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A B S T R A C T

We consider the issue of wave breaking closure for Boussinesq type models, and attempt at providing some more
understanding of the sensitivity of some closure approaches to the numerical set-up, and in particular to mesh
size. For relatively classical choices of weakly dispersive propagation models, we compare two closure strategies.
The first is the hybrid method consisting in suppressing the dispersive terms in breaking regions, as initially
suggested by Tonelli and Petti in 2009. The second is an eddy viscosity approach based on the solution of a a
turbulent kinetic energy. The formulation follows early work by O. Nwogu in the 90’s, and some more recent
developments by Zhang and co-workers (Ocean Mod. 2014), adapting it to be consistent with the wave breaking
detection used here. We perform a study of the behaviour of the two closures for different mesh sizes, with
attention to the possibility of obtaining grid independent results. Based on a classical shallow water theory, we
also suggest some monitors to quantify the different contributions to the dissipation mechanism, differentiating
those associated to the scheme from those of the partial differential equation. These quantities are used to
analyze the dynamics of dissipation in some classical benchmarks, and its dependence on the mesh size. Our
main results show that numerical dissipation contributes very little to the the results obtained when using eddy
viscosity method. This closure shows little sensitivity to the grid, and may lend itself to the development and use
of non-dissipative/energy conserving numerical methods. The opposite is observed for the hybrid approach, for
which numerical dissipation plays a key role, and unfortunately is sensitive to the size of the mesh. In particular,
when working, the two approaches investigated provide results which are in the same ball range and which
agree with what is usually reported in literature. With the hybrid method, however, the inception of instabilities
is observed at mesh sizes which vary from case to case, and depend on the propagation model. These results are
comforted by numerical computations on a large number of classical benchmarks.

1. Introduction

The last decades have seen the development of several numerical
models allowing the simulation of wave propagation from intermediate
depths to shallow water by means of some set of depth averaged
Boussinesq-type (BT) equations. Many implementations of these are
quite well known in the coastal engineering community, to which they
and often freely available. We can for example mention the codes
BOUSS-2D (Nwogu, 1996; Demirbilek and Nwogu, 2005, 2007a,b),
Funwave (Wei and Kirby, 1995; Shi et al., 2012), Coulwave (Lynett and
Liu, 2002; Sitanggang and Lynett, 2005) BOSZ (Roeber and
Cheung, 2012), MIKE21 DHI Developers Group, TUCWave (Kazolea
et al., 2012, 2014), and many others. These models allow to accurately
simulate the dispersive propagation and shoaling of free surface waves,
within some asymptotic error w.r.t. nonlinearity and dispersion para-
meters depending on wave amplitude, wavelength and depth. The
reader may refer to the reviews (Brocchini, 2013; Kirby, 2016) for a

broad discussion, and the book (Lannes, 2013) for the fundamental
aspects concerning the derivation of the underlying partial differential
equations. These equations are obtained under the hypotheses of ideal,
and most often irrotational flow, and cannot account for the transfor-
mation processes taking place in breaking regions. To cope with this
limitation, some closure model needs to be introduced.

At large scales, the main consequence of wave breaking is a strong
energy dissipation. So the first attempt to simulate wave breaking was
proposed by Zelt, 1991 introducing a dissipation term in the momentum
equation. This term controls the dissipation of energy produced by the
wave breaking and it is governed by the value of an eddy viscosity
coefficient which must be calibrated with experimental data. Of course,
different calibration is needed for different sets of equations. Moreover,
to initiate and/or terminate the breaking process some breaking detec-
tion criterion needs to be used to activate this eddy viscosity term. The
same approach has been followed by many researchers, see for example
(Kennedy et al., 2000; Roeber et al., 2010; Wei and Kirby, 1996;
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Karambas and Koutitas, 1992; Lynett, 2006; Lynett et al., 2002). One of
the criticisms to this approach is that, while simple, no direct physical
meaning can be attributed to the scaling coefficients involved in the
definition of the viscosity (Cienfuegos et al., 2010). A more relevant
physical definition of the effects of breaking on the large scale flow has
been attempted using the so-called roller models (See e.g. Svendsen,
1984; Sørensen et al., 1998; Madsen et al., 1997b; Cienfuegos et al.,
2010. While based on a better physical background, these models still
require some ad-hoc definition of a momentum dissipation, and require
some calibration. A more advanced version of these roller models has
been proposed in Briganti et al. (2004), and more recently extended in
Viviano et al. (2015). These models attempt at accounting for variations
along the depth of some of the physical quantities (eddy viscosity, hor-
izontal velocity), thus going beyond the irrotational hypothesis when
computing the vorticity and/or dissipation generated in breaking regions.
While promising in principle, these models are more complex to imple-
ment, require an additional vertical discretization, and have so far been
applied only to simple configurations. We also mention the related work
presented in Castro and Lannes (2014), Lannes and Marche (2016) in
which BT models with vorticity effects are discussed. Beside the re-
quirement of a proper calibration of the model, one of the questions we
think is not clearly answered in literature is how much the numerical
method interacts with the above modelling approaches, and in particular
what is the balance between the numerical and model dissipation. This is
also related to the fact that almost systematically wave breaking
benchmarks are presented without any grid convergence analysis. An-
other issue is the ability of these approaches to describe properly some
special cases as, e.g. stationary hydraulic jumps. To the authors’ knowl-
edge there is very little evidence in literature that this type of breaker can
be easily modelled with the eddy viscosity approach. Results embedding
this type of features, such as e.g. the 2D reef computations presented in
Roeber et al. (2010), again computed on a single mesh. This makes un-
clear whether the major effect observed is that of the model or that of the
limiter/numerical dissipation.

Nevertheless, the eddy viscosity method is a very successful one,
which is why we consider its use in this paper. Previous work from one of
the authors (Kazolea et al., 2014; Kazolea, 2013) has shown that the
classical definition of the eddy viscosity by Kennedy et al. (2000) has
trouble detecting stationary hydraulic jumps, and that even modifying
the inception mechanisms, the amount of viscosity obtained is not en-
ough for this type of breakers. For this reason we have looked at a more
involved approach involving partial differential equations for the main
physical quantities: turbulent kinetic energy, energy dissipation, eddy
viscosity, and so on. To our knowledge so far only Nwogu (1996),
Demirbilek and Nwogu (2007a,b), Elnaggar (2000), Zhang et al. (2014),
Richard and Gavrilyuk (2015), Gavrilyuk et al. (2016) have adopted this
path, with only Nwogu (1996), Demirbilek and Nwogu (2005, 2007a,b),
Elnaggar (2000), Zhang et al. (2014) actually focusing on complex cases.

As an alternative to the use of eddy viscosity the last ten years have
seen the development of a hybrid approach based on a local coupling of
the dispersive propagation model with the shallow water equations. It is
a simple method in which one first detects breaking regions, and in
these the dispersive terms are suppressed. In these breaking regions
thus one solves the non-linear shallow water (NSW) equations which
allow to model a breaker as a shock. Through this discontinuity mass
and momentum are conserved, while total energy is dissipated, thus
modelling the energy dissipation due to breaking. Due to its relative
simplicity and effectiveness, this approach has gained substantial at-
tention in the coastal engineering community, (see for example Tonelli
and Petti, 2009; Kazolea et al., 2014; Filippini et al., 2016; Lannes and
Marche, 2015; Roeber and Cheung, 2012; Shi et al., 2012). The idea
was first introduced in Tonelli and Petti (2009) in order to exploit the
Finite Volume (FV) technique as to simulate discontinuous phenomena
such as wave breaking and run-up. In the same work, an indicator
criterion for breaking has been extracted based on the similarity be-
tween spilling breakers and bores. This criterion has been proven

inadequate in some cases (Kazolea et al., 2014; Kim et al., 2017) since
its use leads to less energy dissipation than needed. Several more so-
phisticated criteria have been developed based on physical or numer-
ical arguments (Borthwick et al., 2006; Kazolea et al., 2014;
Bacigaluppi et al., 2014; Duran and Marche, 2014). As pointed out in
Filippini et al. (2016), this approach has a major limitation in the sta-
bility of the coupling which introduces spurious oscillations at the in-
terface between the breaking and no-breaking region. This phenom-
enon has been observed by many (Duran, 2016, Kirby et al, 2014.), but
is unfortunately poorly documented in literature. One of the issues not
fully addressed is the role of numerical dissipation in curing this flaw.
The use of more robust limiting procedures, is advocated by some as
e.g. Gallerano et al. (2014), Duran (2016) as a means of stabilizing the
numerical solution. For example, for of a fully non-linear weakly dis-
persive propagation model in Duran (2016) it is suggested that de-
grading the accuracy of the numerical discretization in correspondence
of the shallow water-Boussinesq interface, thus somehow increasing
numerical dissipation, allows to remove numerical perturbations on
relatively coarse meshes. Unfortunately, the sensitivity to the grid size
for this closure remains unclear. To demonstrate this point we consider
the following motivational example involving the shoaling and
breaking of a solitary wave on a slope. This example is part of a set of
very classical benchmarks by Synolakis (1987) which we will study in
more detail in Section 7.2. Here, we present results for a breaking case
(wave nonlinearity equal to 0.28), in which we set manually the tran-
sition region according to its known position from the experiments.
Compared to actual simulations with the hybrid method, note that this
eliminates one of the causes of instability: the intermittency of the
detection. We then perform simulations degrading the numerical
scheme at the interface between the Boussinesq and shallow water re-
gions, and in all the shallow water region. In these areas we use the
most non-oscillatory and robust possible choice: the first order upwind
finite volume method. We consider in Fig. 1 results in two very close
time instants, on three meshes. The red line shows the detection flag
separating the Boussinesq and shallow water regions (one indicates the
breaking region, and zero the Boussinesq region). The figures show
that: no instabilities whatsoever are observed in the largest gradient
region (which will become the bore). An oscillation is instead triggered
at the interface, and its blow up is almost instantaneous on the finest
mesh, despite the fact that the most dissipative approach available has
been used.

Grid convergence analysis for breaking cases are quite rare in lit-
erature. The only exception we are aware of is the single computation
shown in Shi et al. (2012) in which the authors observe convergence in
time averaged quantities, but report the appearance of increasing os-
cillations in the pointwise values of the solution without further notice.
Clarifying these aspects is of paramount importance. Indeed if one
cannot be sure that the mesh size allows the numerical dissipation to be
sufficiently large, the initiation of the numerical instabilities may be
confused with physical/dispersive effects. A control of this flaw is of
course also needed if one wishes for example to use mesh adaptation in
breaking regions.

The aim of this work is to investigate the above issues for choices of
propagation models and wave breaking closures representative of
classical and well known models such as BOUSS-2D (Demirbilek and
Nwogu, 2007a,b), Funwave (Wei and Kirby, 1995; Shi et al., 2012),
Coulwave (Lynett and Liu, 2002; Sitanggang and Lynett, 2005), BOSZ
(Roeber and Cheung, 2012), MIKE21 DHI Developers Group, TUCWave
(Kazolea et al., 2012, 2014), and others. We thus use two enhanced
weakly dispersive Boussinesq models: the weakly nonlinear model of
Nwogu (used e.g. in BOUSS-2D, BOSZ, and TUCWave), and a frequency
enhanced variant of the fully nonlinear Green–Naghdi equations (with
similar properties to those used in Funwave and Coulwave). We com-
pare the hybrid approach to an eddy viscosity model. Note that with the
eddy viscosity closure the breaking wave fronts are smoother than those
obtained with the hybrid method which relies on the approximation of
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these fronts as shocks. For this reason when using the hybrid approach
one has to carefully choose the conservative form used to solve the
model, which is essential to recover the right jump conditions, and
some form of limiting to avoid the creation of additional spurious nu-
merical oscillations in correspondence of the shock (Kazolea and Delis,
2013; Kazolea et al., 2012, 2014; Gallerano et al., 2016).

As mentioned before, the original definition of an eddy viscosity
model (Kennedy et al., 2000) has been previously shown to have dif-
ficulties in handling steady hydraulic jumps (Kazolea et al., 2014;
Kazolea, 2013). For this reason we have chose to use an approach based
on the solution of a partial differential equation for the turbulent kinetic
energy, similar to the one studied with BOUSS-2D (See Nwogu, 1996;
Demirbilek and Nwogu, 2007b; Demirbilek and Nwogu, 2007a; Zhang
et al., 2014). Note that other closures, such as roller models as proposed
in Briganti et al. (2004), Viviano et al. (2015), or other definitions of
the eddy viscosity are certainly as valid a choice as the one made here.
A thorough comparison of differences in these approaches ins not in our
scopes, and is left for future work. Our main objectives are the fol-
lowing:

• To perform a systematic study of the behaviour of the two closures
for different mesh sizes, with attention to the possibility of obtaining
grid independent results,

• To gain an insight into the mechanism actually responsible for wave
breaking by providing a quantitative description of the different
contributions to the dissipation mechanism, differentiating those
associated to the numerical scheme from those introduced at the
PDE level,

• To provide some understanding of the sensitivity of the above
mentioned dissipation to the mesh size,

• To prove the equivalent capabilities of the approaches studied in
reproducing simple as well as complex wave transformation, while
showing the substantial difference in the underlying dissipation
mechanisms.

The paper is organised as follows. Section two presents the two
Boussinesq approximations used in this work. Section 3 discusses the
numerical approximation of the models, as well as of the wave breaking
closure. The comparison of the two approaches on a wide selection of
benchmarks is discussed in Section 4. The paper is ended by a summary

and a sketch of the future and ongoing developments of this work.

2. Wave propagation models

2.1. The weakly nonlinear-weakly dispersive model of Nwogu

With the notation sketched in Fig. 2, we consider the Boussinesq
equations proposed by Nwogu (1994) based on a weakly-dispersive and
weakly-nonlinear asymptotic approximation in terms of the velocity ua

at an arbitrary distance from a still water level za. Denoting partial
derivatives with respect to space and time with the subscripts x and t,
Nwogu’s equations can be cast in a balance law form as follows:

+ = − + +U F U S S S R( *) ,t x b d f wb (1)

where U is the vector of the new variables, U* is the vector of the
conserved variables, and F is the flux vector

= ⎡
⎣⎢

⎤
⎦⎥
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⎡
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⎢
⎢ +

⎤

⎦
⎥
⎥

H
P

Hu

H u gHU F U* , ( ) ( ) 1
2

.
a

a 2 2

The P* variable is a pseudo-mass flux accounting for the vertical
(weakly-dispersive and weakly-nonlinear) expansion of the velocity
profile:

= + ⎛
⎝

+ ⎞
⎠

P Hu Hz z u du*
2

( )a a
a

xx
a a

xx
(2)

Fig. 1. Solitary wave breaking on a slope: hybrid treatment with order reduction at the coupling interface. Wave height at times =t 4.5258 s, 4.5267 s (top and bottom rows), on mesh sizes
(from left to right) =xΔ 0.01 m, 0.005 m, 0.001 m.

Fig. 2. Sketch of the domain.
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In the above equations d denotes the still water depth,
= +H x t d x η x t( , ) ( ) ( , ) the total water depth, η(x, t) the free surface

elevation, b the bathymetry height, g is the gravitational acceleration.
As done usually, the value of za is chosen to optimize the linear dis-
persion properties of the model, namely = −z d0.531a .

The three source terms on the right hand side of (1) can be ex-
pressed as = − gHbS [0 ] ,x

T
b accounting for the effects of the shape of

the topography, = − gHS uS [0 ]f
a

f with =S ,f
n u

H
m
2

4/3 accounting for
the friction on the bottom, and = −ψ u ψ ψS [ ]C

a
C Md introduces addi-

tional dispersive terms which do not contain time derivatives, and in
particular
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The last term on the right hand side is the turbulent wave breaking
term, which is only present when this approach is activated. Following
Nwogu (1996), Elnaggar (2000), Zhang et al. (2014), this term has the
form

= ⎡
⎣⎢

⎤
⎦⎥

=r r ν HuR 0 ,
wb

x
wb t x

a
wb

with the eddy viscosity νt computed from the discretization of the tur-
bulence model, discussed in 4.2.

2.2. Fully nonlinear-weakly dispersive Green–Naghdi equations

To account for fully nonlinear effects, we also consider the
Green–Nagdhi (GN) partial differential equations (Green and
Naghdi, 1976). In particular, we cast the system in the form suggested
in Filippini et al. (2016) (see also Alvarez-Samaniego and Lannes, 2008;
Bonneton et al., 2011; Lannes, 2013 and references therein) :

+ =H Hu( ) 0t x (4)

+ + =Hu Hu gHη Hψ( ) ( )t x x
2 (5)

+ = − + +Hψ αH ψ H w H gHS u r( ) ( ) ( )f wb xT T Q (6)

where now u denotes the depth averaged velocity, with =w gη ,x andT

a linear elliptic operator with the self-adjoint form (Alvarez-
Samaniego and Lannes, 2008)

= +S HS S HS(·) * ( (·)) * ( (·)) ,1 1 2 2T (7)

where in one space dimension

= − =S H b S b
3

(·) 3
2

(·), 1
2

(·).x x x1 2 (8)

The quantity ψ in (5) and (6) is essentially the gradient of the non-
hydrostatic pressure. The right hand side last in (6) also introduces the
nonlinear forcing Q defined as

= + + +

+ ⎡
⎣

+ + ⎤
⎦

HH u H u u Hb u Hb uu

b H Hb b b u

2 ( ) 4
3

( )

1
2

x x x xx x x xx x

xx x xxx x xx

2
2

2

2

Q

(9)

Following Lannes and Marche (2015) the value =α 1.159 is chosen to
optimise the linear dispersion relation of the system. In absence of
friction and of turbulent dissipation, the above system can be solved in
two independent steps: the first to invert the elliptic operator +I α ,T

the second to evolve physical quantities by solving the shallow water
equations with the algebraic dispersive correction Hψ.

3. Numerical discretization of the Boussinesq models

The numerical treatment of both systems introduced above is done
using an implicit treatment of the dissipative components (friction and/
or turbulent dissipation). In particular, the kernel of both models is the
hyperbolic component which rules the evolution of the water level and
flux variables. Consider then non-overlapping temporal slabs +t t[ , ],n n 1

with = −+ +t t tΔ n n n1 1 . The hyperbolic evolution is performed with the
two-stages Adams Bashforth–Adams Moulton predictor-corrector
method which, for the ODE ′ =U U( )L reads:

1. Predictor stage (Adams–Basforth method)

= + = − +− −tU U U U UΔ , 23
12

( ) 16
12

( ) 5
12

( )p n p p n n n1 2L L L L L

(10)

2. Corrector stage (Adams–Moulton method)

= + = + −

+

+ −

−

tU U U U U

U

Δ 9
24

( ) 19
24

( ) 5
24

( )

1
24

( )

n n C C p n n

n

1 1

2

L L L L L

L

(11)

with the time step is computed by means of the standard condition
= ++t x u ghΔ CFLΔ /max( )n

i
i
n

i
n1 . Within both stages, the evolution

operator L accounts for all the effects except those of friction and
turbulent dissipation (if present). In particular, the shallow water terms
are approximated by means of a third order MUSCL finite volume ap-
proximation (Waterson and Deconinck, 2007; Kermani et al., 2003),
with Roe-type numerical fluxes (Roe, 1981). It is useful for some of the
analysis that will follow to report the form of these fluxes reading:

= − − + +

= −

+ −
+ −

+ + + +

x
F F S S

F F A U

1
Δ

( ) Δ Δ

1
2

Δ

i
SW

i i i
i

i
i

i i
C

i i

b b1/2 1/2
1/2 1/2

1/2 1/2 1/2 1/2

L

(12)

where FC is the centered flux, and = −+ + +Δ(·) (·) (·) ,i i
R

i
L

1/2 1/2 1/2 and
+A i 1/2 is the usual absolute value of the shallow water flux Jacobian,

computed via eigenvalue decomposition, and modified with an entropy
fix (Harten, 1983a; Harten and Hyman, 1983). The source term con-
tributions ±SΔ i

i
b

1/2 are well balanced, and involve both a centered and an
upwind approximation of the gradient of the bathymetry. We omit
details concerning this (quite classical) aspect, for which the interested
reader can consult Bermudez and Vazquez (1994), Castro et al. (2005),
Kazolea and Delis (2013), Duran et al. (2013), Arpaia and Ricchiuto
(2017) and references therein.

Concerning the dispersive terms, the Sd contribution in (1) is dis-
cretized using finite differences. While for the hyperbolic component
the minimization of the dispersion error requires at least a third order
approximation, this is not the case for the higher derivatives in the
dispersive terms (see Wei and Kirby, 1995; Filippini et al., 2016 for
more details on this issue). Here, following Kazolea and Delis (2013),
the second and third order order derivatives in (1) are treated by means
of second order central differencing. Similarly, the dispersive correction
ψ in the GN system (4)–(6) is evaluated by means of a second order P1

continuous finite element approximation of the operator +H αHT and
of the nonlinear forcing temr Q . In absence of friction and turbulent
dissipation, Eq. (6) can be simplified by dividing trough by H, and the
self adjoint character of T (Eqs. (7) and (8) can be used to deduce a
simple variational form reading
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∫
∫

+ +

= + +

vψ S v HS ψ S v HS ψ

S v HS w S v HS w v

( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( )) Q( )
Ω 1 1 2 2

Ω 1 1 2 2

The last expression immediately allows to recover the three diagonal
system for the unknown ψ which is symmetric and positive semi-defi-
nite. The term Q on the right hand side is the variational form of the
forcing term (9) for which we refer to the full expressions given in
Filippini et al. (2016), Filippini and Ricchiuto (2017).

The effects of friction and turbulent dissipation (if present) are now
embedded in an implicit manner, by appropriately correcting the ve-
locity values. In particular, for Nwogu’s equations, the stage iterations
(10) and (11) are modified as follows:

− − = +t t tU S R UΔ Δ Δnew
f
new

wb
new n L

Accounting for the definitions of the source terms, and of the pseudo
mass-flux P* in (2), we obtain the following operator defining the new
velocity values (the superscript a is dropped for simplicity)

⎜ ⎟⎛
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2
( ) Δ ( , *)

Δ ( * )

2
( ) Δ

new new a
a

xx
new new

xx f
new new

t
new

x
new

x

n n n a
a

xx
n n

xx HuL

(13)

where HuL is the second component of ,L u* and ν*t are the last
available values of the velocity and turbulent viscosity, and Hnew is
independently computed from the first discretized equation. As before,
the derivatives present in (13) are discretized using second order cen-
tral finite differences, yielding a tri-diagonal system for the new value
of the velocity at each stage.

The implementation has been slightly modified for the GN equa-
tions. In this case we have added after each of the iterations (10) and
(11) a split (in time) implicit discretization of = +U S Rt f

new
wb
new. De-

noting by u* the last known value of the velocity (after (10) and/or
(11)), we thus obtain the expression

− + =H u u
t

gH S H u u ν H u*
Δ

( , *) ( * ) .new
new

new
f

new new
t

new
x
new

x

The derivatives in the above expression are then approximated by
second order finite differences, leading to a tri-diagonal system again.
As in this case the evaluation of the dispersive correction ψ already
requires the inversion of a linear system, we have opted here for a
simplified implementation involving a few explicit Jacobi relaxation
iterations which read

with ±Hi
new

1/2 arithmetic averaged values, and with =u u( ) *new 0 . Unless
otherwise stated, the number of relaxation iterations in the results
discussed later has been set to 5.

Other aspects of the discretizations are related to the modifications
of the mass fluxes, velocities, and bathymetry source terms near wet/
dry interfaces. Firstly, as in Ricchiuto and Bollermann (2009), two cut-
off values for H are introduced, one to identify dry cells (or nodes), the
other to mark as troubled cells (or nodes) in which the division by H
may lead to unphysical values of the velocity. To preserve well bal-
ancedness in cells containing a dry node, adverse bathymetry gradients

are limited as suggested in Castro et al. (2005) (see also Ricchiuto and
Bollermann, 2009). In troubled cells (or nodes) instead, the mass flux is
set to zero, as well as the velocities, and the dispersive corrections Sd in
(1), the second order terms in (2) and (13), and ψ in (5). The van-
Albada slope limiter is used only in breaking regions, and only if the
hybrid approach is chosen.

4. Wave breaking closure

Boussinesq equations are unable to describe both the overturning of
waves, and the dissipation of kinetic energy originated during wave
breaking. A physical closure is necessary. Generally, this closure con-
sists of two main steps. The first one is a trigger mechanism allowing to
localize in space and time the initiation and the termination of
breaking. The second one is a mechanism introducing a dissipation of
total energy in the model. This paper focuses on two techniques to
define the second element, which are discussed in some detail in the
following sections. In both cases, the triggering of wave breaking is
done following the criteria proposed (Kazolea et al., 2014; Filippini
et al., 2016) which have been found simple and robust. The idea is to
introduce a flagging strategy based on the following conditions:

• the surface variation criterion: a cell is flagged if ≥η γ gH ,t with
γ∈ [0.3, 0.65] depending on the type of breaker;

• the local slope angle criterion: a cell is flagged if ||∇η||≥ tanφc,
with critical angle φc∈ [15°, 30°] depending on the flow config-
uration.

The first criterion is usually active in correspondence of moving
waves and has the advantage of being completely local. The second
criterion acts in a complementary manner, and allows to detect sta-
tionary or slow-moving hydraulic jumps (Roeber et al., 2010; Kazolea
et al., 2014). Flagged cells are grouped to form a breaking region . This
region is either enlarged to account for the typical roller length,
as suggested in Tissier et al. (2012), Kazolea et al. (2014), or deacti-
vated, depending on the value of the Froude number

= +H H H HFr ( )/(2 ),2
max max min min

2 defined starting from the minimum
and maximum wave height in the flagged zone. The interested reader
can refer to Tissier et al. (2012), Kazolea et al. (2014),
Bacigaluppi et al. (2014) and references therein for mode details re-
garding the implementation of these detection criteria.

4.1. Hybrid wave breaking model

This closure attempts to exploit the properties of hyperbolic con-

servation laws embedded with an entropy inequality. For the shallow
water equations, in particular, the mathematical entropy coincides with
the total energy (Harten, 1983b; Tadmor, 1984, 1987a; Tadmor and
Zhong, 2008; Fjordholm et al., 2011; Wintermeyer et al., 2017). At the
continuous level, while conserved in smooth regions, entropy/total
energy is dissipated in discontinuous weak solutions. Provided that the
numerical scheme introduces the correct amount of dissipation in
shocks (Tadmor, 1987b; Tadmor and Zhong, 2008; Fjordholm et al.,
2011; Wintermeyer et al., 2017), this lends itself naturally for the wave
breaking closure, This approach is in itself neat and simple. It has the
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limitation that the form of the dissipation is, at best, fixed by that de-
termined by the shallow-water Rankine–Hugoniot jump conditions.
This quantity can be analytically computed and it is given by (see e.g.
Pratt and Whitehead, 2007 chapter 1.6, and Bonneton, 2007)

= + −g g H H
H H

H H
2

( )
4sw

max min

max min

max min
3

D
(14)

This is however a parameter free definition of the dissipation which has
been proved to reproduce quite well the large scale decay of the total
energy in for several types of breaking waves, and with several different
underlying propagation models and relative numerical discretizations
(Tonelli and Petti, 2009, 2010; Shi et al., 2012; Kazolea et al., 2014;
Lannes and Marche, 2015; Bacigaluppi et al., 2014; Kim et al., 2017;
Filippini et al., 2016). The implementation of this closure is somewhat
trivial once the wave detection algorithm discussed earlier has been
properly set up. For the Nwogu’s equations, it boils down to locally
turning off in the whole flagged region the dispersive source Sd and the
second order derivative terms in (13) when evaluating the new nodal
velocities. Similarly, for the GN system, the nodal values of ψ in (5) are
set to zero in the breaking region.

The most limiting aspect of this approach is the switch between the
non-hydrostatic and the hydrostatic equations. What has been reported
by many authors in a more or less marked way, is the difficulty of
performing this switch in a stable manner. Unless coarse grids are
considered, with eventually the addition of local regularization nu-
merical dissipation terms, several authors have reported the appearance
of strong oscillations (Shi et al., 2012; Kazolea et al., 2014; Filippini
et al., 2016; Duran, 2016). These artefacts tend to become stronger and
stronger as the mesh is refined. To our knowledge, there are no studies
in literature reporting fully grid converged solutions with this approach
due to this problem. An exception to this is perhaps one result reported
in Shi et al. (2012) showing some convergence (on only 3 grids) of the
time averaged wave heights and setup, even though increasing oscil-
lations in the local profiles are reported for the same test. This beha-
viour clearly poses a limitation in terms of potential for local automatic
adaptation of the mesh, and its investigation is one of the objectives of
this article.

4.2. Eddy viscosity closure via a PDE based TKE model

The use of an eddy viscosity model to provide the dissipation re-
quired for the breaking closure is one of the earliest approaches
(Zelt, 1991). The definition of this artificial viscosity is the key of this
approach, as well as the way in which it enters the Boussinesq equa-
tions. On of the most common approaches, due to Kennedy and colla-
borators (Kennedy et al., 2000) (see also Roeber et al., 2010; Kazolea
et al., 2014; Kazolea, 2013; Lynett et al., 2002 and references therein),
involves a definition of the eddy viscosity based essentially on the
variation in time of the free surface elevation. This term is then em-
bedded in a viscous flux, as e.g. in (1) and (5). There exist improved
variants of this idea, allowing to embed a richer physical description of
the vertical kinematics and of the effects of turbulence (e.g. the so-
called roller models). Some approaches explicitly embed the effects of
the dynamics of vorticity (roller-models) Briganti et al., 2004; Viviano
et al., 2015, others include partial differential equations for an average
turbulent kinetic energy (Nwogu, 1996; Zhang et al., 2014), and other
introduce a multi-layer description embedding PDEs for a turbulent
layer flowing on top and interacting with the bulk of the wave, well
representative of spilling flows (Brocchini and Peregrine, 2001;
Brocchini, 2002; Misra et al., 2007; Richard and Gavrilyuk, 2015;
Gavrilyuk et al., 2016). Simpler methods have attempted at improving
the behaviour of the total energy dissipation by also including a water
elevation viscosity (Cienfuegos et al., 2010). In this work, we have
chosen to adopt a model of intermediate complexity based on the so-
lution of an additional PDE, weakly coupled to the main Boussinesq

system of equations. In particular consider the approach initially pro-
posed by Nwogu, 1996 who used a standard TKE (turbulent kinetic
energy) equation coupled to he fully non-linear equations of Wei et al.,
1995. A highly non-linear Boussinesq model with the same turbulence
wave breaking model of Nwogu has been used by Elnaggar (2000).
More recent work on the same model is discussed in Zhang et al. (2014)
where the TKE equation is manipulated to obtain a PDE for the eddy
viscosity which is coupled to a fully nonlinear fully dispersive
Green–Naghdi model. Here we propose a variant of the model proposed
by Nwogu modified according to some of the definitions proposed in
Zhang et al. (2014), as well as some definition which improve the
consistency of the model with the wave breaking detection criteria we
adopt.

Following Pope (2003), Zhang et al. (2014), the eddy viscosity is
determined from the amount of the turbulent kinetic energy k, pro-
duced by the wave breaking, and a turbulent length scale ℓt :

=v C k ℓt ν t (15)

In −k L turbulence models (Menter and Egorov, 2010; Abdol-Hamid,
2015) (see also Zhang et al., 2014), the constant Cν is usually set to

= ≈C (0.09) 0.55ν
1/4 which is the value used here. We now need a

model for the computation of k and ℓt. Differently from the models
discussed in Menter and Egorov (2010), Abdol-Hamid (2015), here we
adopt a one equation approach in which only one PDE is solved for k,
while the for ℓt, inspired by the definition used in Zhang et al. (2014),
we use a vertical average mixing length defined as

= κHℓt

where κ is a constant controlling the width and intensity of the
breaking. The length ℓt is expected to be of the order of the wave height
(Nwogu, 1996), so κ is a case dependent constant. Concerning turbulent
kinetic energy, it can be shown that in three space dimensions the
following transport equations holds (Pope, 2003)

+ ∇ = + −k ku·t D P E (16)

with ,D ,P and ,E diffusion, production and dissipation (or destruction)
terms, respectively. Definitions and possible expressions of these
quantities in terms of mean flow quantities can be found e.g. in the
book (Pope, 2003). When coupling (16) with a depth averaged Bous-
sinesq model, several approximations are possible. Here we will com-
bine some of the elements suggested in Nwogu (1996) and in
Zhang et al. (2014) in order to obtain a model simple to implement, to
be compared to the hybrid approach. First of all, we will assume that
both k (and hence νt) and its transport dynamics are constant along the
depth, so that (16) can be replaced by a zeroth order approximation
involving only depth averaged quantities, namely

+ = + +Hk Huk H H H( ) ( ) .t x D P E (17)

For the definition of the terms on the right hand side of (17) we have
followed Nwogu (1996). In particular, we have for the diffusion and
destruction terms

= = −H Hσν k H HC k,
ℓt xx D

t

3/2
D E

(18)

where, following Nwogu (1996), Zhang et al. (2014), we have set
=C CD ν

3. The constant σ allows to control the smoothness of the TKE,
and hence of the breaking viscosity, in the breaking region. Concerning
the production term, the model used is again the one suggested in
Nwogu (1996) assuming this quantity to depend on the vertical gra-
dient of the velocity at the free surface. Following the notation of (16),
and denoting the velocity at the free surface by = =t x y z ηu u( , , , ),s

we have

=H HB t x μ u u( , ) ·z
s

z
sP P

As in Nwogu (1996), the turbulent viscosity μP appearing in the pro-
duction term is defined based on a mixing length hypothesis assuming a
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balance between production and dissipation, namely

=μ
C

u u
ℓ

·t

D
z
s

z
s

2

P

so that we end with

=H HB t x
C

u u( , )
ℓ

( · ) .t

D
z
s

z
s

2
3/2P

(19)

In Nwogu (1996) the parameter B is equal to 0 or 1 depending on a
wave breaking criterion. In the reference the criterion used is based on
the ratio between the free surface velocity and the wave celerity being
larger than one. Here, for simplicity B is set to one in the breaking
regions detected exactly as discussed in the beginning of Section 4. This
also allows to detect wave breaking in the same way for the TKE and
hybrid approach. Having fixed the values of Cν and CD, the only “tun-
able” parameters are κ and σ.

Lastly, we need to be able to evaluate the depth averaged and free
surface velocities for both Boussinesq models, as well as the value of the
vertical gradient of the velocity at the free surface. For this we use the
vertical asymptotic development underlying the two models. In the
weakly nonlinear case, this development can be used to write the fol-
lowing relations (Nwogu, 1994; Lannes, 2013):

⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− ⎛
⎝

+ ⎞
⎠

u z u z d u z d du( )
2 6 2

( )a
xx
a a

xx
2 2

giving the free surface vertical gradient

= − −u ηu du( ) .z
s

xx
a a

xx (20)

and the depth averaged (within the asymptotic accuracy) velocity re-
quired for the transport term in (17)

⎜ ⎟= + ⎛
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(21)

The GN equations directly provide a value of the depth averaged
speed, while the fully nonlinear asymptotic development allows to
write

⎜ ⎟= − ⎡
⎣⎢

− ⎛
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− − ⎞
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⎤
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2 6

( )
2 2

( )xx xx
2 2

which yields a similar expression for the vertical gradient of the free
surface velocity, this time in function of the depth averaged velocity u:

= − −u ηu du( ) .z
s

xx xx (22)

The fully discrete distribution of the nodal values of the TKE is
obtained by integrating Eq. (17) with a semi implicit approach. Before
the predictor step (10) is applied to the Boussinesq models, the nodal
TKEs are evolved by first applying an explicit Euler update involving a
third order MUSCL upwind discretisation of the transport operator
(Huk)x, essentially the same presented in Section 3 for the shallow
water equations. To avoid spurious negative values in this phase, the
min-mod limiter is applied (LeVeque, 2004). The predicted values k *i
are then corrected by means of diagonally semi-implicit relaxation
iterations similar to those used for the breaking dissipation and reading
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with an initial condition, =k k*0 . For the benchmarks discussed in the
paper, 4 or 5 relaxation iterations are used unless otherwise stated.
Where necessary, depth average velocity (for the Nwogu model) and
velocity gradient at the free surface (for both Boussinesq models) are
obtained by a second order central finite difference approximation of
(21)–(22).

As a final note, we will keep in the following the notation TKE when
referring to this closure, as this eddy viscosity method clearly relies on
the solution of the PDE for the turbulent kinetic energy.

5. A note on the dissipation mechanisms at work

One of the key aspects concerning the numerical modelling of wave
breaking is the notion of dissipation. As discussed in the introduction,
the mechanisms related to the transformation of potential energy into
mechanical energy, and its subsequent dissipation, are not embedded in
Boussinesq models that we study which stem from a potential de-
scription of the flow. The role of the closure model is thus to mimic
these mechanisms. Clearly the main interest in the closure is to be able
to predict correctly the dynamics of wave heights and (in the multi-
dimensional case) currents. It is however interesting to understand
what is the underlying dissipation mechanism active during the nu-
merical breaking process. The main question we want to contribute to
answer to in this paper is how much the numerical method is involved
in this process, and if it is at all. We provide here a short discussion of
this aspect, and suggest quantities which we will use in the numerical
applications to quantify the contributions to the breaking process of the
numerics, as well as of the PDE model itself.

A proper formulation of this analysis requires a formal definition of
what is the energy to be dissipated for the propagation models under
consideration. This has to be done at the continuous level, but of course
we must be able to provide an appropriate discrete translation of this
energy conservation/dissipation statement. We recall that the PDE
systems used in this paper have been chosen as representatives of
models/codes well known the community such as BOSZ (Roeber and
Cheung, 2012), MIKE21 (DHI Developers Group), BOUSS-2D
(Demirbilek and Nwogu, 2007a,b), TUCWave (Kazolea et al., 2012,
2014), Funwave (Wei and Kirby, 1995; Shi et al., 2012), Coulwave
(Lynett and Liu, 2002; Sitanggang and Lynett, 2005). Unfortunately,
while the GN equations do have a total energy which one may choose to
use for this purpose, this is not the case for Nowgu’s model. For the
latter one can only derive conservation statements valid within the
limits of the asymptotic accuracy of the model (Lannes, 2013; Ali and
Kalisch, 2012). These approximate conservation laws, however, are not
verified by the solutions of the PDE.

When looking at the discrete models, even for the GN equations it is
still a matter of research how to devise a numerical method with a clear
associated discrete energy conservation statement. For completeness,
we recall that such a construction requires generally an appropriate
characterisation of the symplectic form of the PDE system and, more
importantly, an appropriate semi linear form allowing to relate directly
the differential of the total energy to the differentials of the physical
quantities which the numerical scheme solves for. For hyperbolic sys-
tems, including the shallow water equations, there is a clear and well
established theory now allowing to construct methods which are ex-
actly entropy-conservative or entropy stable (Harten, 1983a; Tadmor,
1984, 1987a; Barth, 1998). For the shallow water equations, in parti-
cular, the mathematical entropy coincides with the total energy. This
link between the entropy/total energy, and the physical quantities
solved for by the scheme is played in this case by a so-called entropy (or
energy) potential, which is nothing else than the Legendre transform
associated to the entropy, and conservative variables. The interested
reader can refer e.g. to Tadmor (1987a, 1987b), Tadmor and
Zhong (2008), Fjordholm et al. (2011), Wintermeyer et al. (2017) for
the construction of schemes which are either exactly energy con-
servative, or energy stable. Unfortunately, the construction of exactly
energy preserving schemes for dispersive equations is still a subject of
research, and the interested reader may refer to Wang et al. (2014),
Jiang et al. (2016), Yan et al. (2017), Yan and Zheng (2017) for some
recent results.

A consequence of this discussion is that an exact evaluation of the
dissipative mechanisms for the type of models used here is not within
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our grasp. So, in order to be able to provide some quantitative in-
formation on the sources of dissipation, we had to make some choices,
and some hypotheses. We start by recasting our PDE models as the
shallow water system plus a dispersive source

∂ + ∂ − − − =U F U S S R( )t x b f wb D

This is a form similar to (1), except that in the above equation the left
hand side only contains the shallow water terms and the eddy viscosity
model, if present. All the dispersive terms are included in D . We then
look at the contributions to the balance of the shallow water total en-
ergy, whose time variation can be expressed as (see e.g. Tadmor, 1984;
Tadmor, 1987a; Tadmor and Zhong, 2008)

∂ = ∂ = − ∂ − − − −E V U V F U S S R( ( ) )t
t

t
t

x b f wb D

with = + +E H gH u gHb( )/2 ,2 and having denoted by Vt the transpose
of the array of the so-called energy (or entropy, or symmetrizing)
variables = −gη u uV [ /2, ]t 2 . For both numerical models tested in the
paper, we can easily provide a nodal discrete analog of the last ex-
pression which, using the notation of (12), reads

∂ = ∂ = − − − − −E V U V S R( )t i i
t

t i i
t

i
SW

f i wb i iL D

Neglecting the boundary conditions (or assuming periodic or null the
boundary fluxes), the total variation of the shallow water energy can be
deduced using the explicit form i

SWL and of the central and upwind
contributions in the bathymetry terms (Bermudez and Vazquez, 1994;
Castro et al., 2005; Kazolea and Delis, 2013; Duran et al., 2013; Arpaia
and Ricchiuto, 2017). The final result can be recast as
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We can now try to say more on the terms on the right hand side. It
seems quite reasonable to assume that wave breaking is not associated
to the dispersive contributions. This means that we will leave out of the
analysis the contributions of the dispersive source = ∑E VΔ i i

t
iDD . An-

other term which in principle one would expect not to contribute to the
analysis, is the centered part of the flux which enters the above ex-
pression via the terms
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This is where the analysis provided in e.g. (Tadmor and Zhong, 2008;
Fjordholm et al., 2011) is most useful. Without going into much detail,
the references provide a very simple rule to define the centered flux for
which one can show that = −+ −Δ ,i

E
i i1/2 1/2F H H with ±i 1/2H con-

sistent numerical approximations of the total energy flux. This algebraic
relation leads to the conclusion ∑ =≥ Δ 0i i

E
1 F exactly, whether the

solution is continuous or not. This means that, even if slightly different
implementations of the central flux are used, this quantity is in prin-
ciple not relevant for our analysis.

This leaves three quantities to be monitored, associated to the nu-
merical (upwind) dissipation
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and to the friction and wave breaking (eddy viscosity) model
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Note that with the spatial discretization choices made both Dfriction and
Dvis are clearly positive definite. The same cannot be said a-priori about
the upwind dissipation Dupwind. To be sure of the positivity of this term,

indeed one should have implemented the dissipation in terms of var-
iations of the entropy variables (Tadmor and Zhong, 2008; Fjordholm
et al., 2011; Wintermeyer et al., 2017), instead of using in the numer-
ical flux variations at cell interfaces of the conservative variables, as
done in standard implementations of the upwind flux. Furthermore, this
term involves both the reconstruction and the limiter, the latter only in
the shallow water regions associated to wave breaking when using the
hybrid approach of Section 4.1This makes it a perfect candidate to
monitor the impact of the numerical choices and their contribution to
the wave breaking process, and when possible compare these con-
tributions to those of the eddy viscosity and friction terms. This analysis
has been performed for three of the benchmarks proposed, involving
both periodic and non periodic waves, dry areas, as well as pure pro-
pagating bores. Note that in practice the above expressions have to be
evaluated in post-processing, by saving the different terms evaluated
during the computations. The time stepping of course also plays a role
in this analysis. The interested reader can refer to Tadmor (1987b) for a
discussion on this. To minimize these effects, while keeping as much as
possible of the actual terms computed in the code and used to obtain the
numerical solutions, in all the cases presented we have used +tn 1/2 half
time-step evaluations of these terms by averaging values at tn and +tn 1.

6. Boundary condition and the internal source function

In this work we use two types of boundary conditions : solid (re-
flective) wall and absorbing boundary conditions. For the wall
boundary conditions ghost cells are used with mirrored states for the
velocities, as discussed in Kazolea and Delis (2013). Absorbing
boundaries are used for outgoing waves. In this case, an adsorbing layer
is introduced within which surface elevation and the momentum are
damped by multiplying their values by a coefficient m(x) defined as
(Kazolea et al., 2014)

⎜ ⎟= − ⎛
⎝

⎞
⎠

m x d x
L

( ) 1 ( )
s

2

(23)

where Ls is the sponge layer width, and d(x) is the distance from the end
of the absorbing boundary. As prescribed in Kazolea et al. (2014), the
width Ls should depend on the wavelength of the outgoing wave. For a
given wavelength L, the sponge layer width should be L≤ Ls≤ 1.5L.

Concerning wave generation, we follow the approach of
Wei et al. (1999). To obtain a desired oscillation signal in the wave
generating area, a source function S(x, t) is added into the mass con-
servation equation at each time step, which is expressed as

= − −S t D γ x x ωtx( , ) *exp( ( ) )sin( )s
2 (24)

in which

= =γ
δL δ L

5
( /4)

80
2 2 2 (25)

where L is the wave length, ω the wave frequency, θ the wave incident
angle, xs is the location of the center of the wave-making area, δ is a
parameter that influences the width =W δL/2 of the wave generator
area and D* is the source function’s amplitude. For a monochromatic
wave, D* is defined as

=
−

− −
D

γ A ω α g h
ω π l γ α h

*
2 ( k )

k exp( /4 )[1 (k ) ]
0

2
1

4 3

2 2 (26)

where h is the still water level at the wave generation region, A0 the
wave amplitude, =l ( k )x the wave number in the −x direction,

= −α 0.390 and = +α α 1/31 .
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7. Numerical results

7.1. Wave breaking over a bar

This test case of Beji and Battjes (1993) examines the sinusoidal
wave propagation over a submerged bar. The scope of this test case is to
investigate the frequency dispersion characteristic and non-linear in-
teraction of complex wave propagation phenomena. A sketch of the
problem is provided in Fig. 3. The computational domain is

∈x [0, 35m], with sponge layers placed at both ends. Periodic waves
were generated at =x 10 m over a mean water depth of . Wave height
and period are set to =a 0.054 m, and =T 2.5 s, corresponding to a
dispersion parameter kh≈ 0.52. Waves propagate over submerged
trapezoidal bar with a toe at =x 15 m, a front slope of 1: 20, a 2 m long
plateau of 0.3 m height, and a lee slope of 1: 10. More informations on
the experiment can be found in Beji and Battjes (1993) and in the re-
ferences using this test case for model validation (Filippini et al., 2016;
Kazolea et al., 2014; Klonaris et al., 2013; Tissier et al., 2012).

Concerning the model parameters, for this highly unsteady problem
the surface variation detection parameter γ (cf. Section 4) is the one
more sensitive to the onset of breaking. For the computations per-
formed here we have set =γ 0.3 . The parameters used for the TKE are
not the same for the two Boussinesq propagation models. In particular,

we have set =κ 2.8GN and =σ 1.2GN for the GN equations, while
=κ 3.2N and =σ 1.2N for the Nwogu system.
Experimental data are available in several wave gauges placed be-

fore, on top, and after the bar. Here we focus on three gauges (cf. Fig. 3)
placed before the toe of the bar, gauge 1 at =x m16 , on top of the
plateau, gauge 3 at =x 23 m, and on the lee slope, gauge 5 at =x 26 m.
We will discuss numerical results obtained on three different meshes of
size 4 cm, 2 cm, and 1 cm. For the Nwogu model, we could not run the
hybrid breaking simulations on the last mesh due to instabilities at the
Boussinesq-shallow water interface. Similarly, when using the hybrid
approach we could not go below =xΔ 1cm when using the GN model
for propagation. Note also that the results discussed here are those
obtained after a transient of 36 s, differently from what is done e.g. in
Filippini et al. (2016), Kazolea et al. (2014), where the four first waves
are analyzed. The results are presented in Figs. 4, 6 and 7, for gauges 1,
3, and 5, respectively.

Fig. 4 allows to visualize the behaviour of the models at the toe of
the bar, right at the end of the wave propagation region. This gauge
allows to highlight the initial asymmetry of the waves, essentially due
to the interaction with the submerged bar. Some preliminary observa-
tions can be made. Firstly, the fully nonlinear model (left column)
seems to capture better the shape of the waves, the weakly nonlinear
one providing a signal which is slightly too peaky. Secondly, we see
already at this stage that while the TKE model (blue curves) shows little
sensitivity to the mesh size, the signals obtained with the hybrid ap-
proach (green curves) depend strongly on this parameter. We can
clearly see on the intermediate and fine mesh (in the GN case) higher
frequency components absent in the TKE results. These components are
generated in correspondence of the boundary of the wave breaking
region, as it can be clearly seen in the snapshots of Fig. 5. These in-
stabilities become stronger as the mesh is refined, and may ultimately
lead to the blow up of the solution, as it is the case for the Nwogu model
on the fines mesh, and of the GN model on finer meshes.

Fig. 3. Wave breaking over a bar: problem sketch, and position of the gauges.

Fig. 4. Time series of surface elevation at wave gauge 1 for the GN (left) and Nwogu (right) models using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04,
0.02, 0.01 m from top to bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Figs. 6 and 7 confirm the preliminary observations made for the first
gauge. In particular we can clearly see the strong dependence of the
results of the hybrid model on the mesh size. For this approach we can
also see how the breaking waves are represented as very sharp fronts.
For the GN model, on the coarse mesh breaking stops early enough for
the signal in these two gauges to be smooth. This however leads to a
noticeable phase lag. As the mesh is refined, the waves break more
strongly. This leads clearly to an improvement on the phase. This be-
haviour curiously is not observed for the Nwogu model which shows
strong and sharp breaking fronts already on the coarsest mesh level,
with a correct phase. This allows to highlight the need of tailoring the
choice of the breaking detection criterion to the propagation model.
Here the same parameters have been used for both. Nevertheless, both
set of results allow to visually see the appearance of spurious higher
frequencies in the signal. These are the result of the coupling between
the dispersive and non-dispersive regions. For the weakly non-linear
model (right column) we can see the inception of the instability already
on the medium resolution used here in Fig. 7. This is less evident for the
GN model, which still provides numerical solutions on the finer level
used. We where however unable to refine once more the mesh without
solution blow up.

The TKE approach is clearly less sensitive, at least for this test, to
both the choice of the model parametrization, and the mesh size. This is
summarized in Fig. 8, showing a grid convergence for the gauge 3. We
also would like to remark that, for Nwogu’s equations and for plunging
breakers, Demirbilek and Nwogu (2007a) resorted to a more complex
TKE closure with a PDE for the B coefficient in the production term
(19). We found out that the simplified formulation adopted here,
combined with the physical criteria for the initiation and termination of
the process discussed in the beginning of Section 4 can simulate rea-
sonably well plunging wave breakers.

7.1.1. Dissipation mechanisms
We report in Figs. 9 and 10 the time evolution of the dissipation

terms active for this test (cf. Section 5): Dupwind (in blue) and Dvis (in
green). The flow is periodic so we focused on 5 periods from time 12s to
time 14 s. The results show the dissipation flashing when the tallest wave
approaches the bar, and then reducing as the breaking process con-
tinues on top of the bar. Also, the inception of breaking for the Nwogu
model has a phase advance of about one second which can be explained
by the over-shoaling characteristics of this model (Fillipini et al., 2015;
Grilli et al., 1994). The results for the GN model, Fig. 9, allow the

Fig. 5. Snapshots of the flow for the GN (left) and Nwogu (right models) using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.02 m. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Time series of surface elevation at wave gauge 3 for the GN (left) and Nwogu (right) models using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04,
0.02, 0.01 m from top to bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M. Kazolea, M. Ricchiuto Ocean Modelling 123 (2018) 16–39

25



following remarks. The role of numerical dissipation Dupwind when using
the eddy viscosity closure (left column) is extremely small. This term
definitely does not contribute at all to the breaking process. On the
second mesh, its values approach machine zero. On the contrary, in the
case of the hybrid closure, Dupwind is doing all the job. We can also see
that the on the coarser mesh the area under the dissipation bells is
larger, which means that the overall contribution in time to the energy
dissipation is more important. When using the model of Nwogu, Fig. 10,
we can see again, from the left column, that the numerical dissipation
plays no role in the breaking process, and it quickly reaches very low
values. The right column allows to visualize the inception of the nu-
merical instabilities (top figure) and their blow up (bottom figure). Note

that for the finer meshes used in Fig. 8 the behaviour observed for the
GN and in general for the TKE closure are the same. Also, we stress once
more that further halvening the mesh size was not possible for the GN.
The finest computation we could perform until the final time is for

=xΔ 0.008.
The behaviour observed allows to clearly demonstrate that the nu-

merica dissipation has no impact on the computations performed with
the TKE closure. This means that with this closure one could (or should)
in principle use a non-dissipative numerical method to discretize the
PDEs. The results, at least those for the GN equations, also show that the
overall numerical dissipation when using the hybrid approach is larger
on coarser meshes.

Fig. 7. Time series of surface elevation at wave gauge 5 for the GN (left) and Nwogu (right) models using the TKE (blue) and Hybrid (green) wave breaking closure. Mesh size is 0.04,
0.02, 0.01 m from top to bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Time series of surface elevation at wave gauge 3: grid convergence for the GN (left) and Nwogu (right) models using the TKE (up) and Hybrid (down) wave breaking closure. Mesh
size: 0.04 m (blue), 0.02 m (green), 0.01m (cyan). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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7.2. Solitary waves breaking on a slope

One of the most intensively studied problems in long wave model-
ling is the solitary wave run-up on a plane beach, see for example
Synolakis (1987), Arnaud and Marche (In press); Kazolea et al. (2014),
Tonelli and Petti (2010), Zelt (1991), Roeber et al. (2010),
Cienfuegos et al. (2007) among others. In this test case we want to
study propagation, breaking and run-up of a solitary wave over a planar
beach with a slope 1: 19.85. With this famous test case we asses the
ability of our model to describe shoreline motions and wave breaking
when it occurs. The incident wave height considered in this case is

=A d/ 0.28 with =d 1, so according to Synolakis (1987) the wave
breaks strongly both in the run-up and in the rundown phase of the
motion. The GN and Nwogu’s equations are tested and compared, using
for each one the turbulent kinetic energy wave breaking model and the
hybrid wave breaking model. The same holds for all the test cases that
follows:

The computation domain is of 120m, where ∈ −x [ 20, 100]. The
CFL used is 0.3 and sponge layer was applied off-shore with length

=Ls 5 m. A Manning coefficient of =n 0.01m was used to define the
glass surface roughness used in the experiments. As before, computa-
tions have been run on three different meshes with size

=xΔ [0.025, 0.0125, 0 . 0063 m]. The parameters of the wave breaking
criteria used in this test case are =γ 0.6 and =ϕ 30c

o for both models.
To properly capture the hydraulic jump generated at during backwash,
the TKE parameters depend here both on the propagation model and on
the type of breaking criterion satisfied. In particular, for unsteady
waves the surface time variation criterion is the one activated. In this
case we use =κ 0.75,GN =σ 0.9GN for the GN model and =κ 0.8,N

=σ 1.5N for Nwogu’s model. If the slope criterion is activated, we use
instead higher values , namely we set =κ 1.5,GN =σ 15.5GN and

=κ 1.5,N =σ 1.5N .
Fig. 11 compares the numerical surface profiles for the GN equa-

tions and the experimental measurements. The same is plotted for
Nwogu’s equations in Fig. 12. The numerical solution was obtained
using =xΔ 0.05m. As expected, both mathematical models produced
similar behaviour. Until time =t g h/ 10 the solitary propagates to the
shore and the two wave breaking models produce, as expected, iden-
tical results since wave breaking has not started yet. As expected the
Nwogu’s model gives a wave which overshoals and breaks slightly
earlier compared to the one produced by the GN equations. The the
experimental wave breaks around =t g h/ 20. The numerical solution
for the hybrid model is represented like a bore storing the water spilled
from the breaking wave behind the front. At time =t g h/ 20 the

Fig. 9. Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right) closures for =xΔ 0.04 (top) and =xΔ 0.02 (bottom). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right) closures for =xΔ 0.04 (top) and =xΔ 0.02 (bottom).
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turbulence model represents the solution as a triangular bore con-
siderably closer to the experimental data than the hybrid one. Similar
behaviour has been observed by other researchers that used eddy
viscosity models (Kennedy et al., 2000; Roeber et al., 2010; Zelt, 1991).
At time =t g h/ 25 the bore collapses at the shore, and both ap-
proaches show good qualitative agreement with the data. After that the
wave starts to run-up, with a maximum run-up occurring at =t g h/ 45.
As the water recedes, a breaking wave is created near the still water
level. The numerical solution is approximated as a hydraulic jump for
both numerical models. It is fully resolved using both breaking models,
since the breaking criterion recognises the hydraulic jump and the NSW
equations are used for the hybrid model while the proper amount of
viscosity is added by the turbulent kinetic energy model.

Figs. 13 and 14 show the numerical results for both breaking phases
(at time =t g h/ 20 and =t g h/ 60, respectively) while refining the
mesh. Up to the authors knowledge it is the first time that such a study
is performed for a (quasi-)steady hydraulic jump for an eddy viscosity
type model. The first set of figures depict the breaking of the wave
which travels on-shore for both GN (left column) and Nwogus equations
(right column). We can clearly see the oscillatory nature of the hybrid
wave breaking mechanism. The profiles obtained indicate some sort of
convergence of the mean. However this is completely spoiled by the
oscillations produced due to the switching between the two sets of
equations. On the contrary the turbulent kinetic energy wave breaking
mechanism remains stable and gives a convergent solution for both sets

of equations . The second set of figures plot the same for the hydraulic
jump formed at backwash. The difference between the two approaches
is more accentuated here. It is quite hard to see a convergence for the
hybrid results, while this is clearly the case for the TKE ones. We must
mention that the GN equations combined with the hybrid model is
blowing up after =t g h/ 60 for =xΔ 0.0063, while Nwogu’s equations
are more sensitive to the hybrid formulation since numerical solution is
obtained only for the fist two meshes.

We have repeated this test for a more non-linear initial wave with
=ϵ 0.5, on the mesh with =xΔ 0.025 m. The results obtained at in-

cipient breaking before the runup and during backwash are reported on
Fig. 15. As before the hybrid mechanism produces oscillations, in both
breakers, and it is very unstable for Nwogu model. Oscillations are
clearly visible for the GN results with the hybrid breaking. Smooth
capturing of the breakers is obtained also in this case with the TKE
model. Figs. 16 and 17 show again, the numerical results for both
breaking phases while refining the meshes for the turbulent kinetic
energy mechanism. The Hybrid closure is not converging since the os-
cillatory nature of the mechanism is more pronounced in this case.

7.2.1. Dissipation mechanisms
For both cases we now look at the contributions to the dissipation of

energy. In this case, all three sources of dissipation are active (cf.
Section 5) : numerical dissipation Dupwind, dissipation due to friction
Dfriction, and the dissipation due to the eddy viscosity Dvis when using the

Fig. 11. Free surface elevation of solitary wave run-up on a plane beach for the GN model.

M. Kazolea, M. Ricchiuto Ocean Modelling 123 (2018) 16–39

28



TKE closure. Let us first focus on the results for a nonlinearity of 0.28
reported in Figs. 18 and 19 for the GN and Nwogu models. The results
with the Nwogu model are on coarser meshes to allow some comparison
on the behaviour of the hybrid closure on different meshes. The figures
allow to see the dynamics of dissipation associated to the different
phases of the flow. The fist breaking of the incoming wave is seen in all
figures around time 5 s, with the Nwogu model again showing earlier
breaking certainly due to its over-shoaling characteristics. As the wave
reaches higher bathymetries and the runup process starts, the friction
takes over and dominates the flow, with no or very little contributions
form the other terms. Dissipation is reduced to zero at the end of the
runup, and if increases again during backwash, with again the friction
dominating, and the other terms providing again non negligible con-
tributions around time −s s17 20 when the hydraulic jump is formed.
Note that these contributions arise from integrals in space. So the plot
may lead to confusion as to which mechanism allows to capture the
hydraulic jump. Indeed, the friction contributions are localized in the
region very close to the wet/dry interface, and they would not allow to
capture the hydraulic jump.

Looking at the behaviour of the different terms on the meshes
considered, we can remark again that when using the TKE closure the
numerical dissipation Dupwind is not contributing, or providing very
small contributions, throughout the flow. In he case of the hybrid clo-
sure, we can again see that it is indeed Dupwind that provides dissipation
during breaking. We can also see from Fig. 18 that this contribution is

slightly larger on the coarser mesh, even though is is less clear that in
the previous case. The oscillations observed during backwash in both
the viscous contribution and numerical dissipation are associated to the
intermittency of the breaking detection criterion. which is certainly
something to be improved in the future. Finally, we remark that the
behaviour for finer meshes is exactly the same, and that the finest
meshes on which we managed to run this case until the final time with
the hybrid closure are those mentioned earlier, namely =xΔ 0.0063 m
for the GN model, and =xΔ 0.025 for the Nwogu model.

We perform the same analysis for the case with a nonlinearity of 0.5.
The results are reported on Figs. 20 and 21. As mentioned already, in
this case we could only run the Nwogu model with hybrid closure on
the coarsest resolution of =xΔ 0.1 m. The dynamics observed in the
figures are very similar to those of the previous case. Of course in this
case the first breaking occurs earlier (around 2 s) with the Nwogu model
again providing an earlier breaking. We can again again see the friction
dissipation taking over during the runup process, then decreasing, and
increasing again during backwash. As before, breaking is re-activated to
capture the hydraulic jump forming during backwash. We can again
remark that when using the TKE closure the numerical dissipation is not
contributing to the process, which is dominated by the terms embedded
in the PDE. On the contrary, it is the numerical dissipation term that
rules the dynamics of breaking. We can also see quite clearly that a
considerable reduction of this contribution is obtained with mesh re-
finement. Again, the contributions of Dvis and of Dupwind are quite

Fig. 12. Free surface elevation of solitary wave run-up on a plane beach for Nwogu’s model.
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oscilaltory during the backwash, and this is related to the intermittency
of the detection mechanism. The meshes shown here are the finest we
could run this case on until the final time with the hybrid closure.

As for the previous case, this analysis shows that when using the
eddy viscosity closure the numerical dissipation plays very little or no
role. This is motivation to look for non-dissipative/energy conserving

schemes in this context. The mesh size seems to have an impact on the
magnitude of the overall dissipation introduced during breaking. Finer
meshes providing overall less dissipation. The TKE closure is very little
sensitive to the mesh. This analysis also shows a very interesting in-
terplay between the breaking and fiction dynamics.

Fig. 13. Breaking bore on different meshes for the GN (left) and Nwogu’s (right) models, using the TKE (up) and the hybrid (down) wave breaking closure.

Fig. 14. Hydraulic jump on different meshes for the GN (left) and Nwogu’s (right) models, using the TKE (up) and the hybrid (down) wave breaking closure.
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7.3. Bore propagation and dissipation in function of the Froude number

We consider in this test case the propagation of a breaking bore over
a flat bottom. We have chosen this benchmark as its simple setting al-
lows to perform some quantitative comparison between the discrete
energy dissipation terms analyzed in the paper, and the exact theore-
tical shallow water dissipation, Eq. (14), for different values of the
Froude number. The test is defined by an initial step which transforms
to a bore. The initial solution is defined by
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where da and db are the water depth in front and behind the bore, ua and
ub the corresponding depth-averaged velocities. In our case

= =u d0, 1 ma a and =a 2 m. For each Froude number (Fr), ub and db
are computed, solving the mass and momentum conservation condi-
tions across the bore. For Fr>1.4 the initial step evolves into a
breaking bore. More information on the test case can be found in
Tissier et al. (2011) and references therein.

The computational domain used is ∈ − =x CFL[ 150, 150], 0.2 and
=xΔ 0.1. For this type of wave the parameter most sensitive to the onset

of breaking is the time derivative of the elevation γ, which we have set
here to =γ 0.4. For the turbulence model we have used

= = = =κ κ σ σ1.5, 0.8GN N GN N for the GN and Nwogu equations, re-
spectively. Fig. 22 shows the propagated bore at =t 0, 1, 15 s for the
two models for a Froude number =F 2r . The bore is breaking as it
propagates through the channel, and a slightly different behaviour is
observed for the two breaking closures. Hybrid breaking provides a
travelling shock, for both propagation models, while the turbulent
closure presents a more diffusive behaviour, with a small overshoot
before the bore for the GN model.

The terms related to the upwind dissipation and to eddy viscosity
evolve during the transformation of the solution into a bore, as shown
on Fig. 22, and quickly converge to a steady (in time) value, which is
plotted in Figs. 23 and 24 against the shallow water dissipation (14), for
different Froude numbers and on different meshes. Note that in this
case, the wave breaking interface is located in correspondence of a
constant solution region. This makes this case easier compared to the
previous ones. This also reduces a lot the impact of mesh size on the
final value of the dissipation, essentially dictated by the jump in water

Fig. 15. Breaking in the run-up (up) and the run-down (down) phase for GN (left) and Nwogu’s equations (right) for =ϵ 0.5,using the TKE (blue) and the hybrid (green) wave breaking
closure. Mesh size is 0.025 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Breaking bore on different meshes for the GN (left) and Nwogu’s (right) models for =ϵ 0.5, using the TKE wave breaking closure. Mesh size is 0.025 m.

M. Kazolea, M. Ricchiuto Ocean Modelling 123 (2018) 16–39

31



height. Nevertheless, exactly as the previous cases with the hybrid
approach the initial development of the solution shows instabilities, for
meshes finer that those reported in the figures, solution blow up. For
the GN model, and for the range of Froude numbers tested, the TKE
dissipation is within 10–15% of the value predicted by (14), while the
upwind terms basically provide a negligible contribution. Conversely,
these terms are, when using the hybrid approach, within 6% of (14). As
in the previous tests, this allows to demonstrate that the numerical
dissipation does not contribute to the dynamics of wave breaking when
using the TKE eddy viscosity closure. It also shows that the particular
choice of eddy viscosity we performed allows to reproduce with some
accuracy the behaviour with Froude number predicted by the classical
formula (14). Similar conclusions can be drawn for the Nwogu model
by looking at Fig. 24.

7.4. Wave height and setup prediction

The analysis of Bonneton (2007) shows that wave setup is very
sensitive to the dissipation mechanism in wave breaking. So this is an
interesting parameter to study for our purposes. To investigate this
aspect we consider two of the experiments performed by Hansen and
Svendsen (1979). These experimental studies consider several different
regular waves shoaling and breaking on a sloping beach. Many authors
have used these tests to validate their models and the associated
breaking closures (Kennedy et al., 2000; Tonelli and Petti, 2010;
Kazolea et al., 2014; Shi et al., 2012; Cienfuegos et al., 2010).

We consider here two cases, one involving a spilling breaker, the
second involving a plunging breaker. Regular waves are generated over
a 0.36 m horizontal bottom, propagated shoaled and broke over a slope
of 1: 32.26. In the spilling breaking case (test number 05041) the

regular wave’s period T is 2.0 s, and the wave’s height H is 0.036 m. The
second test case (test number 03041) is a strong plunging breaking case
with =T 3.33 s and =H 0.043 m. The tests have been run on a 52 m long
domain ∈ −x [ 26 26], discretised with cells of =xΔ 0.02 m, and with

=CFL 0.3. A sponge layer is applied offshore with length =L 5 ms . The
wave making internal source was placed 14.78 m offshore from the toe
of the beach, and bottom friction is neglected. The free surface eleva-
tion, recorded at wave gauges which placed every 0.1 m, is analysed to
compute the mean wave height, and the position of the mean water
level (MWL). The value of γ in the surface variation criterion equals to
0.5 for both models. Concerning the wave breaking closures, we have
set =κ 0.8,GN =σ 0.05GN and =κ 0.8,N =σ 0.4,N for the two GN and
Nwogu models, respectively.

The numerical results obtained for the two cases considered are
reported on Figs. 25 and 26, in terms of wave height (left) and mean
water level (right). As before, the blue lines in the figures refer to the
TKE results, while the green ones to the hybrid wave breaking, and the
top row report the computations of the GN model, while the bottom
ones the results of the Nwogu equations.

For the spilling case, Fig. 25 seems to indicate that in all cases the
detection criterion provides an early breaking. This of course alters the
strength of the numerical breaking, which is less intense. This translates
in a wave height decrease slower than the experimental one. Even so,
the computations compare reasonably well with the experiments,
especially when compared with results in the published literature
(Kennedy et al., 2000; Tonelli and Petti, 2010; Kazolea et al., 2014; Shi
et al., 2012; Cienfuegos et al., 2010). This is confirmed by the mean
water level plots. Although we can clearly observe the early start of
setup, due to the early breaking, the slopes of the numerical signals are
quite close to those of the experimental ones. According to the analysis

Fig. 17. Hydraulic jump on different meshes for the GN (left) and Nwogu’s (right) models for =ϵ 0.5, using the TKE wave breaking closure. Mesh size is 0.025 m. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right) closures on three different meshes: =xΔ 0.025, 0.0125 m from top to bottom. The nonlinearity
of the wave is 0.28.
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of Bonneton (2007) this shows that the amount of dissipation in-
troduced is correct. We stress that the differences between the TKE and
hybrid approach are minor, even though we tend to consider the results
obtained with the turbulence model slightly better in terms of both
wave height and slope of the setup.

For the plunging case, Fig. 26, the agreement with the experimental
values is even better. We can see that the breaking location is detected
correctly in this case, even though both the GN and the Nwogu model
provide an underestimation of the shoaling with both breaking closures.
The wave height decrease is predicted with a slightly smaller slope, but
the agreement with the data is quite satisfactory. The setup prediction is
very good, with both location of the breaker and slope reproduced
correctly by all models.

Some conclusions can be drawn from the implementation of this
numerical test case. The first one is that both wave breaking closures
allow to detect and handle both spilling and plunging breaking of
regular waves. We stress that the parametrisation used for TKE closure
is the same for the two cases considered. This shows the potential of this
type of approach to provide a robust accurate energy dissipation rate,
independently on the number of nodal points per wavelength, and on
the nonlinearity of the problem.

7.5. Application: propagation, breaking, and overtopping of a 2D reef

This next test case is reported as a complex application in order to
show the potential of the modelling choices evaluated here to handle
the interaction of the whole range of phenomena: dispersive propaga-
tion, shoaling, breaking, overtopping, reflection. The benchmark con-
sidered was initially proposed in Roeber (2010), Roeber et al. (2010),
and later used by several authors for validation (Roeber et al., 2010;
Tonelli and Petti, 2011; Filippini et al., 2016; Kazolea et al., 2017). The
problem involves a bathymetry consisting of a reef with a fore slope of
1/12 and a crest of 0.2 m reef crest and an offshore water depth of 2.5 m.
The reef crest is exposed by 0.06 m and hides on the lee side a flat with a
depth of 0.14 m. Water height distributions at several time instants and
water height time series in 14 wave gauges have been measured in the
flume experiments at Oregon State University within the PhD work of
Roeber (2010) (see also Roeber et al., 2010). A sketch of the reef
geometry, showing the positioning of the wave gauges, is reported in
Fig. 27. The initial state consists of a solitary wave of amplitude

=a 0.75 m which propagates onshore, shoals and breaks in front of the
reef crest. Walls are present at both ends of the domain. We refer to
Roeber (2010), Roeber et al. (2010) for a more detailed description of

Fig. 19. Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right) closures on three different meshes: =xΔ 0.05, 0.025 m from top to bottom. The
nonlinearity of the wave is 0.28.

Fig. 20. Energy dissipation profile for GN model using the TKE (left) and the Hybrid (right) closures on two different meshes: =xΔ 0.1, 0.05 m from top to bottom. The nonlinearity of the
wave is 0.5.
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the experimental and computational setup. Our results have been
computed on a mesh with size =xΔ 0.05, and setting =CFL 0.3. Man-
ning friction has been used, with a Manning coefficient =n 0.012m .
Both wave breaking detection criteria are used with =γ 0.6 and

=ϕ 30c
o. Concerning the TKE closure =κ 0.75,GN =σ 0.8GN and

=κ 1.2,N =σ 1.5N but when a hydraulic jump is detected the values are
set to =κ 1.5,GN =σ 15.5GN and =κ 3.5,N =σ 16N .

To visualise the results we group snapshots of the free surface in
three phases : propagation and shoaling of the initial soliton (Fig. 28);
overtopping and formation, propagation and reflection of a bores on the
lee side of the reef (Fig. 29); secondary overtopping, with formation of a
quasi-steady hydraulic jump and of an undular bore (Fig. 30). In all the
figures, the top rows report the results obtained with the GN model, the
bottom rows refer to the results of the Nwogu model, the blue lines are

Fig. 21. Energy dissipation profile for Nwogu model using the TKE (left) and the Hybrid (right) closures on three different meshes: =xΔ 0.1, 0.05 m from top to bottom.The nonlinearity of
the wave is 0.5.

Fig. 22. Free surface profiles at =t s0, 1, 15 of hydraulic bores with =Fr 2.0. Left: GN model. Right: Nwogu model.

Fig. 23. Energy dissipation profile for GN model using turbulent closure (left) and hybrid closure (right).

Fig. 24. Energy dissipation profile for Nwogu model using turbulent closure (left) and hybrid closure (right).
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Fig. 25. Computed and measured wave heights (left) and set-up (right) using equations. Test number 05041 (spilling breaking). Top: GN equations. Bottom: Nwogu equations. Blue line-
TKE closure, green line- Hybrid closure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Computed and measured wave heights (left) and set-up (right) using equations. Test number 03041 (plunging breaking). Top: GN equations. Bottom: Nwogu equations. Blue line-
TKE closure, green line- Hybrid closure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 27. 2D reef geometry and wave gauge
locations. Adapted from Roeber et al. (2010).
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those obtained with the TKE breaking model, and the green lines are
those of the hybrid breaking treatment. Symbols refer to the experi-
mental values provided in Roeber (2010).

The figures show that all models allow, on this mesh resolution, a
quite satisfactory prediction of the water height. The differences be-
tween different choices appear to be minor. We can mention that, at
least in our implementation both the fully and the weakly nonlinear
models tend to predict the moving bores on the lee side with some
phase advance. This, at least in our implementation, is more pro-
nounced for the fully nonlinear GN mode, as we can see e.g. on Fig. 29
(central and right column). This behaviour is independent on the
breaking closure adopted. We can also remark that when using the
hybrid wave breaking with the Nwogu equations some over-prediction
of the amplitude of the undulating bores is observed.

To have some more insight in the capabilities of the models, we
analyze the water height time series in gauges WG5, WG9, WG10, and
WG12. The plots are reported on Figs. 31 and 32. The dispersive pro-
pagation of the waves is visible in WG5 and, at for the fore side un-
dulating bores, in WG9. We can see that all the models capture correctly

the shoaling of the initial solitary, and that despite a visible phase lag,
provide a quite reasonable amplitude and frequency of the undulating
bores on the fore side, as it can be seen e.g. in the WG5 series on Fig. 31,
for times larger than 70 s, and in WG9 after 80 s. In WG5 we can see
again the over-ampification of the amplitude of the undular bores for
the Nwogu model with hybrid wave breaking.

Concerning breaking, we can see the first breaker approximation
very well reproduced from the WG9 series at time around 34.5 s. The
hydraulic jump forming at 55 s is also well reproduced in amplitude,
albeit with a phase advance. Similar observations can be made when
looking at Fig. 32. The WG12 results, in particular, show an excellent
agreement for the first four bores. All the models give an under-pre-
diction of the water level behind the slowly moving hydraulic jump
which forms behind the main right-going bore (time 38 s). The first
reflected bore at time roughly 50 s, as well as the second hydraulic jump
forming after the second overtopping (time 60 s) are also very well
captured by the models. The later reflections present instead a visible
phase error, albeit correct in amplitude. Lastly, the WG10 results in the
same figure show a nice capturing of the first two overtopping phases,

Fig. 28. Overtopping of a 2D reef. Propagation, shoaling, and overtopping phases.Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. Left: =t 31.8036 s. Middle: =t 32.8132 s. Right: =t 34.5801 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 29. Overtopping of a 2D reef. Bore formation and propagation behind the reef. Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. Left: =t 35.5897 s. Middle: =t 40.7894 s. Right: =t 49.5732 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 30. Overtopping of a 2D reef. Second overtopping and undular bore formation. Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure. Green Lines: hybrid
wave breaking closure. Left: =t 56.5397 s. Middle: =t 60.7297 s. Right: =t 76.7325. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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although an over-prediction of the water height is also observed. The
later overtoppings are affected by a phase advance already mentioned
for the bores responsible for them.

Overall we consider the results quite good for all the models. Some
of the differences w.r.t. the experimental water heights we are con-
vinced that are also due to the definition of this quantity in presence of
air entrainment at the free surface, as it was the case for the experi-
mental breakers. We stress very strongly that with the current im-
plementation the simple TKE breaking closure can handle without any
problem simultaneous breakers of different types, and of different in-
tensities. For this test, as for all the others analyzed in the paper, the
fully nonlinear GN model with TKE closure provides the most robust
combination.

8. Conclusions

We have considered the issue of wave breaking closure when using
weakly dispersive Boussinesq propagation models. We studied weakly
and fully nonlinear models representative of classical and well known
models/codes such as BOUSS-2D (Demirbilek and Nwogu, 2007a,b),
Funwave (Wei and Kirby, 1995; Shi et al., 2012), Coulwave (Lynett and
Liu, 2002; Sitanggang and Lynett, 2005), BOSZ (Roeber and
Cheung, 2012), MIKE21 DHI Developers Group, TUCWave (Kazolea
et al., 2012, 2014), and others. We have in particular focused on the

enhanced equations of Nwogu (1994), and on a frequency enhanced
version of the Green–Naghdi system in the form proposed in
Bonneton et al. (2011), Filippini et al. (2016). We have compared the
now popular hybrid closure initially proposed in Tonelli and
Petti (2009), with an eddy viscosity closure based on an adaptation of
the turbulent kinetic energy closure model of Nwogu (1996), modified
to be consistent with the detection mechanisms proposed of
Kazolea et al. (2014), Filippini et al. (2016), and also used here. The
study performed has involved: a systematic analysis of the behaviour of
the two closures for different mesh sizes; the use of dissipation moni-
tors, consistent with the available theory of entropy dissipation for
conservation laws (Tadmor, 1987b; Tadmor and Zhong, 2008), to study
the dynamics of breaking for several cases; thorough evidence of the
equivalent capabilities of the two approaches to provide satisfactory
results.

Our results indicate that indeed, at least with the (rather standard)
implementation proposed here, both closure approaches allow to de-
scribe correctly wave transformation and breaking at large scales. We
have shown that when using the TKE eddy viscosity closure the nu-
merical dissipation plays a negligible role, which motivates to look for
non-dissipative/energy conserving numerical methods in the future.
Also, the results clearly show the reduced sensitivity to the mesh of this
approach compared to the hybrid one. The analysis of the wave
breaking of solitary waves on a slope also has allowed to quantitatively

Fig. 31. Overtopping of a 2D reef. Free surface time series in wave gauges WG5 (left) and WG9 (right). Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking closure.
Green Lines: hybrid wave breaking closure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 32. Overtopping of a 2D reef. Free surface time series in wave gauges WG10 (left) and WG12 (right). Top row: GN model. Bottom row: Nwogu model. Blue lines: TKE breaking
closure. Green Lines: hybrid wave breaking closure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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study the interplay of the dissipation introduced by friction, eddy
viscosity, and numerical dissipation.

Of course, one has to keep in mind that the computational cost re-
quired by the TKE closure is higher then the one of the hybrid closure.
We judge this overhead justified by the increased robustness.

This preliminary study would benefit from further investigation
using both improved numerics (e.g. energy preserving approximations
in the propagation region), as well as improved models for both the
propagation and for the breaking. The models considered at the mo-
ment present a dependence on the parameters of the detection criteria,
as well as on the coefficients of the TKE equation. Improved models,
including the effects of vertical variations of the flow in both the pro-
pagation and breaking may be considered in future studies (See e.g.
(Briganti et al., 2004; Viviano et al., 2015; Gavrilyuk et al., 2016). The
multi-dimensional case will also have to be studied with attention. In
this case more complex effects may come into the picture, related to the
interaction with transversal variations of the bathymetry (See e.g.
Ketcheson and de Luna, 2015). These effects, and their interaction with
the breaking closure will have to be assessed systematically.
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