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By an extension of ordinary geometrical optics (or acoustics) the intensity of the reflected and transmitted

fields due to a point source in the presence of an arbitrary interface between two media is found. Particular

consequences of the solution are the general lens and mirror law and the equations for the caustic surfaces.

1. INTRODUCTION

THE calculation of the electromagnetic or acoustic
T field at any point in space when two different
media are present necessitates a solution of Maxwell's
equations or the wave equation of acoustics with appro-
priate boundary conditions in each case. Exact solutions
have been obtained only for the simplest configura-
tions 2 and approximate solutions have been found by
special means in some other cases (e.g., when one of the
media is an arbitrarily curved thin shell3 '4).

A general procedure for obtaining an approximate
solution to an electromagnetic or acoustic problem is
the method of geometrical optics or acoustics. By this
it is meant that the field quantities propagate along
rays which are determined by the Fermat principle of
least time, and that these rays obey the laws of reflec-
tion and refraction at the interface between two differ-
ent media. Furthermore, in this method it is also pos-
sible to determine the field components themselves5' 6-

something which has not ordinarily been done in geo-
metrical optics or acoustics. Thus, for example, the
reflected and transmitted field components at an inter-
face are related to the incident field components by the
well-known Fresnel formulas or the corresponding for-
mulas in acoustics. Also the field components vary
along a ray inversely as the square root of the velocity
and of the area of the normal cross section of an in-
finitesimal tube of rays containing the ray in question.
These results enable one to determine the geometrical
optics or acoustics field completely.t It is to be expected
that this solution will be an adequate approximation
to the full solution only at very high frequencies (i.e.,
at wave-lengths small compared to the dimensions of
the problem).

In the present investigation an incident field due to a
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point source is assumed to impinge upon an arbitrarily
curved or flat interface which separates two homogene-
ous and isotropic media. The magnitudes of the re-
flected and transmitted field components at any point
are determined on the basis of geometrical optics, i.e.,
by applying the theory outlined above. For the case of
reflection the problem has already been solved,3 7 but
it is included here because this can be done with no
additional difficulty. The transmission problem has
been treated by the Kirchhoff method3' 8 and the
present calculation constitutes a check on that solution.
The check for the Kirchhoff method applied to reflec-
tion is contained here as well as in reference 3.

2. FORMULATION OF THE PROBLEM

A point source is assumed to be located at a point
(xi,yi,zi) in a homogeneous isotropic medium with
propagation speed VI. The surface z=z(x,y) separates
this medium from a different homogeneous isotropic
medium with propagation speed VT.

The magnitudes of the reflected and transmitted
field components at the surface can be found in terms
of the incident field components and the Fresnel for-
mulas (only for those surface points which can be con-
nected to the source by a straight line segment lying
in the first medium). Let E(x,y,z) represent the ampli-
tude of any field component at the point (x,y,z) due to
reflection or transmission from the surface. Then from
geometrical optics5 or acoustics6 we have the relation

E(x,y,z) = Ej(x',y',z') (do-'/do-) 1,

where (x',y',z') is the point in which a reflected or trans-
mitted ray through (x,y,z) intersects the surface z'
=z(x',y'). Ej(x',y',z') is the reflected or transmitted
field component at the surface, where i= 1 for reflection
and i=2 for transmission. These components can be
calculated, as previously stated, from the incident field
component at the surface. The quantity do is the area
in which an infinitesimal tube of reflected or trans-
mitted rays containing the ray through (x,y,z) and
(x',y',z') cuts a plane p normal to this ray at the point
(x,y,z) (see Fig. 2). do-' is the area enclosed by this same

tube of rays on a plane p' normal to the ray in question

I C. B. Barker and H. Riblet, Rcflctionsfromn Curved Surfaces
M. I. T. Radiation Laboratory, Report No. 976.

8 J. B. Keller, Reflection of Electromagnetic Waves, New York
University, Washington Square College Mathematics Research
Group, Report No. 176-1.
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at the point (x',y',z'). In the limit of infinitesimal areas
the ratio do-'/du is just the Jacobian, J(p'/p), of the
transformation established by reflected or transmitted
rays, which maps the plane p' into the plane p. Hence
we may write

(1)

3. CALCULATION OF THE JACOBIAN

Let N(x',y',z') be a unit vector normal to z'=z(x',y')
and pointing into the first medium; I(x',y',z') is the
unit vector pointing from (x',y',z') to the source at
(xi,yi,zi). The direction of the reflected ray at (x',y',z')
is given by the unit vector T(x',y',z') and that of the
transmitted ray by 2 T(x',y',z') where, from the laws of
reflection and refraction see Appendix I]:

iT(x',y',z') = - n 1I+ [ni-(I * N)
( )i 1 -2 i-l 1-(I- N)2]} i]N. (i= 1,2) (2)

Here n= (sinao)/(siny) and i= 1 for reflection, i= 2 for
refraction or transmission. The angles and unit vectors
are shown in Fig. 1. The unit vectors I and N have the
components:

( XI-XI yi-Y' ZJZ
I(x'',z') I= (Dl(x',y',z')' D (x',y',z')' Dd x',y',')

-z'/Ox' - z'/Oy' 1N(x',y',z')=- azlx X ,zly (3)
VN(x',y',z')' N(x',y',z')' N(x',y',z')

where

D12(x',yakz) = (X-XI)2+ (yl-yl)2+ (Z1-Z )2

and
N2(x',y',z') = 1+ (z'/Ox') 2 + (z'/Oy') 2 .

The coordinate system must be so chosen that N points
into the first medium.

For an arbitrary point (x',y',z') on the surface the
equation of the reflected or transmitted ray through
this point is

X-X' y-y' Z-Z'

Td iTh iT

and thus:

we can compute the Jacobian of this transformation,
namely,

S =Q r)J = Ox y x y -J =J - = _
7 s ax, ay, ayax,

(5)

The Jacobian which occurs in Eq. (1) can now be
calculated since

J(P/P) = J(P'7r') J(Tr//S) J(S/,) J(,,/P),
where r' is a plane through (x',y',z') and parallel to r,
p, and p' are the normal planes previously defined and
the notation represents the Jacobians of the trans-
formations between indicated surfaces determined by
means of the reflected or transmitted rays. However,
J(p'7r')= J-1(7r/p) since the planes are parallel by
pairs and thus corresponding angles used in defining
the transformations are equal. Thus we have:

J(p'/p) = J(r'/s)J(s/w) -
Now place the origin of coordinates at the point

(x',y',z') with the z axis normal to S and positive into
the first medium. Further let the x and y axes be
parallel to the directions of principal curvature9 at this
point. The plane r' now becomes the xy plane (z=O)
and is the tangent plane to S at the new origin. The
equation of the surface S expanded into a Taylor series
around the origin becomes9

z'= a(x')2+b(y1)2+. .. (6)

where 2a and 2b are the principal curvatures of the
surface at the origin and the primes denote the co-
ordinates of a surface point relative to the new co-
ordinate system.

In these coordinates J(r'/s) is the Jacobian of the
mapping, by reflected or transmitted rays, of the sur-
face on the xy plane. This mapping is given by

x= x'- z' tanO(x',y')
y=y'-z' tank(x',y'), (7)

where (x',y') and (x',y') are the angles between a
ray reflected (or transmitted) at (x',y',z') and the x
and y axes, respectively. From Eqs. (6) and (7) we can
compute

x = x'+ (z- z') iTx(x',y',z')

y= +(z-Z')
T_.(x ,y',z )'

where the subscripts indicate components of the vec-
tor IT.

For a fixed value of z Eqs. (4) are the mapping of
the surface S given by z'=z(x',y') onto the plane 7r,
given by z=const (see Fig. 2). From these equations

e'd ax y ax yJ -
s x' ay' y' x'

(8)

We find that, at the origin (i.e., x'=y'=z'=O), the
(4) above Jacobian is equal to one. Using this result in

the preceding expression for J(p'/p) we obtain

J(p'/p)= J(S/r) (9)

This Jacobian may be computed with the aid of the

9 L. P. Eisenhart, Differential Geometry (Princeton University
Press, Princeton, 1940), Chapter IV.
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FIG. 1.

formulas in Appendix II. The result is4±1) iZ[i-(X2+y2)
P cosai D1 D 1

2 D1
4 Cos2

aX

/axf'+by,2\ 1pi-1
-2(a+b)A-2 + 2 A

D 1
2 ICOS2a, 

Z2
r 2(i-1) / Z1

2 u2(i-I)Z 2(xi 2.I+y 2 )\

+ I I+
COs2aL D1

2 D1
2 D 1

4 Cos2aI

/ it - ax,2+-by2 l2(i-1) i - it
-2(a+b) A -2 ( 2) -A

Di J D1
2 cos2Cai Di

jto2(i-l) (XJ2+ y?) bxi.+ay,2
+4abl 1+ _ A'2+2\k D1

2coS2at 1D 1
2

> 12(- )kI 2)
Xl 1-~~~~1

D12 COSa,

( i-I ) -(-A (10)
hiD

This equation may be expressed in terms of geometric
properties of the surface and distances which are inde-
pendent of the choice of coordinates. These quantities
are 9

Gn¢=(a+b); G=4ab (11)

/a x2+ b y 1
Gil=21 ~ 1

D12 sin 2y

bx1
2 + ay 2 1

2Gm-Gil=2 1 (12)
DI2 sin2-y

and the distances involved are D1, already given, and

D2= x2+y 2+z 2= z2/(cos2a ). (13)

Gm and G, are respectively the mean curvature and the

FIG. 2. Transformations for transmission.

Gaussian curvature of the surface at the point involved;
Gn1 is the curvature of the surface in a plane containing
the incident ray and the normal to the surface at this
point; D1 is the distance along the incident ray from
the source to the surface, and D is the distance along a
reflected or transmitted ray from the surface to any
point (x,y,z) on this ray. In terms of these invariants
Eq. (10) becomes

fp'\+ l(i-1 co5s27'\
P D1 cos2CJ

- (2G,.+Gll tan2a) (n1i- Cos+cosai)]

rt2(i 1) cos 2y \
+DI f - (2Gm+i+Gll tan2y)

LD 1 \' cos-cai

COS2-y ni-l
X t- ni-i cos+csiJ

+Gc sec2
xi(ni- COSy+CoSa)2] i (14)

Now with the origin at any point in space, let the
source be at (xi,y1,zi), let a point on the surface be
(x',y',z'), and finally let the observation point be (x,y,z)
in the new coordinates. Equation (14) is unchanged in
these coordinates provided that

D?= (X1-X) 2 + (y-y') 2+ (Zr-Z) 2

D2= (X-X) 2+ (y-y) 2 + (Z-Z') 2

(Z- Z/)2

cosa .
(15)

If Eq. (14) is used in Eq. (1) the reflected or trans-
mitted field amplitude is given by

E(x,y,z) =Ej(x',y',z')
XJI(G.(x',y') ,G,,(x',y'),Gii(x',y'),ci,y,D), (16)

since we can express x and y in terms of x', y' and z by
means of Eqs. (4). In Eq. (16) J is a functional
symbol for the expression on the right side of Eq. (14)
with the changes noted in Eq. (15).

4. DISCUSSION OF THE SOLUTION

It is of interest to investigate the "level surfaces,"
that is surfaces on which a reflected or transmitted
field component has a constant value. To find such
surfaces we require that

E(x,y,z) = E*= const.
in Eq. (16). We then solve the resulting equation for D
and obtain:

Ei 2(x.yI)Z K) H ,(1

D(X}YNZ=11-t 2 E1 21

i~t--K)+_K] | , (17
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where H and K are the coefficients of D and D2 re-
spectively in Eq. (14). Equations (4) and (17) are equa-
tions for the level surfaces in terms of the parameters
x' and y'. For each value of E* there are two such sur-
faces as the double sign in Eq. (17) indicates.

Those level surfaces on which E is infinite are called
caustics and are of special importance. Their equations
are easily obtained by letting E*-oo in the equations
for the level surfaces. The distance from a caustic to
the surface along a reflected or transmitted ray is useful.
This distance is given by Eq. (17) with E*= oo and is:

D= {-H/24((H/2) 2-K}'-1; (18)

thus each reflected or transmitted ray intersects two
caustics.

The two points along a reflected or transmitted ray
at which E(x,y,z) = o are called conjugate points. If
the caustic surfaces intersect then the conjugate points
on the rays through the intersection coincide, and a
point image is formed; the image is called real if D>0
and virtual if D<O. This occurs if the second term in
Eq. (18) is zero, that is

l 2 (i-) COS2 - 2
[H 2-4K]= I -1

D1
2 cos2 ai

ni-i Cos2-y 1
+2-(2Gm- G11 tanai) -1 (i- cosTy

D1 ~~~cos asj 

+cosai)+[(2Gm+Gll tan2a,) 2 - 4G, sec2ai]

X(ni- cos-y+cosa) 2=0, (19)

and corresponds to the following possibilities:
For reflection, a=y (these results are also given in

reference 3):

(1)-y=7r/2; then from Eq. (18) D=-D 1 and the
virtual image is the source.

(2) a=b=0; all possible angles for -y and D=-D 1 .
This is the case of reflection from a
plane surface.

(3) a b>O, cos-y =(b/a)*, 0= 7r/2
a<b<O

(4) ba>O,
b<a<O

cosy= (a/b)I, 0=0.

where the sign to be chosen is that of Gm. If the source
is at an infinite distance from the reflecting or trans-
mitting surface, the distance of a resulting point image
(which is called a focal point) from the surface is called
the focal lengthf, and is given by Eq. (20) with D1= oo.

(21)

From Eqs. (20) and (21) we obtain the combined lens
and mirror law:

I/D+n/Dl= 1/f. (22)

As another application, we specialize the reflecting
surface to a sphere. Then, Eq. (14) yields the geo-
metrical factor obtained by van der Pol and Bremmer10
for the reflection of an electromagnetic wave from the
earth. When the Fresnel formulas and the phase are
taken into account, their complete result (for wave-
lengths small compared to the earth's radius) is ob-
tained.

APPENDIX I

Derivation of Equation for iT

To derive Eq. (2) we use the unit vectors and angles
shown in Fig. 1. From the definitions of these vectors
and angles we require:

12= N 2= iT2= 1
I- N= cos-y

iT. N= cosai. (23)

By the law of reflection y=al, or:

'T-N=I-N; (24)

and from Snell's law n= sina2/siny, or:

2T- N= - 1-nl0l- J -N)2JJJ, i (25)

where we always take the positive square root in Eq.
(25). Since the reflected or transmitted ray must lie in
the plane of the normal to the surface and the incident
ray (by the law of reflection and Snell's law) we have

iT=A RI+BiN. (26)

Using Eq. (26) in Eqs. (23) and (24) we find the two
solutions

B1=2(I-N)
and A=1+1

For transmission:

(1) n= 1; then from Eq. (18) D= -D 1 and the vir-
tual image is the source.

(2) y=0, a,=7r; then Gm2=GG, and the point of trans-
mission is an umbilical point. From Eq.
(18) the distance is given by

1/D= -n/Dl+2a(n- 1).

In all of the above cases the distance to the image is
expressed by the general formula

1/D= -n/Dl±E1-(-)in]G ,1, (20)

The second set of coefficients reproduces the incident
ray and so must be discarded. Then the most general
'T vector is given by:

'T=-I+2(1. N)N. (27)

If Eq. (26) is used in Eqs. (23) and (25) we get the
solutions

A2= -n
B;2 =n(I- N) - 1-n 2 E1- (I N)2]} J

10 van der Pol, and Bremmer, Phil. Mag. [7] 24, 825 (1937),
Eqs. 91-93.

51

11f= -i- [I - (- 1) in]GI.



J. B. KELLER AND H. B. KELLER

and
A 2=n
B2=-n(I N)-{1-n2 [1-(I*N)]}i.

The second set of coefficients yield a transmitted ray
which lies on the same side of the normal as the in-
cident ray. However, this is in contradiction to the law
of refraction and so this solution must be abandoned.
Using the first set of coefficients gives the general 2T
vector as:

2T=-nI+ (n(I- N)- {1-n2[1-(I- N)2]} )N. (28)

Equations (27) and (28) can now be written in the
combined form:

T= -(ni-')I+ (ni-(I N)
-(-1)[ it -n2('-') El-( *. N)2]) }l) N (2 9)

which is the desired equation. This can also be expressed
by the simple expression:

(30)

APPENDIX II

To calculate the Jacobian in Eq. (8), we choose axes
as described before Eq. (6). Then, using Eqs. (4) in
Eq. (5), the Jacobian becomes

J( ) =J:) = {I+zE (Q )9+ )]

0 ay " ~(31)
p 7r d~~x' iT dy'( iT

a iT a iT\ (-1

ay' (T ax' T J 

where the partial derivatives are to be evaluated at
the origin. The components of the vector T and their
partial derivatives evaluated at the origin are:

iT3=-(-1)i 1-2(i-) 1-- = cosai

iT =-ni-.y D

aiT5 ni-il X1
2

-= 1-- -2aA,
ax D1 D12

aiT ni-/ Y 2

a= 1- -2bA,
dy D, D D12

diT2 XIYI

ay D1
3

Ox= Dn-l
dx D 13

diT, -I XZ 
T= _ 2a1niI +j2i - 1

dx Di D1
4 cosais

aiT, ~~Yi yiz1
2

11=-2bA ni-1±+n2(i-1)
dy L D 1

4
cosa,

where we have used the abbreviations:

1 Z1 1 ]

=ni- cos+cosa i;

D 1
2=X2+yl 2 +z 1

2

(32)

(33)

= Z 12/ (COS2 y),

and the definition of n. With the aid of Eqs. (32) the
Jacobian in Eq. (31) is given by Eq. (10).

Errata: A Comparison of Direct Colorimetry of Titanium Pigments with Their
Indirect Colorimetry Based on Spectrophotometry and a Standard Observer

DEANE B. JUDD
National Bureau of Standards, Washington, D. C.

[J. Opt. Soc. Am. 39, 945 (1949)]

N the paper of this title appearing in the November issue, the figures were misplaced as follows: Fig. 1
was erroneously placed over the caption for Fig. 4, 2 over 1, 3 over 7, 4 over 5, 6 over 3, and 7 over 6.

The captions, themselves, appear correctly.
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