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Abstract

Tennekes [Lecture Notes on Turbulence, World Scientific (1989) 32] postulated that the shear produc-

tion term should drop out of the equation for the rate of change of the turbulence macroscale. This

hypothesis has been invoked by some second moment closure modelers, to conveniently fix the value for

one of the constants in the equation for the turbulence length scale. In this note, we examine Tennekes

hypothesis and its impact on second moment turbulence closure models, which are a part of present-day

ocean circulation models.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ever since Baumert and Peters (2000) invoked Tennekes hypothesis (Tennekes, 1989) to
determine one of the closure constants in the equation for the turbulence macroscale, some second
moment closure modelers have embraced this idea wholeheartedly, simply because of its appealing
simplicity (for example, Umlauf and Burchard, 2003; Kantha, 2004). Another reason is that the
constant determined in this fashion is fairly close in value to that determined by other means.
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However, Tennekes hypothesis has not been examined critically as to its validity and impact. In
this note we correct this oversight.

For the sake of uniformity, we will follow the notation of Umlauf and Burchard (2003, UB
henceforth) and Kantha and Carniel (2003, KC henceforth), instead of that used by Kantha
(2004). Following KC, it is possible to write a conservation equation for a generic quantity
w ¼ ðc0lÞ

pkm‘n involving the macro-length scale of turbulence ‘, which is of the form
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where the first two terms on the RHS denote turbulent diffusion of w; P is the shear production, G
is the buoyancy production/destruction, and e is the dissipation of turbulence kinetic energy
(TKE). The quantities rw; c0l; cw1; cw2 and cw3 are closure constants and mt is the turbulent viscosity.

The quantity k, the TKE, is given by the conservation equation:
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where once again, the first term on the RHS is the turbulent diffusion of k. The quantity rw
k is

another closure constant. rw and rw
k are Schmidt numbers. Along with the stability functions that

control the value of turbulent viscosity, Eqs. (1) and (2) constitute a two-equation model of
turbulence (see KC).

The exponents p;m and n take particular values for the different turbulence length scale
equations that have been used in the past: (i) k � e model: p ¼ 3, m ¼ 3=2, n ¼ �1; (ii) k � x
model: p ¼ �1, m ¼ 1=2, n ¼ �1; (iii) k � ks model: p ¼ �3, m ¼ 1=2, n ¼ 1; (iv) k � k‘ model:
p ¼ 0, m ¼ 1, n ¼ 1; (v) k � ‘ model: p ¼ 0, m ¼ 0, n ¼ 1; and (vi) k � s model: p ¼ 0, m ¼ �1=2,
n ¼ 1. Quantity x is the turbulence frequency and s ¼ k=e is the turbulence time scale. The closure
constants are determined by the equations:
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The first two conditions are obtained by appealing to the logarithmic law of the wall, the third one
to the decay of homogeneous turbulence, where d is the decay rate with time of TKE and the last
two to the experiments on spatial decay of turbulence in a tank away from a stirring grid that
generates the turbulence at one end of the tank. The quantity j is the von Karman constant, with
a traditional value of 0.4. Experiments show that d has a value slightly lower than )1 (for
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example, Batchelor and Townsend, 1948; Comte-Bellot and Corrsin, 1966; Gad-El-Hak and
Corrsin, 1974), whereas theoretical considerations (Dickey and Mellor, 1980; Domardzki and
Mellor, 1984) dictate that d ¼ �1 be the asymptotic value for high Reynolds number turbulence
and that a be )2. The quantity R is c0l=cl with cl determined from the specific algebraic closure
model used. L is around 0.2. See KC for more details.

It is possible to derive an equation for the length scale ‘ from Eqs. (1) and (2). Ignoring dif-
fusion terms, we get (see UB):
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Tennekes (1989) hypothesized that on dimensional grounds, ‘ cannot depend on the ambient
shear for a neutrally stratified ðG ¼ 0Þ homogeneous shear flow. Since shear production P in-
volves shear, the first term must then vanish, which in turn yields (see also Baumert and Peters,
2000, UB, KC):
cw1 ¼ m ð5Þ

Thus one of the constants in Eq. (1) is conveniently determined by this hypothesis and this value is
close to that determined by alternative means. Consequently, Tennekes hypothesis has been used
in recent years by some second moment closure modelers.

However, using the value determined by Eq. (3) for cw2, Eq. (4) becomes
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for neutrally stratified flows. Since d has a value ranging from )1 to )1.2, the RHS is positive and
this leads to an unlimited exponential growth of ‘ in the idealized case of a homogeneous, infinite-
extent, neutrally stratified flow. The experiment of Tavoularis and Karnuk (1989) confirms this.

However, the elimination of the production term in Eq. (4) implies that this unlimited growth
occurs for all neutrally stratified flows, if the diffusion terms are negligible. This may be unde-
sirable. Moreover, as shown below, a choice for a slightly different value for cw1 leads to a better
agreement of the model P=e with the experimental value from Tavoularis and Karnuk (1989) for
the homogeneous, neutral flow.

For an equilibrium solution to be possible in the absence of diffusion then,
cw1 > m ðfor n < 0Þ and cw1 < m ðfor n > 0Þ ð7Þ
An equation can also be derived for the turbulence time scale s from Eqs. (1) and (2). Once again,
ignoring diffusion terms (see UB):
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Using the value determined by Eq. (3) for cw2, for neutrally stratified flows, Eq. (8) becomes
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Once again, for equilibrium state to be possible in the absence of diffusion,
cw1 > ½mþ ðn=2Þ� ðfor n < 0Þ and cw1 < ½mþ ðn=2Þ� ðfor n > 0Þ ð10Þ

Eqs. (7) and (10) are constraints that the closure constant cw1 must satisfy.
2. An alternative to Tennekes hypothesis

Let
cw1 ¼ mþ bn ð11Þ

where b is a small negative constant. From Eq. (3):
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If we choose L ¼ 0:2, then rw
k ¼ 0:8 (irrespective of the value of m and n), the commonly used

value (see UB, KC). Constant n is arbitrary. In addition, we need to choose the value of d and of
course b.

To determine the value of b (or equivalently cw1), we appeal to measurements of homogeneous
shear turbulence by Tavoularis and Karnuk (1989), which indicate a value of about 1.6 for P=e in
this flow. We rewrite Eqs. (1) and (2) for a homogeneous neutrally stratified flow as
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using the fact that the (kinematic) shear stress can be written as �uw ¼ mt dUdz ¼ ðc0lÞ
4 k2

e S, where S is

the shear. Seeking solutions of the form k ¼ k0exSt, e ¼ e0exSt, w ¼ w0e
axSt, it is easy to show that

Eqs. (13) and (14) yield
P
e
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where a ¼ mþ n
2
, which follows from e ¼ ðc0lÞ
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n. Eq. (15) helps determine the value of

cw1 (or equivalently b) once cw2, which depends only on the value of d, is chosen. Substitution of
(15) into (9) shows that the turbulence time scale s is a constant, in agreement with observations.

If we choose d ¼ �1:2, following UB, it is easy to show from Eq. (12) that for the k � e model,
cw1 ¼ 22=15 if we choose n ¼ 0, and cw1 ¼ 3=2, for n ¼ �1=3 (UB value). Both these values for cw1
violate the constraint (7). Therefore d cannot be chosen as )1.2 unless we choose n < �1=3.

On the other hand, if we choose the asymptotic value of )1 for d, following Mellor and
Yamada (1982) and Kantha and Clayson (1994), cw2 ¼ m� n

2
. For the k � ks model for which

m ¼ 1=2, n ¼ 1, this gives cw2 ¼ 0. Any value of d < �1 will also work, including a value inter-
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mediate between d ¼ �1 and )1.2. However, in the following analysis, we follow UB and choose
d ¼ �1:2. Using the experimental value of 1.6 for P=e in Eq. (15)
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Eq. (16) determines the closure constants needed in two-equation closure models. Note that the
use of the experimental value of P=e in homogeneous, neutrally stratified flow to determine the
closure constant is nothing new, and k � e modelers have done so in the past (see Pope, 2000;
Durbin and Pettersson Reif, 2001). Table 1 shows the values of these constants for different
models. These values satisfy both constraints (7) and (10). Note that for the UB model, the value
of P=e for neutral homogeneous shear flow is 1.66, but still within the experimental uncertainty.
Since Eq. (1) is equivalent to
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where the quantity u ¼ wr ¼ ½ðc0lÞ
pkm‘n�r ¼ ðc0lÞ

�pk �m‘�n and r ¼ 1þ n (see KC), the values of model
constants �p; �m; �n; r; cu1 and cu2 are also shown in Table 1 (and Table 2 below). Note that ru ¼ rw
1

l parameters for d ¼ �1:2

del p m n cw1 cw2 rw
k rw n r �p �m �n cu1 cu2

e 3 3/2 )1 73/48 11/6 0.8 1.104 )0.353 0.647 1.94 0.97 )0.647 0.984 1.186

x )1 1/2 )1 25/48 5/6 0.8 0.853 )0.7 0.3 )0.3 0.15 )0.3 0.156 0.250

k‘ 0 1 +1 47/48 2/3 0.8 0.179 )1.105 )0.105 0 )0.105 )0.105 )0.103 )0.07
ks )3 1/2 +1 23/48 1/6 0.8 0.853 )1.5 )0.5 1.5 )0.25 )0.5 )0.240 )0.083
‘ 0 0 +1 )1/48 )1/3 0.8 0.522 )1.306 )0.306 0 0 )0.306 0.006 0.102

s 0 )1/2 +1 )25/48 )5/6 0.8 0.261 )1.3 )0.3 0 0.15 )0.3 0.156 0.25
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del p m n cw1 cw2 rw
k rw n r �p �m �n cu1 cu2

e 3 3/2 )1 13/8 2 0.8 1.067 )1/4 0.75 2.25 1.125 )0.75 1.219 1.5

x )1 1/2 )1 5/8 1 0.8 0.711 )7/10 0.3 )0.3 0.15 )0.3 0.188 0.3

k‘ 0 1 +1 7/8 1/2 0.8 0.225 )22/19 )0.158 0 )0.158 )0.158 )0.138 )0.079
ks )3 1/2 +1 3/8 0 0.8 0.711 )3/2 )0.5 1.5 )0.25 )0.5 )0.188 0

‘ 0 0 +1 )1/8 )1/2 0.8 0.328 )16/13 )0.231 0 0 )0.231 0.029 0.115

s 0 )1/2 +1 )5/8 )1 0.8 0.427 )13/10 )0.3 0 0.15 )0.3 0.188 0.3
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and cu1 ¼ rcw1 . . . Note that for the k � ks model, the last equation in (3) is trivially satisfied and
adds no information and hence n is arbitrary as long as n < �1. We chose n ¼ �1:5 for this case.

If however, we choose d ¼ �1
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8
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Table 2 shows the values of the resulting constants for different models. Note that the values of
the constants cw1 and cw2 are 0.875 and 0.5 for the k � k‘ model, close to the equivalent values (0.9
and 0.5) chosen by Mellor and Yamada (1982), (see also Kantha and Clayson, 1994) originally for
the constants E1 ¼ 1:8 and E2 ¼ 1 in their model.
3. Concluding remarks

Since the spreading rate of free shear layers is determined by the value of ðP=eÞ � 1, which is

equal to
cw2�cw1

cw1� mþn
2ð Þ, it is the difference cw2 � cw1 ¼ n

d
ðP=eÞ�1

P=e

h i
that is more important than the indi-

vidual values of cw2 and cw1. For the k � e model, ce2 ¼ 1� 1
d; ce1 ¼ 1� 1

dðP=eÞ. Laboratory exper-

iments on free shear layers indicate ðp=eÞ ¼ 1:60� 0:2 (see Tavoularis and Karnuk, 1989 for a
summary). The traditional k � e model values ce1 ¼ 1:44, ce2 ¼ 1:92 (Durbin and Pettersson Reif,
2001) give d ¼ �1:087 and ðP=eÞ ¼ 2:09, the latter clearly well above the upper limit of experi-
mental uncertainty. The revised values (Umlauf and Burchard, 2003) ce1 ¼ 1:50, ce2 ¼ 1:833 give
d ¼ �1:2 and ðP=eÞ ¼ 1:667, the latter well within the experimental uncertainty. Since the value of
d fixes the value of ce2, it is the value of ðP=eÞ for free shear layers that should determine the value
of ce1. The possible range of values is as follows: for d ¼ �1:2, ce2 ¼ 1:833 and ce1 ¼ 1:595, 1.521
and 1.463 for ðP=eÞ ¼ 1:4, 1.6 and 1.8; for d ¼ �1, ce2 ¼ 2 and ce1 ¼ 1:714, 1.625 and 1.556 for
ðP=eÞ ¼ 1:4, 1.6 and 1.8; and for d ¼ �1:087, ce2 ¼ 1:44 and ce1 ¼ 1:657, 1.575 and 1.511 for
ðP=eÞ ¼ 1:4, 1.6 and 1.8. We have elected to choose ðP=eÞ ¼ 1:6. Note however, that the differ-
ence in the performance of the k � e model with constants chosen from Table 1 ðre ¼ 1:104; ce1 ¼
73=48 ¼ 1:521; ce2 ¼ 11=6 ¼ 1:833Þ or Table 2 (re ¼ 1:067, ce1 ¼ 13=8 ¼ 1:625, ce2 ¼ 2:0), and
that of the UB generic length scale model ðre ¼ 1:22; ce1 ¼ 1:5; ce2 ¼ 11=6 ¼ 1:833Þ is very small.
The difference in the TKE distributions is almost imperceptible, while the difference in the eddy
viscosity distributions is noticeable but very small. Consequently, invoking or abandoning
Tennekes’ hypothesis does not have a major impact on two-equation turbulence model results.
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