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Gravity waves on ice-covered water 

Joseph B. Keller 
Department of Mathematics, Stanford University, Stanford, California 
Department of Mechanical Engineering, Stanford University, Stanford, California 

Abstract. Gravity waves propagating on the surface of ice-covered water of finite 
depth are considered. The ice layer is viewed as a suspension, with an effective 
viscosity much greater than that of water and a density slightly less than that of 
water. It is treated as a viscous liquid, and the water beneath it is treated as an 
inviscid liquid. The linearized motion of gravity waves is analyzed for this two-layer 
model, and the dispersion equation is obtained. It is solved numerically for waves 
of any length. It is also simplified for waves short compared to the layer thickness 
and for waves long compared to the layer thickness. This equation yields dispersion 
and strong attenuation, both of which depend upon the effective viscosity of the 
suspension. 

1. Introduction 

Broken ice modifies the speed of surface gravity waves 
on water and attenuates them. To analyze these effects, 
we consider the ice-containing upper layer of water to 
be a suspension of solid bodies in water. The viscosity 
p(c) of such a suspension is very large when its concen- 
tration c is high, despite the fact that the viscosity of 
water is small. Therefore we treat the upper layer as 
a viscous incompressible liquid and the water beneath 
it as an inviscid incompressible liquid. In this way we 
convert the system into one consisting of a viscous up- 
per layer of liquid and an inviscid lower layer of liquid. 
Then we solve this two-layer system for waves of small 
amplitude, using linear theory, and we obtain the exact 
dispersion equation. We solve it numerically for waves 
of any length. In addition, we simplify it for waves short 
compared to the layer thickness and also for waves long 
compared to the layer thickness. 

The resulting dispersion and attenuation depend 
upon the effective viscosity coefficient p(c) of the ice- 
water suspension. It can be very large for large c since, 
for a periodic suspension of spheres at high concentra- 
tion, p(c) becomes infinite when the spheres touch one 
another [Nunan and Keller, 1984] The values of p(c) 
for frazil, brash, and pancake ice can differ from one 
another because p(c) depends upon both particle shape 
and concentration. 

There have been previous studies of surface gravity 
xvaves in water covered by floating ice. For example, 
Peters [1950] and Weitz and Keller [1950, 1953] stud- 
ied the reflection of waves from floating ice covering 
half the surface in water of infinite depth and in wa- 
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ter of finite depth, respectively. The ice was treated as 
mass loading of the surface. Goldstein and Keller [1953] 
treated the same reflection problem in shallow water 
and also considered wave reflection from a floating mat 
with surface tension. Wadhams [1974] assumed that 
in regions of continuous ice cover the ice-water layer 
has bending stiffness like an elastic plate. For shal- 
low water his dispersion equation is the same as that 
of Goldstein and Keller [1953, equation (14)], with the 
surface tension T related to the Young's modulus E by 
T = k2h 3 E/12(1 - p) where p is the Poisson ratio of 
the plate, h is its thickness, and k is the wavenumber. 
Squire [1993] has compared the mass-loading and elastic 
plate models. Weber [1987] considered the same two- 
layer model which we consider here, solved the equa- 
tions approximately, and examined some properties of 
the solution. 

The use of synthetic aperture radar has made it possi- 
ble to measure the amplitudes and wavelengths of waves 
in ice fields. Wadhams and Holt [1991] and Wadhams et 
al. [1996] have made such measurements and used the 
mass loading model to analyze the results. Liu et al. 
[199 la, 199 lb] have also made such measurements and 
compared the results with the predictions of a different 
model which involves viscosity. Martin and Kauffman 
[1981] made field and laboratory studies of wave damp- 
ing by grease ice. 

Recently, Newyear and Martin [1995] made a labo- 
ratory study of wave propagation in ice-covered water. 
For all of their parameter values the wavenumber was 
smaller than that without ice, and there was strong 
damping. The mass-loading model predicts an increase 
in wavenumber due to ice and yields no damping, so 
it is not applicable for those parameter values. The 
present theory was devised to explain the observed re- 
sults. Newyear and Martin have already compared their 
measurements with the theoretical results for waves on a 

viscous liquid of infinite depth and obtained fairly good 
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agreement. Since the present theory takes account of 
the finite depth of the ice layer and the finite depth of 
the water layer beneath it, its results should agree even 
better with the data. 

2. Formulation 

We consider a suspension of ice in water occupying 
the horizontal layer 0 < y < -h. It has the constant 
concentration c, density p(c), and effective viscosity co- 
efficient p(c), and its motion is governed by the Navier- 
Stokes equations for an incompressible liquid. Beneath 
it, in the layer -h < y < -H- h, is water of density P0 
and viscosity zero, governed by the Euler equations for 
an inviscid, incompressible liquid. Above, the suspen- 
sion is air at constant pressure, and below, the water 
is a rigid bottom. In the basic state of rest the pres- 
sure is hydrostatic, while the free surface y - 0 and the 
interface y -- -h are horizontal. 

We seek a solution of the equations of motion, the 
free surface conditions, the interface conditions, and the 
bottom condition by linearizing about the basic state. 
V/e assume that the motion is in the x, y plane, is inde- 
pendent of z, and is proportional to e i(kx-wt). Thus we 
write the horizontal velocity U, the vertical velocity V, 
the pressure P, the displacement r/of the free surface, 
and the displacement • of the interface in the forms 

(U,V,P,•I,•) -[u(y),v(y),p(y),a, ble i(•x-ø•t) (1) 

The linear Navier-Stokes equations in the upper layer 
lead to ordinary differential equations which have the 
general solution 

Here A, B, C, and D are arbitrary constants, while a is 
defined by 

- - 

with y = p(c)/p(c) and Re ce > O. 
The linear Euler equations in the lower layer also lead 

to ordinary differential equations. The general solution 
contains two constants, but we eliminate one of thein 
by requiring that v(-H- h) = 0. Then the solution 
becomes, with E arbitrary, 

The boundary conditions at the free surface are the 
kinematic condition V -- Tit and the vanishing of the 
two components of normal stress. They become 

v(O) -- --iwa (5) 
+ iv(0) -- 0 (6) 

2yvy(O) -- p-lp(O) + ga -- 0 (7) 

Here g is the acceleration of gravity. 
The conditions at the interface are the two kinematic 

conditions V + -- V- -- •t and the continuity of the 
normal and tangential components of stress. In terms 
of the quantities defined in (1) the conditions at the 
interface become 

- -ib (8) 
v +(-h) = v-(-h) (9) 

+ (-h) + ikv + (-h) - 0 (10) Uy 

2yvy +(--h) -- p-lp+(-h) + gb -- -p-•p- (-h) 
+p-lDogb (11) 

Here the superscript plus designates the solution (2), 
and the superscript minus designates the solution (4). 
The tangential velocity u is not required to be continu- 
ous because the fluid in the lower layer is inviscid. 

3. Dispersion Equation 

When (2) and (4) are used in (5)-(11), a system of 
seven linear homogeneous equations is obtained. The 
seven unknowns are A, B, C, D, E, a, and b. Before writ- 
ing them we solve (5) for a and then eliminate a from 
(7) to get 

2yvy(0) - p- •p(0) -/•v(0) - 0 (12) 
Similarly, we solve (8) for b and eliminate b from (11): 

2/•,v; (-h) - p- lp+ (-h) - -p- •p- (-h) 

_g(Po - P)v+(_h) (13) 
Then we can eliminate E by noting from (4) that 
p- (-h) - [iwpo/k tanh kH]v- (-h). We use this for 
p-(-h) in (13), and use (9) to replace v-(-h) by 
v+(-h). Then we get from (13) 

2/•'V• (-h) -/9-lp+ 

-I -iwpo _g(p_o-P)]v+(_h ) (14) kptanh kH wvp 

Vie no•v substitute the solution (2) into the four equa- 
tions (6), (10), (12) and (14). This yields four equations 
for A, B, C, and D: 

= +ikE cosh k(y + H + h) 

v(y) = +kEsinhk(y + H + h) (4) 
p(y) = iwpoE cosh k(y + H + h) 

(15) 

(16) 
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g.k (-A + B + iC + i D) - 0 
(2t/k 2 - iw)(Ae •:h + Be -•:•) 

-2v, ika(Ce ø• - De-O• ) 

(17) 

iwpo g(po-p)k] p tanh kH 

ß (-Ae • + Be -• + ice c'h + iDe -•) -0 
(18) 

The nec•sary and su•cient condition for the equa- 
tions (15) - (18) to have a nontrivial solution is the 
vanishing of the determinant of the coe•cient matrix. 
This condition is worked out in Appendix A, and it is 
given by 

4v• • a (e• _ e• •) (2yk • - i•) - (a• + k• ) sinh ah 

[2k•(-2ya• + ig) + •(• + •) + • ß (• _ i•)•-• 

+ [pta••H + •p e a• + k•e • 

4ykSa e• _ e-•) } + (a• + k •) + m(e • 

• 4.k• a (e• _ e-•) - 2yk •-i•- (a •+k• )sinhah 

- • ß •• . •(• - •) - 0 (1•) 
•uation (19) is the dispersion •uation relating k 
and •. 

In order to compute k • a •nction of • and the 
other parameters from (3.8), it is convenient to intr• 
duce dimensionl•s variables. One choice of such vari- 

ables, b•ed upon H • the len•h scale and (gH) 1/2 as 
the velocity •ale, is 

•_ • •_ •_ (•_ izn)l/• •_ •(•/g)l/• 
n- (g•)l/•/• •_ •/• •o - •o/• 
• - iz•0/t•h •. (•0 - 1)•/i• (•0) 

'With th• variables (19) is equivalent to the vanish- 
ing of the following determinant of four rows and four 
columns: 

2i•2e •h _2i•2e-• 

(• - izn - •n)e • (• - i•n . •n)e 
• + • • + • 

(• + •)• (• + •)•-• 
_•k• _ •k/z •k•_ •k/z - 0 (•1) 

(-•ik• + i•)• • (•ik• + i•)• -• 

In using (21) we have set P0 - 1 and chosen two 
values for the dimensionless Reynolds number R (R - 
100 and 1000) and two values for h (h --.1 and .4). For 
each combination of the parameters we chose a value of 
5J in the range 0 _< 5J _< 5. Then we calculated the roots 
/c of (19) which lie in some large rectangle in the first 
quadrant of the complex/c plane with the origin at one 
corner. We selected the root with the smallest imag- 
inary part, which represents the least damped mode, 
and calculated it for different values of &. The results 

for Re • and Im • are shown in Figure I and Figure 
2. In Figure 3, the curves from Figure I are replot- 
ted with the ordinates replaced by Re •/•c0. Here }0 is 
the dimensionless wavenumber of a wave of dimension- 

less frequency & in water of depth H + h, so it satisfies 
•2 _ /c0 tanh[fc0(1 + h)]. In Figure 4 the curves from 
Figure 2 are replotted •vith a logarithmic scale for the 
ordinate. 

The roots of (21) other than the least damped one 
correspond to other waves. Which ones occur, and their 
amplitudes, depends upon the way in which they are 
excited. It would be useful to determine those which 

are excited near the edge of an ice field by a wave from 
the open ocean. 

4. Short Waves and Long Waves 

Waves are short compared to the layer thickness h 
when w2h/g >> 1. Then both Re kh and Re ah are 

25 

i 

I 
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!00 O. I __ / '/ 

0.-, _ _ _ /// 

0 1 2 3 4 5 

Figure 1. Re/c, the real part of the dimension- 
less wavenumber •, is a function of the dimensionless 
frequency & based upon the dispersion equation (21). 
The upper solid line for • - 0 corresponds to no ice. 
The next two curves below it are for R = 1000 with 

h- 0.1 (dot dash) and h- o.a (dotted). The bottom 
two curves are for R - 100 with • - 0.1 (solid) and 
• - 0.4 (dashed). The curves for R - 1000, h - 0.4 
and R- 100, •- 0.1 are nearly coincident. 
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-1 o 1 2 • 4 ,5 = 

Figure 2. Im/c, the imaginary part of the dimension- 
less wavenumber •, as a function of the dimensionless 
frequency & based upon (21). There is no curve for 
h -- 0 since then Im/c - 0. The other curves are la- 
belled as in Figure 1. Thus the bottom two curves are 
for R = 1000 with /z -- 0.1 (dot dash) and h - 0.4 
(dashed). The top two curves are for R - 100 with 
h - 0.1 (solid) and • -- 0.4 (dashed). 

large. Therefore e -•n and e -an are negligible in (16) 
and (18), and then those equations yield A - 0 and 
(7-- 0. With A- (7- 0, (15) and (17) become two 
equations for B and D. Equating to zero the deternil- 
nant of the matrix of coefficients of B and D in (15) 
and (17) yields 

gk k2 (2uk'-ico-T-•)(c•'+k')+2i (2•,iko•-•-)-O 
(22) 

By setting c• - (k 2- ico/v) 1/2 in (22) and rearranging 
we obtain 

gk - -(2uk 2 - ico) 2 + 4u2ka(k 2 - icolu) '/2 (23) 

This is the dispersion equation for short waves. It is the 
same as the dispersion equation for waves on a viscous 
liquid of infinite depth given by Lamb [1945, p. 627, 
equation (14)]. Since we have assumed that Re c• > 0, 
the square root in (23) is that with a positive real part. 

We shall now solve (23) for k with co real. First, 
we introduce the dimensionless wavenumber • and the 
dimensionless frequency & defined by 

•_ (/]2/•])1/3 k •)_ (/]/•]2)1/3CO (24) 

Then we rewrite (23) in the form 

• _ •2 + 4i•2 + a•3 (•2 _ i&)1/2 __ 4/c4 (25) 

For & << 1 we solve (25) for k in powers of &, and we 
get 

• ,.., &2 + 4i&5 + 4e-i,r/4 &13/2 __ 36&8 

+ + i 

For & ;>> 1 we solve (36) for } in power of &-1, and we 
obtain 

• __ X(•11/2 q- O((•1-1 ) 
/c -- (0.236 + 0.428i) &l/2 + O(&- 1) (27) 

Here x with Re x > 0 and Im x > 0 is a root of the 

equation 

1 + 4ix 2 + 4xa(x 2 - i)1/2 _ 4x 4 _ 0 (28) 
We have also solved (25) numerically. In Figure 5, we 

show Re • and Im • as functions of & on the basis of 
the numerical solution, and we also show the expansions 
(26) and (27). 

Waves are long compared to the layer thickness h 
when co2h/g << 1. If the Reynolds number coh2/v is 
small also (coh2/v << 1), then both kh and c•h are small, 
and we can simplify the dispersion equation to the form 

k2 gh(co 2- 4ik2cov) 
1- 

k tanh kH co4 + 16k4co2u 2 

1 co2hP Po 
gPo co4 + 16k4co•u 2 

1.1 

(29) 

0.9 

0.8 

0.7 

Re•' 0.6 

0.5 

0.4 

0.3 

o 1 2 3 4 5 

Figure 3. Re•//c0 versus cb based upon (21). Here 
/c0 is the wavenumber at frequency •' in water of depth 
H q- h without ice. The curves correspond to those in 
Figure i and are labeled in the same way: the top two 
for R - 1000 with •z - 0.1 (dot dash) and •z - 0.4 
(dotted); the bottom two for R -- 100 with /z - 0.1 
(solid) and/z- 0.4 (dashed). 
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Figure 4. Im/c versus d; based upon (21) with a log- 
arithmic scale for the ordinate. The curves correspond 
to those in Figure 2. The bottom two are for R- 1000 

With h- 0.1 (dot dash) and h- 0.4 (dotted); the top 
two are for R - 100 with h - 0.1 (solid) and h -- 0.4 
(dashed). 

This result, derived in Appendix B, is the dispersion 
equation for long waves and small Reynolds numbers. 
When h = 0, it is just the usual dispersion equation for 
waves on water of depth H. 

To put (29) in dimensionless form, we use (24) and 
the definitions 

•r_ (S//]2)1/3H h- 

Then we can write (29) as 

&--• tanh kH 

p/po (30) 

1 -- •2h(&- 4i•2)(& 3 q- 16•4&) -1 
1- fxD•h q- (•- 1)•:•h(&- 4i•)(& 3 q- 16•4&) -1 

(31) 

If Re • >> 1, then tanh• • 1, and if/5- 1 << 1, 
then the •5- 1 term in the denominator of (31) may be 
negligible. When both of these simplifications are valid, 
(31) becomes 

•&-2(1-&2h) - 1-•2h(&-4i•2)(&3+16•4&) -x (32) 

The solution of (32) for • when & << 1 is 

•½ • (&2 + 16• 1ø -- 80h2•/12) q- i(4•U2 ? -- 4h2& 9) (33) 

When & >> 1, the solution of (32) is 

• ,',. e -i•r/4 _•__..•1/4 (34) 

If p = Po and k 2 << w/•,, (29) becomes 

gk 1 - k2gh/w • (35) co- • tanh kH - 1 -- w2h/g 
The denominator vanishes at the resonant frequency 
(g/h) 1/2, which corresponds to the vertical oscillation 
of the upper layer. It is a high-k•uency oscillation 
when h is small, with a period •ual to the time of free 
fall through a distance a/2. •en w << (g/h) 1/2 and 
kH << 1, (35) simplifi• to 

g k 2 • (U+h)- 1 (36) 
This is the dispersion •uation for long wav• on water 
of depth H + h. 

5. Conclusion 

We have obtained the dispersion equation (21) for 
waves on ice-covered water, treating the ice-water layer 
as a viscous liquid. The numerical solutions of this 
equation for the mode with the smallest danaping are 
shown in Figures 1-4. They are shown for two values of 
the dimensionless Reynolds number R - (gH3)l/2/• ,, 
namely, R - 100 and R - 1000, and two values of 
the dimensionless thickness h - h/H of the ice layer, 
namely, [z - 0.1 and • - 0.4. The layers are of the 
same density, i.e.,/50 - 1. The dimensionless frequency 
& -- w(H/g) 1/2 ranges from 0 to 5. In all four cases 
shown in Figure 3, for large & the real part of the di- 
mensionless wavenumber k - k H is much less than 

•,o -- koH, the dimensionless wavenumber in ice-free 
water of depth H + h. For small values of &, Re/c is 
slightly greater than •0. The mass-loading theory yields 
Re k > k0 for all &. 

The effect of adding a layer of inviscid liquid of small 
depth h on top of a layer of the same liquid of depth H 
can be analyzed by considering how it changes the two 

Re/• 

0.5 • 

,,, 

10 -a 10 -• 10: 10' 10 2 

I II 

t I \\ 
10 -• 10 -• 10" 10' 10 2 

J: 

Figure 5. Re /c/& 2 and Im •c/& 2 as functions of & 
based upon (4.4). The expansions (4.5) and (4.6) are 
shown as dashed lines. 
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boundary conditions at y = H. The dynamic condition 
at y = H is changed from p: pgrl to p -- pgrl + phrltt, 
as in the mass-loading theory. The kinematic condition 
at y -- H is changed from r/t -- v to tit - v - hux. The 
former change tends to increase the wavenumber, while 
the latter tends to decrease it, and the latter turns out 
to be the larger effect. Therefore the wavenumber k0 in 
liquid of depth H q- h is less than that in liquid of depth 
H. In Figure 3, k/ko is shown, so the effect of change 
in depth is factored out and only the effect of viscosity 
in the upper layer remains. 

Appendix A: Dispersion Equation 

Rather than evaluating (19) directly, we first solve 
(15) for C: 

C = -D- 2ik2(o• 2 q- k2)-l(A- B) (A1) 

Then we use (A1) for C in (16) and solve the resulting 
equation for D: 

o - [-2i•2(Ae • - •e-•)(• 2 + •)-• 
-1 

+2ik2(. 2 + k2)-I (A- B)e ah] (e -ah _ e ah) 
ik • 

- (•2 + •2) •i•h •n [A(• - •) 
+•(• - •-•)] (A2) 

Noxv we use (A1) and (A2) to eliminate C and D from 
(17) and (18), and we obtain 

-2ik 2 (•.• -i•)(A + •) - 2.ik• (• + •)•inh • 
. [A(• • _ •) + .• _ 

[2k 3(-2uaco + ig) ] gk 
+ + (A - B) - 0 (A3) •(• + •) 

icopo (2uk 2- ico)(Ae kn + Be -kn) + pta--•H 

+g(Po. - p)k] [_AeOn + Be_•n •wp 

2k• e '• (A - B)] q a2 +k • 
+ m [A(e •h- e ø•h) + B(e "h - 
-2•,ika(-2ik•)(a • + k•)-leø•h(A- B) = 0 (A4) 

Here a = (k 2 -ia•/l½) 1/2, and m is defined by 

m - {2•,ika{e •h + e -øh) 

[ icopo g(po-p)k] + + 
p tanh kH icop 

ik • 

'(-leah + ie-•h) } (c• • + k •) sinh (A5) 

Equating to zero the determinant of the coefficient 
matrix in (A3) and (A4) yields the dispersion equation, 
which is given in (19). 

Appendix B' Long-Wave Low Reynolds 
Number Dispersion Equation 

We shall now write out the dispersion equation to 
first order in kh and ah. To do so, we expand each 
exponential in (16) and (18) to two terms, neglecting 
terms of order (kh) • and (ah) 2. The term independent 
of h in (16) is just the left side of (15), so it vanishes. 
The next term in (16) yields the equation 

2ik3h(A + B) + (a • + k2)ah(C- D) = 0 (B1) 

Similarly, in (18), part of the term independent of h 
vanishes because of (17), and the remaining equation is 

p tanhkH + iwpj (-A+B+iC+iD) 

-kh (A + B)+ iah(C- D)] 
+ (2•k 2 -iw)kh(A - S) - 2•ika2a(C + D) 

sk2h (A + B) gkah (C - D) - 0 (B2) + • -• 
To obtain the dispersion •uation from (15), (17), 

(B1), and (B2) we first solve (15) for C + D and (B1) 
for C- D: 

C+D 

C-D 

= -2ik2(o• 2 + k2)-l(A- B) (B3) 
-- -2ik 3(0• 2 q- k2) - l o•- I(A + B) (B4) 

Then ,ve use (B3) and (B4) in {17) and solve the result- 
ing equation for A + B' 

A + B = -gk(•v • + 4ik•v•,k2) - I(A - B) (BS) 

Finally, we use (Ba)-(BS)in (B2), and we obtain A-B 
multiplied by a factor. In order to have a nontrivial 
solution the factor must vanish, which yields the dis- 
persion equation 

p tanhkH + icopj k 2+•2 1-a• 2+4ik2c0 • 

4•k2a2 + kh 2•k 2 - iw- k2 

s• • (• - "•) ] - 0 (•6) q i•(• + 4i•;)(• + .•) 
To make (B6) look more familiar, we solve it for k tanh 
kH, and write it in the form (29). 

Acknowledgments. I thank K. Newyear and S. Mat'- 
tin for sending me copies of their work and for helpful dis- 
cussions of it and P. Milewski and K. S01na for solving the 
dispersion equation numerically and preparing the figures. 
This work supported in part by the AFOSR, NSF, and ONR. 

References 

Goldstein, E., and J.B. Keller, Water wave reflection due to 
surface tension and floating ice, Eos. Trans. AG U, $• (1), 
43-48, 1953. 



KELLER: GRAVITY WAVES ON ICE-COVERED WATER 7669 

Lamb, H., Hydrodynamics, Dover, Mineola, N.Y., 1945. 
Liu, A. K., B. Holt, and P.W. Vachon, Wave propagation in 

the rc. argi. na.1 ice zone: Model predictions and comparisons 
with buoy and synthetic apei't•.re radar data, J. Geophys. 
Res., 96, 4605-4621, 1991a. 

Liu, A.K., P. W. Vachon, and C. Y. Peng, Observation of 
wave refraction at an ice edge by synthetic aperture radar, 
J. Geophys. Res., 96, 4803-4808, 1991b. 

Martin, S., and P. Kauffman, A field and laboratory study 
of wave damping by grease ice, J. Glaciol., 27, 283-313, 
1981. 

Newyear, K., and S. Martin, A laboratory study of wave 
propagation in frazil, pancake, and brash ice, Dep. of 
Oceanogr., University of Wash., Seattle, 1995. 

Nunan, K.C., and J. B. Keller, Effective viscosity of a peri- 
odic suspension, J. Fluid Mech., 1•2, 269-287, 1984. 

Peters, A.S., The effect of a floating mat on water waves, 
Cornmum. Pure Appl. Math., 3, 319-354, 1950. 

Squire, V., A comparison of the mass-loading and elastic 
plate models of an ice field, Cold Reg. $ci. Technol., 21, 
219-229, 1993. 

Wadhams, P., The effect of a sea ice cover on ocean surface 
waves, Ph.D. Thesis, Univ. of Cambridge, Cambridge, 
England, United Kingdom, 1974. 

Wadhams, P., and B. Holt, Waves in frazil and pancake 
ice and their detection in Seasat synthetic aperture radar 
imagery, J. Geophys. Res., 96, 8835-8852, 1991. 

Wadhams, P., J. C. Comiso, E. Prussen, S. Wells, D. R. 
Crane, M. Brandon, E. Aidworth, T. Viehoff, and R. A1- 
legrino, The development of the Odden ice tongue in the 
Greenland Sea during winter 1993 from remote sensing 
and field observations, J. Geophys. Res., 101, 18213- 
18235, 1996. 

Weber, J.E., Wave attenuation and wave drift in the margin- 
al ice-zone, J. Phys. Oceanogr., 17, 2351-2361, 1987. 

Weitz, M.L., and J. B. Keller, Reflection of waves from float- 
ing ice in water of finite depth, Commun. Pure Appl. 
Math., 3, 305-318, 1950. 

Weitz, M.L., and J. B. Keller, Reflection and transmission 
coefficients for water waves entering or leaving an ice field, 
Commun. Pure Appl. Math., 6, 415-417, 1953. 

J.B. Keller, Department of Mathematics, Stanford Uni- 
versity, Stanford, CA 94305-2125. (e-mail: 
keller@math.stanford.edu) 

(Received February 26, 1997; revised July 25, 1997; 
accepted October 15, 1997.) 


