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The evolution of large waves in realistic JONSWAP spectra is calculated using the fully
nonlinear wave model proposed by Bateman, Swan & Taylor (2001 & 2003).
Comparisons between wave fields of varying nonlinearity and between “equivalent” deep
and shallow water wave cases confirm that the water depth has a profound influence on
the characteristics of large waves in uni-directional seas. In deep water, the evolution of
large waves is controlled by linear dispersion. However, as the water depth reduces
frequency dispersion is weakened, and the competing process of wave modulation
becomes dominant. As a result, the evolution of nonlinear waves in an intermediate water
depth (¢=15m) is shown to be characterised by a narrowing of the underlying frequency
spectrum in which resonant or near-resonant wave interactions create a quasi-regular
wave pattern, not previously present in the wave ficld, and the modulation between
closely spaced frequency components, or side-band instabilities, leads to the generation
of a large wave event always appearing at the front of an eclongated wave group.
Calculations involving limiting, or near-limiting, wave events suggest that the largest
waves may be characterised by a wave height to water depth ratio of H/d=0.55. This is
significantly lower than the established value of H/@=0.78, commonly adopted in
engineering design, and appears to be consistent with recent laboratory observations
reported by Kamphius (1991b) and Massel (1998).

1. Introduction

This paper concerns the formation of large waves in intermediate and shallow
water depths and, in particular, considers whether recent advances in our
understanding of how large waves evolve in deep water are appropriate to
shallower water depths. In deep water, it is well established that the largest
waves do not arise as part of a regular wave train, but occur as transient events in
random and directionally spread wave fields due to the focusing of freely
propagating wave components. This is the process whereby a large number of
wave crests, corresponding to different frequencies and having different
directions of propagation, are superimposed at one point in space and time. This
produces a large wave crest that rapidly disperses in both space and time.
Historically, these events were investigated using long time-domain
simulation, where the input is based upon either linear or second-order random
wave theory. However, having appreciated the nature of these focusing events,
Tromans et al. (1991) built upon earlier work of Lindgren (1970) and Bocotti
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(1983) and proposed the so-called NewWave model. This describes the expected
or most probable shape of a large linear wave of given height as the scaled
autocorrelation function of the underlying spectrum and thereby eliminates the
need for long time-domain simulations. Comparisons with field data (Jonathan et
al., 1994) confirmed the validity of this approach in deep water; its practical
significance acknowledged by its inclusion in recent API (American Petroleum
Institute) and ISO (International Standards Organisation) guidance notes (Smith
& Birkinshaw, 1996). The purpose of the present paper is to examine whether
similar procedures can be applied in intermediate and shallow water depths. To
resolve this, the evolution of large waves in shallower water is considered and
the role of linear dispersion assessed.

2. Wave modelling

Recent advances in wave modelling allow fully nonlinear predictions of the
evolution of large waves in realistic wave fields, involving a significant spread of
wave energy in both frequency and direction. In particular, Bateman, Swan &
Taylor (2001) provide a highly efficient wave model in which a spatial
description of the water surface elevation, n(x,y), and the velocity potential on
that surface, @(x,y,n) are time-marched using the fully nonlinear free-surface
boundary conditions coupled with a Taylor series expansion of the Dirichlet —
Neumann operator. In a follow-up paper, Bateman, Swan & Taylor (2003) apply
a related approach to accurately describe the internal water particle kinematics
based on the previous solution for 7(x,y) and ¢x,y,n). An essential element of
both of these wave models lies in their computational efficiency. This is not
sought for its own sake, but is an absolute requirement necessary to achieve the
very high resolution in both the wave number and the directional domains,
without which realistic wave fields cannot be successfully modelled. Taken
together these two wave models, hereafter referred to as BST, provide a complete
solution of highly nonlinear transient wave events arising in irregular or random
wave fields, involving significant directional spread. Given that these wave
models provide the basis of the present numerical calculations, a brief review is
included herein.

With the fluid motion assumed to be irrotational a velocity potential,
#(x,y,z,¢), can be defined so that the velocity vector u=(x,v,w)=Vg , where (x,y)
defines horizontal plane at the mean water level (z=0) and z is defined vertically
upwards. If the fluid is assumed to be inviscid and incompressible, the governing
fluid equation representing mass conti112uity is given by Laplace’s equation

Veg=0. )
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This is valid throughout the fluid domain, bounded by a horizontal bed at z=—d
and the water surface at z=n(x,y,z). If the bed is assumed to be impermeable, it
follows that
$,=0 on z=-d. )

At the water surface, z=7#, two nonlinear free-surface boundary conditions apply:
a kinematic condition which ensures that fluid particles located at the water
surface remain there; and a dynamic condition which requires the pressure acting
at the water surface to be constant. After some re-arrangement, these conditions
can be written as:

m=0,-n19.-19,. 3

¢, =-gn—3[Vel' . “)
Within equations (3) and (4) all the time dependence arises on the left-hand side.
Accordingly, given a spatial representation of # and ¢ at some initial time, 1=,
equations (3) and (4) can be time-marched allowing the evolution of the wave
field to be calculated for all times.

To optimise the efficiency of the numerical procedures, for the reasons
noted above, it is important that the problem is formulated in terms of the surface
parameters, # and ¢,.,. This has two over-riding advantages. First, it provides a
dimensional reduction and, second, it allows both » and ¢ to be represented by
Fourier services so that the evaluation of the unknown coefficients (a task
typically undertaken twice per time step) can be rapidly achieved using fast
Fourier transforms. This is fundamental to the success of the scheme since it
ensures that the computational effort increases as Nlog.N, where N is the number
of surface points or twice the number of wave components.

Unfortunately, with ¢ only defined on the water surface the calculation of ¢,
necessary for the evaluation of equations (3) and (4), requires the application of
a Dirichlet-Neumann operator. This problem was first tackled by Craig & Sulem
(1993) for unidirectional waves; with BST providing an extension to include the
effects of directionality. In both cases a so-called G-operator was applied such
that

(0.).., =GNd..,) . (5)
If the water surface elevation, 7¢x,y,# is defined by a Fourier series
+00  +0
nx,y,0=3 Y 4% (6)

k=—o0[=—0

the corresponding velocity potential, satisfying both (1) and (2) is given by

40 +0

P(x,y,2,t) = z Z a, cosh(K(z + dye' ™ @

k=-o0 I=-x
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where A4, and ay, are functions of time only, &£ and / are the wave numbers in the

x and y directions respectively and K = (k2 +/%)"?. Evaluating (7) on z =17,
it follows that:
400 +©
By = D > @K cosh(K (77 +d))e' ™ ®
k=-00 [=—00
400 400
and (¢z )z:n = Z Z ale Slnh(K(ﬂ -+ d))ei(l(x-i-ky). (9)

k=—00 [=—0

Comparing equations (8) (9) and (5) it follows that the transformation implied by
the G-operator simply involves a “multiplication” by K tanh(K (77 + d)) for all
valves of £, [ x and y. To avoid the difficulty of working with a function that
contains information in both the wave number domain (k, /) and the physical
domain (x,y,z), the hyperbolic terms in equations (8) and (9) are re-written as the
Taylor series expansion about #=0, and the G-operator evaluated at various
orders. Full details of this approach are given in BST.

With the fundamentals of the model explained, the only difficulty that
remains is the specification of the initial conditions. In essence, this process
merely involves going back sufficiently far in time, to 1=¢,, so that the wave field
is fully dispersed. With the total wave energy spread across the computational
domain, there can be no large isolated wave events and thus both the water
surface elevation, #(x,y,#), and the velocity potential on the surface, ¢ (x,y,7,1),
can be represented by either a linear solution or a second-order solution based on
the analytical model of Sharma & Dean (1981). Although this process appears
straightforward, the importance of adequately specifying the initial condition
cannot be over-estimated. Further details concerning this essential first step and,
in particular, the application of the model to realistic ocean spectra are given in
Bateman & Swan (2004).

3. Discussion of Results

The numerical calculations presented within this section concern the evolution of
a JONSWAP spectrum defined by

2 4 _tw-ap)?
a a) eXp|: Zmz,az i|
8, (@) = %exp(—ﬂ e (10)

where a=0.0081, f=1.25, 6=0.07 for w<w, and 0.09 for w>w, In each of the
cases presented the peak spectral frequency is given by w,=0.628 rad/s,
corresponding to a peak period of 7,=10s, and the peak enhancement factor is
given by y=2.5.
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To investigate the evolution of large shallow water waves, a large number
of numerical runs have been undertaken. In the present paper we will contrast the
results relating to three wave trains, of varying nonlinearity, evolving over a flat
bed in an intermediate water depth, d=15m. Comparisons between these cases
and equivalent deep water cases will demonstrate the extent to which the
evolution is dependent upon the water depth.

The first case concerns a very small wave event for which the input
amplitude sum, defined by the linear sum of the component wave amplitudes,
was set at 4A=0.05m. With this amplitude sum the wave motion is entirely linear;
the evolution of the wave field is governed by linear dispersion; there are no
changes to the underlying spectrum; the shape of the largest (focused) wave is
identical to the predictions of the NewWave model; and the maximum crest
elevation corresponds directly to the input amplitude sum, #,,,=4. Evidence to
this effect is presented on Figure 1. This concerns a spatial description of the
water surface elevation, #(x), at the time of the focal event and contrasts the
results of the BST with the NewWave predictions for both the deep and
intermediate depth cases.

The results presented on Figure 1 were based on input conditions specified
at £,=-850s, or 85 peak periods prior to the focal event. Given the linearity of
these wave fields, calculations of this duration were clearly unnecessary.
Nevertheless, it ensures that they are consistent with the subsequent nonlinear
calculations, and also provides further validation of the BST model which had
not previously been applied in intermediate water depths. The evolution of the
linear wave field in intermediate depth is further considered in Figure 2. This
provides ten spatial profiles, #(x), at specific times throughout the evolution of
the wave field, -850s < ¢ < 0s. Although not shown, the numerical predictions of
BST are identical to the results of a linear random wave theory (LRWT) based on
the amplitude and phasing of the initial wave components, at 7=-850s.
Furthermore, comparisons between the equivalent linear cases in deep and
intermediate water depth are very similar. Indeed, the only difference is that with
the reduction in water depth, the effectiveness of linear dispersion is reduced,
and consequently the compression of the wave group as it evolves toward the
focal event is less rapid. Nevertheless, it is clear in Figure 2 that the evolution of
the wave group is such that it becomes progressively more compact, giving
higher local energy densities and hence larger maximum crest elevations.

Figures 3 and 4 provide a similar sequence of wave profiles, 7(x), describing
the evolution of a nonlinear wave field (4=5m) in deep and intermediate water
depths. In the deep water case (Figure 3) the evolution is consistent with
expectations: the wave group is widely dispersed at t=-850s and becomes
progressively more compact as the focal event is approached.
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Figure 1. Focused cvents for (a) Deep water and (b) Intermediate water depth (¢=15m). Thin black

line: LRWT and o o BST model.
Although the largest wave event occurs prior to the linearly predicted focus (at
t=-19.2s), it is clear that there has been a significant convergence of energy and,
as a resulit, a large crest elevation arises. The nature of the deep water focal event
is further considered in Figures 5a and 5b: the former describing the amplitude
spectrum, a,(k), at the time of the largest wave event; while the latter contrasts
the nonlinear results of BST with the linear predications (LRWT) based upon the
initial input conditions (#=-850s). It is clear from these figures that the nonlinear
effects are significant. In particular, there is a local broadening of the spectrum
of the freely propagating wave components, with significant energy transferred
to the higher frequencies. This leads to an increase in the local amplitude sum
and hence large maximum crest elevations. Furthermore, there are some local
changes to the phasing of the wave components such that the largest wave is no
longer perfectly focused (Figure 5b). A full discussion of these points is given by
Johannessen & Swan (2003) and Gibson & Swan (2004). Although these
nonlinear effects are obviously important, it is also clear from Figure 3 that they
occur in addition to the domi nant effects of linear dispersion. As a result, the
NewWave model is largely correct but may significantly underestimate the
maximum crest elevation, largely due to the changes in the underlying spectrum
(Figure 5a).
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Figure 2. Evolution of a linear wave train in shallow water based on the BST model, (4=0.05m).

In contrast, the evolution of the nonlinear wave train is an intermediate water
depth (Figure 4) appears fundamentally different from that driven by linear
dispersion (Figure 2). In particular, Figure 4 suggests that wave modulation
rather than dispersive focusing becomes the driving mechanism. Indeed, these
results suggest that from a very early stage (=-450s) resonant or near-resonant
interactions create a quasi-regular wave pattern, not previously present in the
wave field, and that modulation between closely spaced frequency components,
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Figure 3. Evolution of a nonlinear wave train in deep water, (4=5m).
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or side-band instabilities, lead to the generation of a large wave event always
appearing at the front of an elongated wave group. This view is supported by the
fact that over the final 450 seconds (or 45 peak periods) the wave group shows
almost no evolution and, certainly, no evidence that the group is becoming
progressively more compact.
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Figure 4. Evolution of a nonlinear wave train in shallow water, (4=5m).

Further evidence of these changes is provided in Figures 5¢ and 5d. The
former indicates that whilst there is clear evidence of the growth of both
frequency-sum and frequency-difference terms, corresponding to the well known
second-order terms, (Longuet-Higgins and Stewart, 1960), there is an overall
reduction in the spectral bandwidth. This is opposite to that which occurs in deep
water and produces a reduction in the linear amplitude sum. This effect, together
with the absence of energy focusing due to linear dispersion, explains why the
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largest crest elevation is significantly smaller than the focusing event predicted
by linear theory (figure 5d).
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Figure 5. Evolution of spectra and comparisons with linear theory for deep and shallow water.

4. Practical Implications and Concluding Remarks

Having demonstrated that the evolution of large waves in water of intermediate
depth is fundamentally different from both the evolution of “equivalent” deep
water waves and from the predications of the linear NewWave model, it is
instructive to consider how the numerical calculations of BST compare to typical
design wave solutions based on depth-limited wave heights. Although BST is not
able to model over-turning waves, the model has been successfully compared to
laboratory measurements of very steep waves at the limit of wave breaking.
Indeed, the latter were within 2% (in terms of the input amplitude sum) at which
incipient wave breaking was first observed in the laboratory (Johannesson &
Swan, 2001). More importantly, the collapse of the numerical model is
characterised by significant, rapid and non-reversible transfers of energy to the
very high frequencies, immediately preceding the point at which the laboratory
tests indicted that wave breaking occurred. Whilst this does not represent
satisfactory grounds to predict the onset of wave breaking (this can only be
achieved by evidence of over-turning), it does represent a pre-curser to wave
breaking and, as such, provides a reasonable basis on which to estimate a
limiting or near-limiting wave height.

In the present intermediate depth case, the largest input amplitude sum that
could be applied without evidence of wave breaking was 4=9.5m. The evolution
of this wave field is described in Figure 6. The format of this figure is similar to
those considered previously and, once again, for r>-450s a truncated, quasi-
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regular, wave train rapidly evolves. This exhibits very little subsequent evolution
until a modulation-type instability leads to the rapid growth of a large wave crest
at the front of the group. Comparisons between this maximum crest elevation
and a NewWave event based on the input JONSWAP spectrum and scaled to the
traditional depth-limiting criteria, H/d=0.78, are provided on Figure 7. These
confirm the importance of the nonlinear evolution of a wave field. Indeed,
further comparisons involving a wide range of uni-directional wave spectra
suggest that the limiting criteria may be closer to H/d=0.55. Whilst this is clearly
significantly lower than the value of H/d=0.78 commonly adopted in engineering
design, it is consistent with observations reported by Kamphius (1991b) and
Massel (1998).

t=-850sec t=-300sec
-1 6
(@) (e)
4 4
2 i 4 2 A !

2 ol | 2 ol e '

55 Z quAvhUAUn ”U JWWV\AWWWWW - 4 Z 4 }\H \k AA“‘MMWNMWW
3 B A A - ¥ d B
-4 -4

t=-800sec t=-200sec
8 (<]
4 (b) “ o
; it cSmow il
% . P

Eopd Ml Ayﬁw\ } UuuhvﬂuAvAv e Fo 0 WUU V A"\f‘h /
-2 v ] 2 LA
-4 -4

t=-700sec t=-150sec
<] 6
©) (C)]
4 4
2 ) 2 " f1341

o X

& ol Humnly ﬂvﬂ ’UﬂU“nW/th AN F ol ww\{wm \M‘ A\ I\\,(hwﬂ J N —
2 U 2 SAMSE RN |
-4 i a

t=-450sec Focused position (t=-126.2 sec)
° [C)) ° (@)
4 4
g I ; i
Z -~ Al e

? ol e g oo —all
2 HANY 2 R
:24000 -1000 4] 1000 2000 —_24000 -1000 (1) 1000 2000

X

Figure 6: Evolution of the limiting wave train in shallow water, (4=9.5m).
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