l

k

� 	
ð54Þ

keeping track of the quadrant to ensure that the full

circle can be covered.

In the surf zone, volume flux and radiation stress

relations change significantly, partially due to very

strong nonlinear interactions and partially because of

roller effects. Numerous authors have studied these

changes (e.g. Svendsen, 1984). We will not include

these changes in our present model, but they may

easily be added by including empirical modifications

to the existing values.

For n = 3, m = 1, the forcing becomes

Rð3;1Þ ¼ �2½/ð2;1Þ
X1x

þ /ð2;1Þ
Y1y


 � ½/ð1;1Þ
xX2

þ /ð1;1Þ
X2x

þ /ð1;1Þ
yY2

þ /ð1;1Þ
Y2y
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Fð3;1Þ ¼ �j2hj/ð1;1Þ

Gð3;1Þ ¼ �2½/ð2;1Þ
tT1

þ /cxð/
ð2;1Þ
X1t

þ /ð2;1Þ
xT1

Þ þ /cyð/
ð2;1Þ
y1t

þ /ð2;1Þ
yT1

Þ þ /cxð/cx/
ð2;1Þ
xX1

þ /cy/
ð2;1Þ
X1y

Þ

þ /cyð/cx/
ð2;1Þ
xY1

þ /cy/
ð2;1Þ
yY1

Þ
 � ½/ð1;1Þ
T1T1

þ 2ð/cx/
ð1;1Þ
X1T1

þ /cy/
ð1;1Þ
Y1T1

Þ þ /cxð/cx/
ð1;1Þ
X1X1

þ /cy/
ð1;1Þ
Y1Y1

Þ
 � ½/ð1;1Þ
tT2

þ /ð1;1Þ
T2t

þ 2/cxð/
ð1;1Þ
X2t

þ /ð1;1Þ
xT2

Þ þ 2/cyð/
ð1;1Þ
Y2t

þ /ð1;1Þ
yT2

Þ þ /2
cxð/

ð1;1Þ
xX2

þ /ð1;1Þ
X2x

Þ þ 2/cx/cyð/
ð1;1Þ
X2y

þ /ð1;1Þ
xY2

Þ

þ /2
cyð/

ð1;1Þ
yY2

þ /ð1;1Þ
Y2y

Þ
 � ½2/ð2Þ
cz /ð1;1Þ

zt

þ 2j/ct �j/ð1;1Þ þ /cxj/cx �j/ð1;1Þ

þ /ð1;1Þ
x j/c �j/cx þ /cyj/cy �j/ð1;1Þ

þ /ð1;1Þ
y j/c �j/cy þ 2/ð2Þ

cz j/c �j/ð1;1Þ
z 


þ /ð2Þ
czzD/ð1;1Þ þ 1

g
� 1

g
/ð1;1Þ
t /ð1;1Þ

zt

�

þ 1

2
ðjð3Þ/ð1;1Þ �jð3Þ/ð1;1ÞÞ

�
C/ð1;1Þ

z

�jð3Þ/ð1;1Þ �jð3Þðjð3Þ/ð1;1Þ �jð3Þ/ð1;1ÞÞ

� 1

2g2
½/ð1;1Þ

t þj/c �j/ð1;1Þ
2C/ð1;1Þ
zz

þ 2

g
½/ð1;1Þ

t þj/c �j/ð1;1Þ


� ðjð3Þ/ð1;1Þ
z �jð3Þ/ð1;1ÞÞ ð55Þ

where it is understood that, for the nonlinear terms,

we are only interested in the first harmonic compo-

nent.

The first harmonic velocity potential becomes

/ð3;1Þ ¼ Að3;1ÞcoshQ � i
Bj2A � k

j2
QsinhQ � iAB

� j2h � k
j

sinhQ þ j2 � k
2j2

� k �j2�

j2�

� 	�

�QsinhQþ 1

2

j2j � k
j3

ðQ2coshQ�QsinhQÞ

þ k �j2h

j
ðQcoshQ � sinhQÞ

� k �j2q

j2
tanhqQsinhQ

�
ð56Þ
After a large amount of algebra, repeatedly invok-

ing Eq. (39) to eliminate Att, etc., terms, and translating

back from multiple scales to normal dimensions in-

cluding all orders, the end result of Eq. (55) is an

equation for the evolution of the wave envelope in

space and time

2At þ 2ðCg þ UÞ �jAþ rj � Cg þ U

r

� 	
� 1

r
rt

� �
A

� i
Cg

j
j2Aþ i

Cg

j
� rjj

� 	

� Axxk
2 þ 2Axykl þ Ayyl

2

j2

� 	
þ irj2bAA2AA ¼ 0

ð57Þ
where we write Uuj/c, and

rjj ¼ c

j
½qcothq� n2 � 2ntanhq
 ð58Þ

b ¼ cosh4qþ 8� 2tanh2q

8sinh4q
ð59Þ

This system of equations will be referred to as

method 1.

When combined with Eqs. (24), (48) and (49), this

gives a system capable of computing combined wave–

current motion in the nearshore for weakly nonlinear,

narrowbanded waves varying mildly in amplitude and

direction from a given wave number. This wave

number vector field is not necessarily shore-normal:

a simple example would be an underlying vector field

on a plane beach computed from Snell’s law. More

complex examples are of course possible, although, as

will be seen very soon, there do exist environments

where underlying refraction fields cannot be defined.

It is helpful to think of method 1 as the conserva-

tion of wave action equations with additional terms to

account for narrow angle diffraction and nonlinear

dispersion. This relaxes somewhat the long-crested

assumption implicit in conservation of wave action

and allows wave evolution to be computed in areas

where transformation is more rapid than before.

3.4. Modified equations—regularised underlying

bathymetry

The system-denoted method 1 will work well for a

variety of situations in the nearshore. However, there
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are several relatively common conditions in which its

basic assumptions are violated. For these situations,

answers may still come out of the model, but they

cannot be trusted.

The classical example of why modifications are

needed occurs when topographic or current focusing

causes caustics in the underlying wave number field.

The method 1 equations are fundamentally unable to

examine this situation, as a well-behaved wave num-

ber vector field does not exist. For topographic

focusing, the cause is often a submerged shoal (e.g.

Berkhoff et al., 1982), which can be all too common

when modeling real-world situations. A somewhat

less common situation (mostly found at rip currents

and inlets) occurs when currents focus wave rays. In

both cases, it becomes impossible to satisfy both the

dispersion relation (36) and the requirement that the

wave number vector field is irrotational (Eq. (23)).

For any given topography, underlying wave number

vector fields may be defined which satisfy one of the

two conditions, and answers would result from the

model as defined in Eq. (57). However, the answers

would be wrong, as the basic assumptions of deriva-

tion have been violated.

Since we wish to study these more difficult con-

ditions, in such cases, it becomes preferable to modify

the equation for evolving wave amplitude. This is

done by first assuming conditions in which the un-

derlying wave number vector field can never have

caustics: the actual conditions to be studied are then

treated as a perturbation about this base condition. For

the general situation, some small accuracy may be

lost, but this approximation allows us to study sit-

uations which previously were not possible.

Specifically, we assume

h ¼ h̄þ e2ĥ; gc ¼ ḡc þ e2ĝc; U ¼ Ūþ e2Û

ð60Þ

The simplest situation which guarantees the requisite

wave number vector field is a longshore uniform, but

not necessarily planar, beach with no currents. More

complex underlying geometries are possible; as long

as a suitable wave number field can be guaranteed at

all times, they will work well. However, because the

wave number field must be well-behaved at all times,

for many situations without prior knowledge, it may

be necessary to assume that ḡc = 0, Ū = 0. These
assumptions are generally similar to those of Lozano

and Liu (1980), who also used a regularised bathym-

etry to remove singularities in the underlying wave

number field of a parabolic model with no current.

Because the assumed scaling of the perturbation is

O(e2), we only need to consider the leading order

correction to Eq. (57): for a stronger correction of

O(e), additional terms would result.

These leading order corrections result from the fact

that the linear dispersion relationship (36) is not

analytically satisfied when the underlying quantities

(j̄, ḡc, Ū) and the actual water depth, h, are used. The

resulting error is O(e3) and appears in the evolution

equation.

After some algebra, the modified evolution equa-

tion becomes

2At þ 2ðC̄g þ ŪÞ �jAþ r̄j � C̄g þ Ū

r̄

� 	
� 1

r̄
r̄t

� �
A

� 2iAðC̄gðj � j̄Þ þ ĵ �ŪÞ � i
C̄g

j̄
j2A

þ i
C̄g

j̄
� r̄j̄j̄

� 	
Axxk̄

2 þ 2Axyk̄l̄ þ Ayyl̄
2

j̄2

� 	
þ ir̄j̄2bAA2AA ¼ 0 ð61Þ

where ĵ=(j� j̄)k̄ /j̄.
Using the relationships Cg = C̄g +O(e

2), Ũ =U +

e2Q/Ch +O(e3), etc., this may be rewritten into an

asymptotically identical form

2At þ 2ðCg þ ŨÞ �jAþ rj � Cg þ Ũ

r

� 	
� 1

r
rt

� �
A

� 2iAðCgðj � j̄Þ þ ĵ �ŨÞ� i
Cg

j
j2A

þ i
Cg

j
� rjj

� 	
Axxk

2 þ 2Axykl þ Ayyl
2

j2

� 	
þ irj2bAA2AA ¼ 0 ð62Þ

This form is preferred as it preserves better shoaling

and transport over the real bathymetry and will be

referred to as method 2. Both the long-wave and

short-wave equations now use the mass transport

velocity rather than the Eulerian velocity.

For Eq. (61), the wave number evolution equation is

j̄t ¼ �jx̄ ð63Þ
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where x̄ is calculated using regularised quantities.

Thus, if Ū = ḡc = 0, the initial underlying wave

number field satisfies linear dispersion (36) and

irrotationality (23) and the wave frequency never

changes at the boundary, then from Eq. (63), the

underlying wave number field never varies and thus

will always be irrotational and satisfy the dispersion

relationship.

3.4.1. Modified wave nonlinearity in shallow water

Stokes-type expansions for water waves diverge

for moderate wave heights in shallow water. We

include a semi-empirical modification to the cubic

nonlinear term, first used by Kirby and Dalrymple

(1986), in order to avoid the singularity. In this

modification, the term irj2bAA2AA in Eq. (57) or

Eq. (61) is replaced by

irA ð1þ f1j
2AAA2bÞ tanhðjhþ f2jAAAÞ

tanhjh
� 1

� �
ð64Þ

where

f1 ¼ tanh5ðjhÞ ð65Þ

f2 ¼ ½jh=sinhðjhÞ
4 ð66Þ

This empirically interpolates phase speeds between

Stokes theory in deep water and solitary wave theory

in shallow water, giving a reasonable approximation

of nonlinear phase speed in all water depths. Kirby

and Dalrymple (1986) have demonstrated that this

modification to the model effectively eliminates the

singularity of Stokes theory, allowing the model to be

used in shallow water and the surf zone, without

damaging nonlinear properties in intermediate water

depths.
4. Numerical approach

All computations here use the modified equations,

as we will examine some complex transformations.

The numerical approach uses standard finite differ-

ences. All convective terms are treated using second-

order upwinding, while other spatial derivatives use

second-order central differences. Walls form the on-
shore and offshore boundaries, while lateral bound-

aries may be either periodic or reflective. For the

reflective case, symmetry considerations are used to

modify finite difference formulae in the vicinity of the

wall. Time differencing uses a second-order Crank–

Nicolson implicit scheme. The simple shallow water

scheme (48) is extended to include bottom friction and

subgrid mixing as

Ũt þ gjg þ ðŨ �jÞŨþ RSþ FNL þ FL þ SG ¼ 0

ð67Þ

Bottom friction includes both linear and nonlinear

components, defined by

FL ¼ CL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðhþ g þ eÞ

p
Ũ ð68Þ

and

FNL ¼ fNL

ðhþ g þ eÞ ŨAŨA ð69Þ

where fNL and CL are dimensionless constants and e

here is a small positive quantity that ensures denom-

inators can never reach zero. Subgrid mixing SG uses

Smagorinsky-type dissipation which depends on gra-

dients in the mean flow (e.g. Chen et al., 1999).

Breaking here uses a simple depth-limited scheme

that imposed 2AAAV 0.8 at all time steps. Subsequent

papers will use more complex breaking dissipation,

but for the phenomena examined here, the simple

scheme worked well.

The simple shallow water scheme used here

requires a minimum depth at the shoreline to remain

stable, but in the future, a better shoreline condition is

envisaged. A wide linear damping layer is placed

offshore to absorb reflected long waves during un-

steady tests.
5. Test case: wave focusing by an elliptical shoal

The experiments of Berkhoff et al. (1982, BBR)

have often been used to evaluate wave models.

These experiments feature strong wave focusing

behind a shoal situated on a plane beach, with

resulting strong diffraction. As such, it provides a

good initial test for the wave transformation portion

of the model. An added bonus is that numerous



Fig. 1. Contours of bathymetry on BBR shoal, showing measurement transects.
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investigators have studied this shoal, and their

results may be compared.

Fig. 1 shows bathymetric contours for the experi-

mental setup. After a coordinate transformation

xV¼ ðx� 10:5 mÞcosð20jÞ � ðy� 10 mÞsinð20jÞ

yV¼ ðx� 10:5 mÞsinð20jÞ þ ðy� 10 mÞcosð20jÞ

ð70Þ

the slope may be described by

hS ¼
0:45 m xV< �5:82 m

0:45� 0:02ð5:82þ xVÞ m xV> �5:82 m

8<
:

ð71Þ

The shoal boundary is given by

xV

3 m

� 	2

þ yV

4 m

� 	2

¼ 1 ð72Þ
Inside the shoal, the depth becomes

h ¼ hS � ð0:5 mÞ 1� xV

3:75 m

� 	2

� yV

5 m

� 	2
" #1=2

þ 0:3 m ð73Þ

Measurements of wave height were taken by BBR

along eight transects: five perpendicular to and three

parallel to the main direction of wave propagation.

Fig. 1 shows the transect locations. More details may

be found in Berkhoff et al. (1982).

This topography leads to strong focusing of wave

rays, with caustics occurring behind the shoal. Because

of this, method 1may not be used on this topography, as

an underlying refraction solution does not exist. How-

ever, method 2 is well suited to such a computation.

The underlying bathymetry was assumed to be a long-

shore uniform beach, whose depth was chosen to be the

average over the longshore domain. A computational

grid size of Dx =Dy = 0.25 m was used with a time step

of Dt= 0.025 s. Lateral boundaries used a reflective

condition, which is considerably different than the

physical experiment, but as boundaries were far away

from the area of interest, this was not a concern.



Fig. 2. Computed (– ) and measured (� ) wave heights at transects 1–5 on BBR shoal.

Fig. 3. Computed (– ) and measured (� ) wave heights at transects 6–8 on BBR shoal.
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Formally, the physical wave height in computa-

tions is not just H = 2AAA but includes higher-order

corrections. However, because of the semi-empirical

modifications to nonlinear dispersion, with unknown

effects on surface profiles, we use this simpler repre-

sentation. For some situations, this approximation

would be unacceptably crude; however, for the pres-

ent case, reasonable results may still be obtained.

Figs. 2 and 3 show computed and measured wave

heights along the transects. In general, agreement is

quite good. Both the trend and the magnitude of the

refraction and diffraction caused by the shoal are well

represented. The present results look very similar to

those computed using the narrow angle parabolic

model given in Kirby and Dalrymple (1986). This is

not surprising as, with the further assumptions of time

invariance, weak diffraction in the direction of prop-

agation and negligible current, the twomodels are equi-

valent. Since none of these effects are likely to be high-

ly significant in this case, the results are very similar.

Although the present results are good, it is possible

to achieve slightly greater accuracy by using full time-

domain systems such as Boussinesq models (e.g. Wei

et al., 1995). This is because these models do not

assume an underlying form for the wave and thus can

represent better the strong nonlinear diffraction. Still,

Boussinesq models are computationally an order of

magnitude slower than the present model and thus

cannot be easily used for long-time scales in field

situations. Wide-angle parabolic models can also

produce slightly better results in this case (e.g. Kirby,

1986), as their treatment of diffraction is more accu-

rate. This improvement in accuracy is mainly seen in

the side lobes of longshore transects 4–5, where the

wide-angle approximation allows for more accurate

diffraction far from the mean wave direction. Overall,

however, agreement is quite good using the present

model and gives confidence that accurate refraction/

diffraction/shoaling results can be obtained in situa-

tions for which no direct confirmation is available.
6. Edge wave generation on longshore nonuniform

beaches

Edge waves have been measured in the nearshore on

numerous equations (Oltman-Shay and Guza, 1987;

Özkan-Haller et al., 2001), usually with amplitudes of
O(centimetres) and wavelengths of O(hundreds of

metres). However, the processes leading to their gen-

eration are still not entirely clear. Theories range greatly

from predicting edge waves at twice incident wave

periods (Guza and Davis, 1974; only suitable for waves

with scales of beach cusps) to edge waves associated

with short-wave frequency–wave number pairs satis-

fying the edge wave dispersion relationship (Lippmann

et al., 1997). There exist numerous other theories and

none have been accepted as definitive. In fact, it is

likely that different generation mechanisms may be

important in different situations.

On beaches that are not too steep, edge waves can

be approximated using the shallow water equations.

On a planar beach of slope m and given alongshore

wave number k, a number of discrete modes exist with

frequencies

x2 ¼ gmkð2nþ 1Þ ð74Þ

where x is the frequency, g is downwards gravitational

acceleration and n is the integer mode number repre-

senting the number of zero crossings of the free surface

elevation in the cross-shore. The free surface elevation

of a linear progressive edge wave is then given by

g ¼ anLnð2kxÞexpð�kxÞcosðkx� xtÞ ð75Þ

where an is the shoreline amplitude and Ln is the

Laguerre polynomial of order n.

Standing edge waves may of course be formed by

superimposing two oppositely travelling waves of

equal amplitude, frequency and mode number to get

g ¼ ansLnð2kxÞexpð�kxÞcosðkxÞcosðxtÞ ð76Þ

Using the system developed here, we examine an

alternative method of edge wave generation, namely,

from the interaction of wave groups with longshore

bathymetric nonuniformities. This gives a viable ex-

planation for edge wave generation in a number of

common situations.

Conceptually, this is easiest to explain for periodic

longshore topographies and shore-normal, periodic

wave groups. As waves approach the shoreline, re-

fraction and longshore bathymetric perturbations will

create periodic longshore variations in wave height,

with corresponding variations in breaking strength.

When forcing varies temporally with wave groups, we
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then see time-periodic forcing (with the period of the

wave groups) combined with space-periodic forcing

(on the length of the longshore periodicities). If the

period and wavelength satisfy the edge wave disper-

sion relationship, resonant growth will result, while

other wavelength-group period combinations will give

smaller amplitude results.

The basic concept is similar to that of Foda and

Mei (1981), who imposed longshore-periodic varia-

tions in wave height on time-varying wave ampli-

tudes, propagated waves onto a plane beach and found

that resonances could occur. However, they provided

no source for their variations in wave height, which

continued through the surf zone contrary to most

accepted practices.

In contrast, linking variations in wave height and

breaking to longshore depth variations provide a solid

physical basis between incoming wave groups and

edge waves. On many, if not most, shorelines, there

are appreciable longshore bathymetric variations with

length scales of hundreds of metres. With this back-

ground, it becomes difficult to see how edge waves

could not be generated by unsteady wave forcing.

6.1. Shore-normal, bichromatic wave groups

To demonstrate this generation mechanism, we

send shoreward bichromatic wave groups over a planar

beach of slope 0.03 with a small cosine variation in the

longshore, with amplitude 0.01 m and wave number

k = 2p/500 m� 1. Thus, the bathymetry is

h ¼ 18� 0:03xþ 0:01cosðkyÞ ð77Þ

where the computational domain extends offshore to a

depth of 18 m. A sponge layer is used offshore to

prevent re-reflection of long waves, and a minimum

depth of 0.15 m is used at the shoreline. We will only

consider mode zero edge waves here, but other modes

will also be excited if the wave number–frequency

relationship is satisfied.

Wave groups are created using bichromatic forc-

ing, with amplitudes a1 = 2a2, which gives an overall

height HRMS = 2(a1
2 + a2

2)1/2. With frequencies f1 and

f2, this gives a time-periodic wave forcing at frequen-

cy f1� f2. When this is near any edge wave period, a

strong response is expected. No forcing in these tests

is anywhere near basin resonances.
For simplicity and consistency, we will define edge

wave amplitudes by projecting water surfaces onto

free edge wave modes so that any instantaneous water

surface is seen as the sum of normal modes. This

definition was chosen after some consideration, as it

allows the changing shape of the response at the group

frequency to be easily defined for both resonant and

nonresonant conditions. An alternative would be to

consider the total response at the group frequency as a

new, forced mode (e.g. Henderson and Bowen, sub-

mitted for publication). We have chosen not to do this

as near resonance one mode dominates. Away from

resonance, amplitudes of the different normal modes

are more comparable, but they are all small and

contribute little to the overall climate.

Fig. 4 shows equilibrium mode zero edge wave

amplitudes for a 10-s peak period and wave heights at

18-m depth of HRMS = 0.75 and 1.0 m and using

friction coefficients fNL= 0.005 and CL= 0.0002. A

strong resonance peak is visible near f = 0.0103 Hz,

which corresponds fairly well to the edge wave

frequency of f = 0.0097 Hz on the unperturbed ba-

thymetry. Differences are believed to be due in large

part to the presence of the minimum depth which, in

conjunction with setup, means that actual normal

modes will be somewhat different. This point will

be expanded on later.

Of particular note is that at the resonance peak,

edge wave amplitudes are much larger than the

amplitude of the bathymetric perturbation. Thus, even

the small perturbation used with amplitude 1 cm is

sufficient to generate edge waves of O(10 cm), which

are relatively large.

Results are quite sensitive to bottom friction. Fig. 5

shows results using doubled friction coefficients. Peak

amplitudes are decreased considerably, but away from

resonance, results are still comparable. As field bot-

tom friction may not be known in advance, it may

thus prove difficult to obtain quantitative matches

with field data.

One more subtle concern is the definition of edge

waves. The presence of the minimum depth, long-

shore variations and setup combine to modify edge

wave mode shapes and frequencies from the no

setup, planar bed case (Eqs. (74) and (75)). These

mode s0hapes on perturbed bathymetries vary

enough from the simple cases that estimates of edge

wave amplitudes will vary considerably. All previous



Fig. 5. Edge wave amplitudes with doubled bottom friction. All other quantities remain the same as Fig. 4.

Fig. 4. Edge wave amplitudes over a plane beach with longshore cosine variation and bichromatic forcing. Tp = 10 s; m = 0.03; k= 2p/500 m� 1;

fNL= 0.005; CL= 0.0002. o: HRMS = 1.0 m; +: HRMS = 0.75 m.
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Fig. 6. Edge wave amplitudes using different definitions of mode shape. w : using Eq. (75); o: using perturbed bathymetry, no setup; � : using

perturbed bathymetry with setup.

A.B. Kennedy, J.T. Kirby / Coastal Engineering 48 (2003) 257–275 273
figures (Figs. 4 and 5) used mode shapes and

frequencies computed with the perturbed bathymetry

and the still water level (see Appendix A). Alter-

natives would be to use mode shapes computed

using the perturbed bathymetry and mean setup to

provide water depths, or to use the planar edge wave

mode shape (Eq. (75)). Although all of the mode

shapes looked very similar to the eye, quantitative

amplitudes differed. Fig. 6 shows results for all three

edge wave definitions with a wave height HRMS = 1.0

m and low bottom friction (as in Fig. 4). Amplitudes

vary by as much as 30%, showing that the assump-

tions used to define edge waveshape can have a

strong effect on amplitude estimates. As all three

definitions have considerable justification, the correct

answer is unclear.

For more realistic field conditions, there will be

several differences from our idealisation. Most obvi-

ously, waves will not be bichromatic and will instead

have a full directional spectrum with a mean angle that

will differ from shore normal. Secondly, bathymetric

variations will also be irregular in the cross shore and

longshore coordinates, and amplitudes will probably
be larger than the 1 cm assumed. Field profiles are also

unlikely to be planar.

The main result of this will be a spectrum of edge

wave generation. Instead of a single resonance peak,

edge waves with a variety of modes and periods are

likely to be generated, as observed in the field (Olt-

man-Shay and Guza, 1987). Because almost all edge

wave response is near resonance, measured edge

wave–frequency relationships will closely resemble

free modes. Overall, edge wave energy generated

using this mechanism will be strongly dependent on

the amplitudes of bathymetric variations. Such broad-

banded forcing and response will form the subject of

future investigations.
7. Conclusions

The computational wave models introduced here

provide a very versatile tool for investigating near-

shore hydrodynamics. In comparison to earlier near-

shore models for use with coupled wave–current

systems, they offer unsteady refraction, diffraction,
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shoaling and breaking on ambient currents. Both

unsteady wave forcing and unsteady currents are

incorporated into the model. Modifications ensure that

the system can be well defined even in areas where

many simpler models would fail—i.e. where caustics

exist.

The computational test on the BBR shoal, verified

by comparison with experimental data, shows that

good accuracy can be achieved with a reasonable

computational cost. This will allow for the simulation

of unsteady nearshore hydrodynamics on field scales

and times, for a wide variety of conditions. The

second computational test showed that wave groups

could be responsible for significant edge wave gen-

eration whenever there are topographic nonuniform-

ities. This is a fundamentally unsteady result that

could never be examined using steady forcing.

In infinite depth, and for finite depth flat beds, the

theory which parallels the present study is more

developed. Nonlinear Schrödinger and Davey–Stew-

artson equations have been well studied, partly in order

to examine the stability properties and because analytic

solutions are available for 1DH in terms of inverse

scattering transforms (Zakharov and Shabat, 1972). In

addition, the unsteady behavior of wave trains which

approach the limit of the narrowband approximation

has been examined by Osborne et al. (2000). Higher-

order equations are available for both higher-order

nonlinearity (e.g. Lo and Mei, 1987) and broader

bandwidth (Trulsen and Dysthe, 1996). An extension

of the present theory to broader bandwidth in spatial

modulations would lead to a model paralleling the

higher-order parabolic model of Kirby (1986) and

others and should be undertaken in the future.
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Appendix A. Computing eigenmodes of an

irregular basin

An irregularly shaped basin with varying depths will

resonate with a wide range of frequencies and eigenm-
odes. If the linear shallow water equations are used to

describe fluid motion, then, for a given topography,

motion of any eigenmode may be described by

hxgx þ hygy þ hgxx þ hgyy ¼ � x2

g
g ð78Þ

The problem then becomes one of identifying eigen-

modes g(x, y) and eigenvalues �x2 / g satisfying this

equation. Discretising all surface elevations by second-

order central differences at some typical point (i, j)

yields an equation

gði;jÞ �2hði;jÞ
1

Dx2
þ 1

Dy2

� 	� �
þgði�1;jÞ

�hxði;jÞ
2Dx

þ
hði;jÞ
Dx2

� �

þ gðiþ1;jÞ
hxði;jÞ
2Dx

þ
hði;jÞ
Dx2

� �
þ gði;j�1Þ

�hyði;jÞ
2Dy

þ
hði;jÞ
Dy2

� �

þ gði;jþ1Þ
hyði;jÞ
2Dy

þ
hði;jÞ
Dy2

� �
¼ � x2

g
gði;jÞ ð79Þ

When this is performed at every point, a large sparse

matrix equation results. The eigenvectors and eigen-

values of the matrix give orthogonal solutions to the

original equation and are the free oscillation modes and

negative squares of the radial frequencies.

It is easiest to set up the system in a rectangular

domain, although the basin itself does not need to be

rectangular. After setting up a bathymetry in a rect-

angular matrix, dry points may simply be given

dummy equations, while symmetry or periodicity

may be used to provide boundary conditions for wet

points adjacent to dry points or at the boundaries of

the rectangular domain.

Once the system is set up, eigenvectors and eigen-

values may be easily found using any of a number of

commercial packages for sparse matrices. Usually, it

is the lowest eigenvalues that are of most interest, as

these represent the fundamental basin modes and

frequencies.
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