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ABSTRACT

One-dimensional spectra are frequently used to relate features of measured and simulated meteorological
field variables in the turbulent atmospheric boundary layer (ABL), but two-dimensional spectra can provide
more reliable scale information than one-dimensional spectra. Here a method is presented for obtaining
two-dimensional spectra from one-dimensional spectra, and it includes examples using data from large-eddy
simulations and field measurements in the ABL.

1. Introduction

The one-dimensional spectrum is the most commonly
used type in atmospheric boundary layer (ABL) stud-
ies. Time series of meteorological variables are readily
transformed into frequency spectra via discrete Fourier
transform, and these spectra are in turn converted into
streamwise wavenumber spectra through Taylor’s hy-
pothesis (�/�t � �U�/�x). But by definition one-
dimensional spectra become constant as wavenumber
(frequency) approaches zero. Specifically, the one-
dimensional spectrum Fc(�1) of a fluctuating variable
c(x) has a value at zero wavenumber, which is propor-
tional to the integral scale Lc:

1

Fc�0� �
2
� �

0

�

c�x�c�x � �� d� �
2
�

Lcc
2, �1�

where the integral scale is defined by

Lc �
1

c2 �
0

�

c�x�c�x � �� d� �2�

and overbars indicate an average over the entire spatial
record of c(x). In addition, modes traveling nearly per-
pendicular to the streamwise direction appear to be of
very low wavenumber (Tennekes and Lumley 1972,
section 8.1). Thus the one-dimensional spectrum does
not represent spectral peaks and associated spatial-
scale information reliably.

Both the classical three-dimensional spectrum
(Batchelor 1953) and its counterpart in the plane, the
two-dimensional spectrum (Peltier et al. 1996), vanish
at zero wavenumber; this is consistent with the absence
of turbulent kinetic energy or scalar variance there. By
their nature they convey scale information better than
one-dimensional spectra. Until recently they were es-
sentially unmeasurable in the ABL, but arrays of me-
teorological sensors (Tong et al. 1998; Sullivan et al.
2003) as well as computer simulations (Peltier et al.
1996; Wijesekera et al. 2004) now make them acces-
sible. This note presents a method for calculating two-
dimensional spectra from one-dimensional streamwise
spectra, using the assumption of axisymmetry (isotropy
in the horizontal plane). We provide several examples
based on data from large-eddy simulation and aircraft
measurements.

1 The relation (1) follows from defining Fc(�1) as the Fourier
transform of the autocovariance c(x)c(x � 	) (and vice versa),
Fc(�1) � (2/
)��

0 c(x)c(x � 	)ei�1	d	.
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2. One- and two-dimensional spectra

The atmospheric boundary layer is inhomogeneous
in the vertical, but can be homogeneous in the horizon-
tal plane. For that reason Peltier et al. (1996) suggested
calculating spectra in that plane rather than along hori-
zontal lines, as had been traditional. Thus, following
Peltier et al. we denote the power spectral density of a
scalar c(x, y; z; t) at height z in the homogeneous hori-
zontal plane as c(�h; z; t), where �h � (�1, �2). It
integrates over the horizontal wavenumber plane to the
variance:

��
��

�

�c��h� d�1 d�2 � c2

(for the sake of simplicity, we shall hereafter suppress
dependencies upon z and t). The streamwise one-
dimensional wavenumber spectrum Fc(�1) is related to
c(�h) by

Fc��1� � �
��

�

�c��1, �2� d�2. �3�

In the ABL, velocity and scalar fields can approach
isotropy in the horizontal plane as the flow approaches
free convection. Under the assumption of such isot-
ropy, also called axisymmetry (Batchelor 1953), the
power spectral density depends only on horizontal
wavenumber magnitude �h. Thus in analogy to the clas-
sical three-dimensional spectrum, Peltier et al. (1996)
defined a two-dimensional spectrum Ec(�h) by integrat-
ing c(�h) over circular rings of radius �h:

Ec��h� � �
0

2�

�c��h��h d� � 2��h�c��h�. �4�

It integrates over its argument to the variance,

�
0

�

Ec��h� d�h � c2.

Through c(�h) we relate the one-dimensional spec-
trum Fc to the two-dimensional spectrum Ec; from Eqs.
(3) and (4) we see that

Fc��1� � �
��

� Ec��h�

2���1
2 � �2

2�1�2 d�2. �5�

Unlike the case for three-dimensional spectra, which
are related under isotropy to one-dimensional spectra
through a simple differential equation, there is no
closed differential expression relating Ec(�h) to Fc(�1).
It is possible, however, to invert (5), which produces

Ec��h� � �
d

d�h
�

�h

� 2�1Fc��1�

��1
2 � �h

2�1�2 d�1. �6�

The apparent singularity in Ec(�h) is merely an artifact
of the analytic form in which it is presented. For ex-
ample, if Fc(�1) � ��5/3

1 , the integral in (6) evaluated at
�h is finite. A detailed derivation of (6) is included in
the appendix.

3. Two-dimensional spectra from measured fields
and simulations

In the atmospheric boundary layer the fluctuating
vertical velocity w is a scalar on the horizontal plane.
Assuming isotropy in the plane, the two-dimensional
spectrum of w(x, y) depends solely upon horizontal
wavenumber magnitude �h. In this section we calculate
the two-dimensional spectrum of vertical velocity fluc-
tuations, using data from both large-eddy simulation
and measurements in the atmospheric boundary layer.

a. Spectra calculated from large-eddy simulation

The large-eddy simulation (LES) data used here in-
clude three-dimensional velocity and scalar fields, al-
lowing computation of the spectral density and thus
facilitating direct calculation of both one- and two-
dimensional spectra. We use a 5 � 5 � 1.5 km3, 400 �
400 � 96 point section of data from simulation of a
convective ABL (P. Sullivan 2004, personal communi-
cation). Here we consider the vertical velocity field w(x,
y) from the sixth grid level, close enough to the lower
boundary for the vertical velocity to scale with z but
sufficiently high to avoid surface-induced horizontal an-
isotropy or excessive influence of the simulation’s sub-
filter models. The power spectral density of vertical
velocity fluctuations �33(�1, �2) is calculated by fast-
Fourier transform, then used in (3) and (4) to obtain the
one- and two-dimensional spectra F�(�1) and E�(�h);
the spectrum E�(�h) is also computed from F�(�) via
(6). Here we use subscript � to denote vertical (veloc-
ity), as in Peltier et al. (1996).

Figure 1 displays E�(�h) and F�(�1). As expected,
E�(�h) goes to zero at small wavenumbers, whereas
F�(�1) becomes constant as �1→0. The figure also in-
cludes the so-called premultiplied spectrum �1F�(�1),
which vanishes as �1→0 and appears to have features
similar to E�(�h). The common practice of plotting pre-
multiplied one-dimensional spectra2 can be misleading,

2 The practice of plotting one-dimensional spectra multiplied by
wavenumber stems from the equality �F(�1) d�1 � ��1F(�1)
d log�1; i.e. a plot of �1F(�1) versus log �1 is variance preserving.
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however. Plots of �1F(�1) can exhibit peaks at scales
different than those representative of the physical pro-
cesses that generate variance (Tennekes and Lumley
1972), and these peaks are often broad or even indis-
cernible. For example, E�(�h) in Fig. 1 has its peak
around 0.03 m�1 but �1F�(�1) has a wider and less de-
fined peak somewhere between 0.03 m�1 and �2
/z.
Comparing �1F�(�1) to E�(�h), the figure demonstrates
that the one-dimensional spectrum is a “smeared” form
of the two-dimensional spectrum—analogous to the re-
lationship between two- and three-dimensional spectra
(Peacock 1999, section 18.1). Thus E�(�h) displays more
clearly the features of w(x, y) than does �1F�(�1), de-
spite containing less information due to the limits of
resolution and the numerical implementation of (6).

Finally, Fig. 1 shows that the inversion (6) gives rea-
sonably accurate results, considering we used simple
first-order differences and Simpson’s rule to calculate
the two-dimensional spectra: E�(�h) calculated from
F�(�1) agrees rather well with E�(�h) calculated directly
from the power spectral density �33(�1, �2). All spectra
were smoothed in order to display them more clearly
and to reduce the amount of high-wavenumber noise
input into (6), because the inversion is sensitive to
variations dF/d�1. The velocity spectra we present here
are realistic, as our plots of �1F(�1) are consistent with
the universal log–log plots of Kaimal et al. (1976).

b. Spectra calculated from atmospheric measurements

As an example of obtaining two-dimensional spectra
from time series of measured fields, we use velocities

measured by linear airplane traverse through a mod-
estly convective atmospheric boundary layer over the
ocean. The example presented here uses a 17-min seg-
ment of data from the Second Dynamics and Chemistry
of Marine Stratocumulus (DYCOMS-II) experiment
(Stevens et al. 2003), taken from an airplane at an al-
titude of 225 m over a distance of about 113 km (with
rms deviations in the plane’s velocity and altitude of
�1%), sampled at 25 Hz. Taylor’s hypothesis and the
speed of the airplane are used to convert the measured
time series into a spatial record.

Figure 2 shows the one-dimensional spectrum of
vertical velocity fluctuations calculated from the
DYCOMS-II data, and the two-dimensional spectrum
which follows via (6). Again E�(�h) has more clearly
defined features than �1F�(�1). The two-dimensional
spectrum peaks at �h � 0.006 m�1, which corresponds
to turbulence at scales on the order of the boundary
layer depth. Such a feature is not evident in �1F�(�1),
which exhibits a broad peak near �1 � 0.033 m�1 that is
coincident with a secondary peak in E�(�h), but which
roughly corresponds to the measurement altitude
z—and thus may be an artifact of the measurement
process. Note however that the �1F�(�1) in Fig. 2 seems
to loosely conform to the unstable boundary layer spec-
tra given by Kaimal et al. (1976).

c. The assumption of axisymmetry

Thus far we have relied upon the assumption of hori-
zontal isotropy (axisymmetry) to obtain two-
dimensional spectra E�(�h) from one-dimensional

FIG. 1. Two-dimensional spectrum E�(�h) and streamwise one-
dimensional spectrum F�(�1) of vertical velocity, from LES at
height z � 0.07zi. Dashed line is F�(�1), solid line is E�(�h) com-
puted from F�(�1) using (6), light solid line is E�(�h) calculated
directly from �33(�h) via (4), and dotted line is �1F�(�1) (multi-
plied by a factor of 15 to appear on same plot). Thick straight line
is Kolmogorov (�5/3) power law.

FIG. 2. Two-dimensional spectrum E�(�h) and streamwise one-
dimensional spectrum F�(�1) of vertical velocity, from DYCOMS-
II data. Solid line is E�(�h), dashed line is F�(�1), and dotted line
is 10 �1F�(�1). Thick straight line is Kolmogorov (�5/3) power
law.
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F�(�1). Invoking axisymmetry allows us to average the
power spectral density over circular rings of radius �h �
��1 � �2 order to obtain E�(�h), through either (4) or
(6). The large-eddy simulation data analyzed in section
3b were taken from a grid level where axisymmetry
applies, as shown in Fig. 3.

The figure displays contours of the two-dimensional
power spectral density of vertical velocity �33(�1, �2);
the contours are essentially circular, particularly at
larger wavenumbers. Closer to the ground, horizontal
anisotropy causes the contours of �33(�1, �2) to become
elliptical, compressed in the �1 direction. As the bottom
of the ABL is approached (say for z significantly
smaller than the Monin–Obukhov length), the utility of
the ring average and two-dimensional spectrum is re-
duced, because there are different turbulence scales in
the x and y directions. But for modest departures from
axisymmetry, one can devise various simple means to
account for elliptical contours of the power spectral
density. The DYCOMS-II data analyzed likely satisfy
axisymmetry as well, given that convection prevails at a
measurement altitude greater than the magnitude of
the Monin–Obukhov length.

4. Summary

We have devised a method to calculate two-
dimensional spectra of scalar quantities in the atmo-
spheric boundary layer under the assumption of hori-

zontal isotropy. The method is demonstrated with both
measured and simulated data, which show that two-
dimensional spectra contain better scale information
than oft-used one-dimensional spectra. The method is
adaptable to modest departures from horizontal isot-
ropy near the surface, and is computationally simple to
implement.
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APPENDIX

Obtaining Ec(�h) from Fc(�1)

We need to invert the relation (5) in order to get
Ec(�h) in terms of Fc(�1). Upon recognizing that �2

2 �
�2

h � �2
1, so that d�2/�h � d�h/�2, Eq. (5) becomes

Fc��1� � �
�1

� Ec��h� d�h

2���h
2 � �1

2�1�2 . �A1�

Equation (A1) is an integral of the Abel-like form (Es-
trada and Kanwal 2000)

f�s� � �
s

� g�t� dt

�h�t� � h�s���
, 0 	 � 	 1 �A2�

where (s, t) � (�1, �h), f(s) � Fc(�1), g(t) � Ec(�h)/2
,
h(t) � �2

h, and � � 1/2. Since h is a strictly increasing
differentiable function, we may substitute f(u) from
(A2) into

�
s

� h
�u�f�u� du

�h�u� � h�s��1��

to get

�
s

� �
u

� �g�t�dt h
�u� du

�h�u� � h�t����h�s� � h�u��1��
, �A3�

where primes denote derivative with respect to the ar-
gument. Changing the order of integration, (A3) be-
comes

��

sin���� �s

�

g�t� dt. �A4�

Then

d

dt �s

� h
�u�f�u� du

�h�s� � h�u��1��
�

d

dt � ��

sin���� �s

�

g�t� dt�
�

��

sin����
g�t�

FIG. 3. Contour plot of the power spectral density �33(�1, �2) of
vertical velocity taken from the LES data. Contour tick marks
indicate direction of decreasing �33.
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so that

g�t� �
� sin����

�

d

dt �s

� h
�u�f�u� du

�h�s� � h�u��1��
. �A5�

Plugging our variables back in for s, t, �, h, f, and g we
obtain

Ec��h� � �
d

d�h
�

�h

� 2uFc�u� du

�u2 � �h
2�1�2 . �A6�

Since u is a dummy variable and can be written as �1,
(A6) becomes (6).
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