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The modulation in backscattered power from wind-generated waves due to the presence of a 
0.575-Hz plunger-generated wave has been measured in a wave tank as a function of air friction 
velocity and plunger wave amplitude. The measurements were made at 9.375 GHz, a depression 
angle of 45 ø and vertical polarization. The straining of the wind waves is treated by a first- 
order perturbation of the Boltzmann transport equation and the scattering is calculated from a 
simple application of composite surface scattering theory utilizing first-order Bragg scattering. 
The theory predicts a characteristic relaxation behavior for the wind-speed dependence of the 
components of the modulation amplitude in phase and out of phase with the horizontal com- 
ponent of orbital velocity of the plunger wave. This relaxation behavior is closely followed by 
the observed modulation amplitudes for air friction velocities less than about 40 cm sec -x, i.e., 
winds less than about 7 m sec --x. 

1. INTRODUCTION 

Visual observation shows us that most wind- 

generated wave systems are two, or more, scale 
processes. That is, in a simple case, say, the wave 
system consists of a dominant wave which grows 
slowly in wavelength, speed, and amplitude with 
increasing wind speed and/or fetch and a small-scale 
structure which exists in some sort of steady state 
brought about by the wind, dissipation forces, and 
interaction with the dominant waves themselves. It is 

well established [Wright, 1968; Guinco'd and Daley, 
1970; Wright and Keller, 1971] that microwave 
radars sense these small-scale waves when the scat- 

tering direction is away from the specular. Now, sup- 
pose a microwave beam illuminates an area of linear 
dimensions small compared to the dominant wave- 
length of a two-scale wave system (Figure 1). The 
power received at the antenna will vary as the large 
wave sweeps through the illuminated area for at 
least two reasons. Firstly, the scattering cross section 
per unit area, •r ø, depends, in general, on the local 
angle of incidence (or its complement, the local 
depression angle 0', Figure 1 ). Since the small waves 
are tilted by the large wave this angle depends on 
position with respect to the large wave. Secondly, the 
amplitude of the small waves is modified by a variety 
of hydrodynamic interactions with the large wave. 
The local scattering cross section depends on this 
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amplitude. In fact, in first-order scattering theory, the 
cross section and power spectral amplitude are pro- 
portional [Wright, 1968]. 

It is precisely the modulation of scattering by 
the larger waves which makes .these larger waves de- 
tectable by incoherent microwave radar. This mod- 
ulation may also be of oceanographic importance for 
it is conjectured that much of the wind stress is 
transmitted from atmosphere to ocean by means of 
the momentum of the small waves. If the small wave 

amplitude is modulated, then so is the stress, and a 
modulated stress, if of the proper phase, will result in 
large wave growth. Thus the small wave structure 
may be important in the process o.f large wave gen- 
eration as well as the generation of mean oceanic 
currents. 

In this paper we report on some two-scale scatter- 
ing measurements made in the laboratory. The wave 
tank facility, instrumentation, and measurement tech- 
nique are described in section 2. The large-scale 
waves used in the experiments were periodic, plunger- 
generated waves with little cross-tank variation, and 
a straightforward composite surface scattering cal- 
culation, given in section 3, is used to describe the 
effect of variation of local angle of incidence (tilt- 
ing). The straining of wind-generated waves is 
treated by a first-order perturbation of the Boltzmann 
transport equation in section 4. The relaxation time 
theory obtained in section 4 is compared with the 
experimental scattering results in section 5. It is 

139 



140 KELLER AND WRIGHT 

UPWIND DOWNWIND 
LOOK L•OOK 

WIND 

WAVES 

ANK BOTTOM 
Fig. 1. Schematic diagram of the experiment. 

found that the relaxation theory is a good description 
of the response of 2.3-cm wind-generated waves to 
straining and that the relaxation rate is about twice 
the initial growth rate discussed previously [Keller 
et al., 1974]. Finally, the notation used in this paper 
is listed in Table 1. 

2. WAVE TANK AND INSTRUMENTATION 

The two-scale scattering measurements reported 
here were made by the authors at the wave tank 
facility of the University of Florida, Gainesville. The 
wave tank is described by Lai and Shemdin [1971]. 
The tank, which is 91.5 cm wide, was operated with 
a water channel depth of 91.5 cm and a wind tun- 
nel height of 91.5 cm. 

Seven meters of roof section was removed to make 

way for the antenna. Wind profile measurements 
were made at the scattering site and the wind field 
is described in this paper by the air friction velocity, 
u*, obtained from those profiles. Comparison of u* 
with nominal wind tunnel speeds and oceanic winds 
is given by Duncan et al. [1974]. The maximum 
windspeed used here corresponds to a wind of per- 
haps 12-15 rn sec -• on the ocean. The tank was 
equipped with an overflow standpipe for the removal 
of surface films. We obtained results for scattering 
cross sections at low air friction velocities (u* ~ 10 
cm sec -'•) comparable to those obtained in another 
tank [Duncan et al., 1974] where we know the re- 
moval of surface films was satisfactory. As the cross 
section at low winds is quite sensitive to the presence 
of surface films we believe the overflow standpipe 
arrangement was probably adequate to remove these 
films. 

TABLE 1. List of symbols. 

a(k), !x(k), Is(k), h(k•), n(k) perturbation of surface displacement 
spectrum 

d mean depth of water in wave tank 
e(t) linearly detected, rectified, received signal 
l(t) random (wind-generated) constituent of e(t) 

g scattering function (equation 8) 
k, k surface wave vector and wave number 

kx component of wave number in x direction 
k0 microwave number 

m theoretical power modulation index (equation 33) 
p modulation index of received signal (equation 2) 
r measured peak-peak modulation of R(r), (Figure 2) 
t time 

u(t) periodic constituent of e(t) 
u* air friction velocity 
x Cartesian coordinate along tank axis 

.4• two-way illuminated area of antenna beam 
,4• illuminated area at surface (equation 7) 
B straining function (equation 30) 
C phase speed of plunger-generated wave 

Co, Co o group speed of wind-generated wave with and 
without plunger-generated wave 

Co phase speed of wind-generated wave in absence 
of plunger-generated wave 

D straining function (equation 31) 
F, F0 wind-wave surface displacement spectrum 

(7 scattering function (equation 11) 
H wave-wave interaction functional 

I0 equilibrium wave-wave interaction operator 
K plunger-generated wave number 

M, M•,. Ma measured fractional modulations (equation 5) 
P received power 

P0 received power in absence of plunger 
R(r) correlation function of e(t) 

Ro R(o) 
$ plunger-generated wave slope 
T tilting function (equation 29) 

Ta averaging time 
U horizontal component of orbital velocity of 

plunger-generated wave 
U0 modulus of U 

tt wind-generated wave growth rate 
tit wind-generated wave relaxation rate 
'v straining constant 
e statistical error 

O, O' depression angles (Figure 1) 
•0 scattering cross section per unit area 
r time lag 

•o, •o' phase angles 
o• radian frequency of wind-generated wave 
ft radian frequency of plunger-generated wave 

The antenna was a 30.5-cm diameter parabola 
focussed at the mean static water surface. The use 

of such antennas for scattering measurements is dis- 
cussed by Duncan et al. [1974]. All measurements 
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were made with vertical polarization, i.e., electric 
field in the plane of incidence. The depression angle 
was 45 ø and both upwind- and downwind-looking 
antenna orientations were used as shown in Figure 1. 
All measurements were made at 9.375 GHz. The 

microwave system was a coherent CW system similar 
to that used in our previous work [Duncan et al., 
1974; Wright, 1966], which utilizes a 400-Hz offset. 
That is, stationary scatterers appear at a frequency 
400 Hz removed from the transmitted frequency. The 
coherent, i.e., Doppler, information is not an essen- 
tial part of the results reported here, however. The 
system utilizes linear detection and the received sig- 
nal was recorded on an analog tape recorder with a 
nominal dynamic range of 38 db. The signal, which 
is thus proportional to the square root of the received 
power, was subsequently rectified, filtered to remove 
components above 30 Hz, and autocorrelated with a 
Federal Scientific Corporation Model UL 202C cor- 
relator. If e(t) is the received signal the unnor- 
rnalized correlation function is denoted R(,), 

•0') = (• / r•) fo • e(t)e(t ør- r) dt (1) 

The averaging time, Ta, was six minutes. Sample cor- 
relation functions are shown in Figure 2, left. It is 
evident that the received signal is divisible into com- 
ponents of different time scale and that the slower 
component is periodic, i.e., 

e(t) = /(t) q- p]u(t) (2) 

where u(t) is periodic and f is the average over the 
time T. We define 

Ro --= l'(t) (3) 

If u(t) -- cos(fit) 

R(r) = (l/T,,) /(t)/(t q- r)dt 

+ 0•'/2)(?) •' cos (n•) (4) 

The measured peak-to-peak modulation amplitude, 
r (Figure 2, left, IV) is then r = p•.(])2 and we define a 
functional modulation M 

M = r/Re (5) 

Wave height records were made simultaneously with 
the microwave records using capacitance type wave 
probes placed approximately 1.5 m from the spot 
illuminated by the antenna. Spectra were obtained 
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and wind-wave spectra (right) for various wave 
amplitudes at u* -- 16.5 cm sec -•. 

from these records by analyzing in real time with a 
Federal Scientific Corporation Model UA-500 spec- 
trum analyzer. Sample spectra are shown in Figure 2, 
right. Note that high pass filtering was used to reduce 
the fundamental plunger-generated wave spectral 
amplitude in order to keep the total spectral ampli- 
tude within the dynamic range of the analyzer. Ap- 
proximately 4-6 db should be added to .575-Hz 
peaks in Figure 2, right, in comparing them with 
the higher harmonics and the wind wave system. Note 
also that for the spectrum in Figure 2 (right, IV) the 
noise level is, in effect, 10 db higher than for the 
other three spectra. We did not attempt to determine 
the frequency response of the capacitance probes as 
only qualitative use is made of the wind wave spectra 
in this report. It is manifest from Figure 2 (fight) 
that they respond well at 5 Hz but they are probably 
losing response at 10 Hz. For the purpose of meas- 
uring the height of the plunger-generated waves, the 
capacitance probes were calibrated statically with 
each day's runs and the mean-square wave height 
was obtained by autocorrelation. As the plunger- 
generated waves are essentially periodic they are 
designated by their amplitude. 
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3. TWO-SCALE SCATTERING 

The small-scale waves of the two-scale wave sys- 
tem were generated by the wind and all measure- 
ments were made at a fetch of 8 m. The large-scale 
wave was a nearly monochromatic plunger-generated 
wave of controllable amplitude and frequency. How- 
ever, all the measurements reported here were made 
at a frequency of 0.575 Hz. At this frequency the 
wave crests were nearly perpendicular to the wave 
tank axis. As the scattering on vertical polarization 
is insensitive to crosswind tilts in any case, these 
latter may be safely neglected in computing the 
backscattered power. 

Provided the scatterers are decorrelated in a dis- 

tance small compared to the large wavelength (which 
is 4.20 rn for a 0.575-Hz wave) the backscattered 
power, P, is 

P = •r ø A• (6) 

where •0 is the scattering cross section per unit sur- 
face area and A• is the two-way illuminated area as 
defined by Wright and Keller [ 1971]. The area, As, 
at the focus, and in a plane perpendicular to the 
antenna axis was very nearly circular and of diameter 
12 cm. At the large wave surface this becomes 

A• = Af/sin O' (7) 

The cross section in first-order scattering is given, 
e.g., by Wright [1968]' 

0 

a = 16•rko4gg*F(2ko cos 0', O, U) (8) 

The function g depends on the local depression angle 
and is also given by Wright [1968]. The local Bragg 
wave number is 2k0 cos 0'. In the absence of a large- 
scale wave it has the value 2.72 cm -• at 45 ø and 

9.375 GHz. The power spectral amplitude of surface 
displacements of the small scale wave system is 
F(k•, kv, U) where x and y are measured parallel 
and perpendicular to the tank axis. As will be seen 
later, it is convenient to use the horizontal component 
of orbital velocity, U(x, t), to describe the large 
wave. 

U(x, t) = Uoe i(•:x-n,• (9) 

and the dependence of the spectral amplitude on x 
and t is contained implicitly in U(x, t). The symbols 
K and f• represent the wave number and angular fre- 
quency respectively of the large-scale wave. To first 
order in large wave slope the local slope is given by 

S = j(U/C) tanh (Kd) 

where C is the phase speed and d the water depth. 
If Po is the mean backscattered power in the absence 
of any wave, the fractional change in backscattered 
power, AP/Po, due to tilting can be obtained to first 
order from the first term of a Taylor series expansion 
about 0' = 0: 

a•/•o = 4-s[(•/•)(a•/aO) 

- tan O(kx/Fo) 0 Fo/Ok•] (1 O) 
where 

Fo = F(k•, k•, O) 

and 

G =-- gg*/sin 0 (11) 

The positive sign in (10) is applicable to the upwind 
antenna orientation and the negative sign to the 
downwind orientation. 

4. STRAINING OF WIND-GENERATED WAVES 

The straining of small waves by the horizontal 
component of orbital motion of larger waves is a 
well-known phenomenon [e.g., Phillips, 1966] but 
existing theories omit the wind- and wave-wave in- 
teractions. These cannot be ignored in the case of 
short gravity-capillary waves since these tend to exist 
in a steady state brought about, in large measure, by 
the counter action of these processes. The traditional 
tool of statistical physics for dealing with perturba- 
tions of such steady states is the Boltzmann transport 
equation, also referred to as the radiative transfer 
equation. For the case at hand, this equation is 

0 F/Ot -Jr- Co 0 F/Ox -- (&o/Ox) 0 F/Ok• 

= l•F -- •(k)(O U/Ox)V -Jr- H(F, k) (12) 

In this equation, x and k• are independem variables. 
They are, in fact, the Hamiltonian coordinate and 
momentum for wave packet trajectories in the 
upwind-downwind direction. That is 

ax/at = Ooo/Ok•---- co 

dk•/dt = 

The angular frequency o•(k, x, t) can be computed 
as the eigenvalue of a local boundary value problem 
for ,the propagation of small surface displacements. 
That is, to first order in Uo/C, 

offk, x, t) = kx U(x, t) + kCo (13) 

For irrotational waves 

Co = [(g- •U)/k-Jr- Ski 1/• (14) 
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where g is the acceleration of gravity and S the ratio 
of surface tension to water density. Thus &o/Ox is 
given by 

o,o/ox = - 0 t/ox 5) 

For the Bragg wavelength, k = 2k0 cos 0, occurring 
in the measurements reported here, kCo ~ 2,r X 10 
sec -• so that the term c•/k'Co ----- 2 x 10 -•'. We will 
henceforth neglect this term though its inclusion in 
the final result would be straightforward. 

The first term on the right-hand side represents the 
input from the wind. The second term has come to 
be called the "radiation stress" [Longu'et-Higgins and 
Stewart, 1964], but in a paper dealing with the inter- 
action of electromagnetic and water waves this ter- 
minology does not seem particularly clarifying and is 
herewith abandoned. The term may be thought of 
simply as a local growth or decay rate induced by 
straining' just as, in Miles' [1957] theory of wave 
generation, /• is a growth or decay rate induced by 
shear. The value of •(k) for irrotational waves cal- 
culated from that given by Longuet-Higgins and 
Stewart [1964] is 

'y(k) = [1 + 3(k/k,•)•']/211 + (k/k,•) •'1 + 1 (16) 
where k,,, = g/S. It should be noted that short wave- 
length wind-generated waves are not really irrota- 
tional since they evolve from the wind drift [Wright 
and Keller, 1971; Keller et al., 1974]. Thus (16) 
as well as (13) are only approximations valid 
for vanishing winds. We believe that these approxi- 
mations are probably not crucial in the present con- 
text but this ass, umption requires critical reexamina- 
tion in the future. Finally, H(F, k) is a functional 
into which we lump nonlinear dissipative interactions 
about which we have no precise knowledge together 
with the better understood conservative, resonant 
wave-wave interactions. These last occur at second 

order for short gravity-capillary waves and have 
been given by Valenzu'ela and Laing [1972]. 

We now rewrite (12) in the frame moving at the 
phase speed of the large wave and expand the 
small-wave spectrum in a perturbation series 

œ = œo + (Uo/C)h + (Uo/C))•. + ... (•7) 

For convenience we give 1• in terms of its com- 
ponents with respect to U (x): 

lx = [h(k)-3-jn(k)]e izrx (18) 

It is necessary to assume that F0 satisfies the zeroth- 
order equation obtained from inserting (17) into (12) 

even though we do not in fact know H(F, K) pre- 
cisely, and the calculation of Fo(k) would be a very 
difficult task in any event. We further assume that 
H(F, k) may be expanded about the equilibrium state 
in the form 

Then' 

(1 - Coø/C)fln(k) -- /5h(k) 

_ f k, k')h(k') dk' = 0 
-- (1 -- C•ø/C)flh(k) -- /5n(k) 

_ f k, k')n(k') 
= (kx 0 Fo/Okx -- 'y Fo)f2 (20) 

We cannot evaluate I ø. We include it to motivate 

the next step which is the introduction of the relax- 
ation time approximation. Suppose, then, that we 
perturb (12) in the absence of any straining current. 
That is, we make a small perturbation, f, of the 
equilibrium spectrum which we assume to have 
negligible spatial variation. Then, with the same type 
of approximation as above we obtain 

Of(k, t)/Ot = /5/(k, t) 

+ f Iø(Fo, k, k')/(k', t) ark' (21) 
This is a first-order integro-differential equation with 
solutions of the form 

(19) 

](k, t)• a(k)e -t•rt (22) 
so that (21) becomes 

f /ø(F0, k, k')a(k') dk' = --(/5 + /Sr)a(k) (23) 
The problem is thus reduced to that of finding the 
eigenvalues and eigenfunctio.ns of the equilibrium 
operator I ø. It happens in many problems in statist- 
ical physics that I ø is nearly diagonal. In .the present 
case this would mean that in perturbations from 
equilibrium the original waves are essentially un- 
coupled. There is no obvious a priori reason why this 
should be the case. Its assumption is the relaxation 
time approximation' 

f Iø(Fo, k, k')/•(k') ark' ---- --(/5 -3-/5r)/x(k) (24) 
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Note that this approximation may be valid for some 
values of k but not for others. Its justification rests 
with comparison with experiment which is carried 
out in section 5. 

With this assumption (19) and (20) reduce to 
simple algebraic equations with the solution 

h(k)/Fo = -- {[(• -- C•ø/C)•"/•"I 

+ [1 + (1 -- Coø/C)"•/•"I} 

ß [(k•/Fo) 0 Fo/Ok• -- 3'] (25) 

n(k)/Fo = {([2//5r)/[1 q- (1 -- 

ß [(k•/Fo) 0 Fo/Ok• -- 3'] (26) 

The response of the equilibrium wind wave system to 
harmonic strains of moderate amplitude is thus pre- 
dicted to be a simple relaxation. At sufficiently low 
winds we expect that f//#,. >> 1 so that, when OFo/Ok• 
is negative, the response is in phase with the straining 
current. As the wind increases and c•//L becomes 
less than unity, the phase of the response approaches 
that of the negative of the gradient of the straining 
current. At very high winds, the response vanishes. 
When C -- C• ø, (25) and (26) give meaningful 
results provided/9r •4 = 0. If #• = 0, and also C - C• ø, 
then there is no steady-state solution. In identifying 
h (k) and n (k) as the components in phase and out 
of phase with respect to the straining current we 
have implicitly assumed/?,. to be real. This need not 
necessarily be the case. In fact, insofar as observed 
overshoot phenomena represent an oscillatory ap- 
proach to equilibrium, #• may indeed be complex. 
Finally, in first-order Bragg scattering, and to first 
order in Uo/C 

(zXP/Po)strain = [h(k)/Fo q- j n(k)/Fo] U/C (27) 
5. MEASURED AND THEORETICAL 

MODULATIONS 

At first order in Uo/C the tilting and straining 
effects simply add, i.e., 

AP/Po = (AP/Po)tilt + (AP/Po)strain (28) 
Let us write' 

(zXP/Po)• , • = -4-iT U/C 
and 

(zxP/•o)• = (• + jD)U/C 

where, from (10) and at 0 -- 45 ø 

T m (tanh Kd)[1/G(dG/dO) 

- (•/œo)(0 œo/0•)1 (29) 

and 

Then 

B m h/Fo (30) 

D = nifo (31) 

where 

P = Po[1 q- rn cos (32) 

and 

m m (B 2 q_ D" q- T" -4- 2DT)•/"(Uo/C) (33) 

tan • m (O -4- T)/B (34) 

Again, ,the positive and negative signs in (34) 
refer to upwind- and downwind-looking antenna 
orientations respectively. 

We may think of the received power given by (6) 
and (8) or (28) as having been obtained from an 
average over an ensemble, the members of which 
are exactly one plunger-generated wave period in 
length and synchronized. Such an average is some- 
times called a phase average. Now recall that e(t) is 
the square root of the received power. The instan- 
taneous power at a given phase, e' - fl, t + •, of the 
periodic large wave is then e•'(t) and from (2), 

eO'(t) = /0' q- 2p/(t)•u(qo') q- pO'uO'(qo') (35) 

At first order in Uo/C it is reasonable to assume that 
phase averages (denoted by()) and time averages 
are identical, so that, to first order in Uo/C, 

P = (e•') = I'q- 2P(f)•u(qo ') (36) 
Finally, comparison with (32) gives, to first order 
in Uo/C, 

2p(]) 2= mPo = m• TM (37) 
Thus, to first order in Uo/C the measured fractional 
modulation, M, is related to the calculated power 
modulation index, m, by 

M = (m•'/4)[I•/(]) 2] = (m2/4)[Ro•'/(]) •'] (38) 
We found, from all the measurements on 0.575-Hz 

waves reported here, that Ro/(]) •' = 1.4 4- .02. Thus 

M = .35m •' (39) 

The statistical error in these fractional modulations 

can be estimated from the variance inf(t), [Ro/(]) •'-- 1], 
and the decorrelation time of the random, i.e., wind- 
generated portion of e(t). The latter, estimated from 
the width of the spikey portion of the autocorrelation 



function near r = 0 was clearly of the order of the 
period of the dominant wind-generated wave. This 
was 1/3 see or less. In a six-rain record there are of 
the order of 10 • independent samples of f(t) and the 
error, e, in ] is 

This error estimate is reasonably consistent with our 
observation that fractional modulations of .02 were 

readily measurable but those less than .01 were not. 
Values of M• and Me, the fractional modulations 

measured looking upwind and downwind respectively 
are given in Figure 3 as a function of u•*. The 
0.575-Hz plunger-generated wave was of nearly con- 
stant amplitude, 5.5 cm, for both upwind and down- 
wind measurements. It is evident that the modula- 

tions are quite. different for '.the two orientations. 
Furthermore, the modulation looking downwind be- 
comes very small as is predicted by (33) if the relax- 
ation time becomes equal to the angular frequency of 
the plunger-generated wave within the wind-speed 
range under investigation. Comparison between 
theory and measurements is best carded out in terms 
of the quantities M•, -- Me. 

From (33), (38), and (39) these are 

M. q- Ma = 0.7(B ø' + D ø' + T ø' ) (40) 

M.- Ma = 1.4DT (41) 

Since T is independent of the wind M• - M• should 
thus be proportional to D and have a maximum at 
approximately the wind where/• - c2. This occurs 
at u* - 20 cm sec -x (Figure 5) and gives •- 3.6 
sec -x at that wind. This is about twice the initial tem- 

poral growth rate for 2.3-cm waves at u* = 20 cm 
sec -• which we also measured. In order to compare 
theoretical and measured modulation magnitudes we 
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Fig. 3. Fractional modulation vs. air friction velocity for 
0.575-Hz wave, Uo/C -- 0.091; solid circles, upwind; open 

circles, downwind. 

use values of (k/F0)/OFo/Ok obtained from photo- 
metric measurements of directional slope spectra 
at a fetch of 3 m given by Wright and Keller [ 1971]. 
This quantity, together with the apprdpriate combina- 
tions with y(k) and (1/G)dG/dO, are given in 
Table 2. The comparison is shown as a function of 
plunger wave amplitude for two wind speeds in Fig- 
ure 4. The measured modulations agree well with the 
calculated ones but appear to saturate for Uo/C > 
0.08. If we simply normalize the value of M• - Ma 
to the measured value at the wind speed of maximum 
M• - Ma and take fl• to be twice the measured growth 
rates at all winds, then the calculated curves' are none- 
theless an excellent fit to the data of Figure 3 (for 
which Uo/C = 0.091) for air friction velocities less 
than about 40 cm sec -x (Figure 5). At higher winds, 

TABLE 2. Spectral parameters. 

u* (cm sec -•) ( k•o ø O Fo -- Ok• 

10 

15 

20 

25 

30 

35 

40 

50 

60 

7.7 

7.2 

6.9 
6.5 

6.1 

5.7 

5.2 

4.5 

3.7 

9.6 

9.2 

8.8 

8.4 

8.0 

7.6 

7.1 

6.4 

5.6 

5.9 

5.5 

5.1 

4.7 

4.4 

3.9 
2.3 

2.7 

1.9 
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Fig. 4. Comparison of theoretical and measured fractional 
modulations looking upwind vs. orbital velocity o,f 0.575-Hz 
waves. Solid data points and solid line are for u* -- 16.5 
cm sec-X. Open data points and dashed line are for u* -- 30 

cm sec -1. 

there is definitely another phenomenon present not 
accounted for by the relaxation theory. 

We also measured the phase of the modulated re- 
turn by cross correlation with the output of the 
capacitance probe. The phase angle by which the 
modulated return leads the crest of the plunger- 
generated wave is shown in Figure 6 for the same 
wind and wave conditions as those of Figure 4. 
It is evident that this phase is relatively inde- 
pendent of wave amplitude though there appears to 
be a significant increase of phase at the largest wave 
amplitudes. Values of phase calculated from (34) are 
also shown on Figure 6. These are about 20 ø greater 
than the measured phases at both wind speeds. The 
error in the 'calculated phases due to uncertainty in 
antenna boresighting and wave probe position should 
not exceed 5 ø . The origin of the additional discrep- 
ancy is unknown. 

6. DISCUSSION 

Several factors show that the first-order (in Uo/C) 
straining theory is not entirely adequate. The appar- 
ent saturation of the fractional modulation with in- 

creasing wave slope shown in Figure 4 has already 
been remarked upon. A second indication is the 
diminution of the wind-wave spectrum with increas- 
ing plunger-generated wave amplitude shown in 
Figure 2, right. Some of this diminution is simply the 
result of spectral broadening due to advection of the 
wind-wave system by the orbital motion of the 

plunger-generated waves. At the largest wave ampli- 
tude, however, there does appear to be a real de- 
crease in the surface displacement of the wind-wave 
system due, perhaps, to nonlinear straining. Iteration 
of the perturbation procedure used in section 4 is not 
entirely straightforward because one must make fur- 
ther assumptions about the expansion of H at second 
order. If we ignore this and simply carry through 
an iteration to second order in Uo/C utilizing the 
relaxation time approximation we do find that there is 
a deletion of mean spectral amplitude near the peak 
in Fo(k). However, to do the entire problem, includ- 
ing scattering, correctly at second order we must take 
nonlinear tilting into account as well as the fact that 
the scattering contributions from tilt and, strain are no 
longer simply additive. This much more complex 
situation is left to a future work. 

There is, however, one interesting inference con- 
cerning higher-order scattering to be drawn from the 
relative insensitivity of the mean backscattered power 
to wave amplitude compared to the diminution of 
the peak spectral amplitude by the largest plunger- 
generated wave, as seen in Figure 2. The point is that 
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Comparison of measured modulations with linear 
straining and tilting theory. Solid circles: (M,, q- Ma); 
open circles' (M,, -- Ma); 0.575-Hz wave; Uo/C -- 0.091. 
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in second-order .scattering, say, the scattering cross 
section will contain a term proportional roughly .to 
the product of the Bragg wave and dominant wind- 
wave spectral amplitudes. If the dominant wind 
wave, in this case about 10 cm in wavelength, 
decreases in amplitude one would expect a corre- 
sponding decrease in scattering cross section if 
higher-order scattering were significant. Little de- 
crease is observed. 

Finally, as to the minor disparity between meas- 
ured and theoretical modulation amplitudes, we note 
first of all that •these amplitudes are roughly pro- 
portional to the square of (k•/Fo) OFo/Ok• and so 
are sensitive to the value used. The values are taken 

from measurements at 3-m fetch whereas .the modu- 

lation measurements were made at 8 m. We previ- 
ously pointed out that the short wavelength wind 
waves evolve from the wind drift so that both 7(k) 
and O.o,/Ox may be different than assumed. 

7. CONCLUSIONS 

The response of 2.3-cm wind-generated waves to 
modulation by 0.575-Hz (4.20-m wavelength) waves 
of moderate amplitude is essentially a relaxation 
characterized by a single relaxation time for air fric- 
tion velocities less than about 40 cm sec -•. The relax- 

ation rate is about twice the wind-induced growth 
rate. At higher winds and larger wave amplitudes the 
linear theory given here is no longer adequate. None- 
theless, the modulation of wind-wave systems by 
mechanically generated waves is a useful tool for 
studying wave-wave interactions among short gravity- 
capillary waves through determination of relaxation 
times. For this purpose, values of Uo/C should not 
exceed about 0.1. 
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