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Abstract

The paper discusses an artificial neural network (ANN) approach to project information on wind speed and waves collected by the TOPEX
satellite at deeper locations to a specified coastal site. The observations of significant wave heights, average wave period and wind speed at a number
of locations over a satellite track parallel to a coastline are used to estimate corresponding values of these three parameters at the coastal site of interest.
A combined network involving an input and output of all the three parameters, viz., wave height, period and wind speed instead of separate networks
for each one of these variables was found to be necessary in order to train the networkwith sufficient flexibility. It was also found that network training
based on statistical homogeneity of data sets is essential to obtain accurate results. The problem of modeling wind speeds that are always associated
with very high variations in their magnitudes was tackled in this study by imparting training in an innovated manner.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Increased marine activities in recent years have enhanced the
requirement of more and improved knowledge of wind speed
and wave characteristics in coastal and nearshore regions. In
particular, the wave parameters, which are of varying
operational utility, include significant wave height and average
wave period. One of the most commonly used instruments to
provide ocean wave data is a wave rider buoy that floats on the
sea surface. However deployment of such data collection
system and its maintenance over a long period of time is costly
and can be unaffordable for many developing countries. On the
contrary satellites gather vast quantities of ocean wind and wave
data worldwide and such measurements are available relatively
cheaply compared to those obtained from the wave rider buoy.
However corresponding information is more useful in deeper
sea with open or exposed locations rather than nearshore
locations involving complex bathymetric effects like shoaling,
refraction and diffraction over smaller spatial intervals. The
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present study addresses the problem of projection of deep water
satellite measurements pertaining to wind speed, wave height
and wave period into the coastal area by using artificial neural
network. The study would show that the neural networks can be
trained with samples of buoy data and can be further used for
routine wave forecasting at a given coastal station based on the
input of continuous satellite wave observations and without
further recourse to costly buoy deployment. In other words it
would indicate that the wind and wave data at a given nearshore
location can be derived from deep water satellite measurements
and neural networks with an initial help from the buoy
observations, which in turn may become redundant later on
for applications like derivation of design long term waves or of
clear weather windows in order to carry out long duration
construction activities. Hence the rider buoy can be moved
elsewhere, achieving its optimum utilization.

Currently numerical modeling is a popular tool to determine
the corresponding changes where historical and current wind
and other met–ocean input is used to convert wind information
to waves. Theoretical details of the recent numerical models in
use can be looked into in Young (1999), Booij (1999) and Edge
and Hemsley (2001). Although numerical models are
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Fig. 1. RBF Neural network architecture.
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universally used in wave analysis and forecasting, attempts
have been made in recent past to supplement the numerical
results with other techniques like statistical and neural and these
include Kobayashi and Yasuda (2004) and Kanbua et al. (2005)
who used Kalman Filter and neural networks, respectively, to
predict wave heights for the next time step from their values at
the current time step yielded by the WAM model. The
encouraging results of these efforts indicate that such new
techniques to estimate wave conditions at the desired location
should be welcomed.

The current study presents development of ANN in order to
obtain the daily significant wave height, average zero-cross period
and wind speed at a specified coastal location from corresponding
satellite-sensed values in deeper locations. This study goes
beyond the earlier works of authors, namely Kalra et al. (2005a,b)
in that it deals with the projection of wave period as well as wind
speed in addition to that of the wave height only reported in those
studies and involves much larger data base for both training and
testing than the one covered earlier. Alternative innovative ways
of network training not attempted earlier is another distinct feature
of the present work.

2. The network

An artificial neural network is normally used to map any
random input vector with the corresponding output vector
without the necessity of understanding the physical process
involved. It can be used to model a cause–effect relationship as
well as a temporal one and a spatial relationship. Most common
type of network for engineering applications is Multi-Layered
Perceptron (MLP), which has the ability to approximate any
continuous function. It has three basic layers of neurons,
namely, input, hidden and output layers. The hidden layers
could be more than one, if dictated by the problem to be studied.
Each neuron or node sums up the weighted input, adds a bias
term to it, passes on the result through a squashing function and
transmits the product to neurons in a subsequent layer. Details
of concepts involved in neural networks could be seen in books
like Kosko (1992), Wu (1994) and Wasserman (1998). Typical
applications in problems related to water flows could be seen in
The ASCE Task Committee (2000). Some of the recent studies
involving wave analysis and forecasting are given in Deo and
Naidu (1999), Krasnopolsky et al. (2002), Huang et al. (2003),
DelBalzo et al. (2003), Makarynskyy (2004), Tolman et al.
(2004), Altunkaynak and Ozger (2004), Makarynskyy et al.
(2005) and Lee (2006).

A neural network is trained from examples before its actual
application. Training comprises presentation of input and output
pairs to the network and derivation of the values of connection
weights, bias or centers. The training may require many epochs
(presentation of complete data sets once to the network).
Generally the network is presented with an input and output pair
till the training error between the target and realized output
reaches the error goal.

In the present study the MLP, configured as per the relatively
recent and advanced architecture called Radial Basis Function
(RBF), was used. Like a general MLP, the RBF is also a feed
forward network, but always has only one hidden layer and
involves an unsupervised training component in it unlike the
general MLP where only supervised learning is incorporated



Fig. 2. Schematic coastline of India and location of the site.

Fig. 3. Comparison of network derived and observed significant wave heights.
(Network: 19×6×1).
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(Leonard et al. 1992). Further it differs from the MLP while
treating data non-linearity through the hidden nodes. While the
former effects this through a fixed function such as sigmoid, the
latter captures the same directly from the training examples. The
input to each RBF neuron is treated as a measure of the diffe-
rence between data and a ‘centre’, which is a parameter of its
transfer function. (Fig. 1). The transfer function of the neuron
indicates the influence of data points at the centre. Generally
this function is Gaussian and its center can be chosen either
randomly from the training data or iteratively trained or derived
using techniques like K-means, Max–min algorithms, Kohonen
self-organizing maps. After this unsupervised learning and
cluster formations the weights between the hidden and output
layer neurons are determined by multiple regression in a
supervised manner. The concept of such fragmented learning is
borrowed from certain biological neurons (doing say visual
recognition), which function on the basis of ‘locally tuned
response’ to sensing. The RBF does not involve iterative
training and hence much of the training time is saved.
Mathematically the output yj, ( j=1, 2,… m; where m=number
of output nodes) of an RBF network corresponding to input x
(refer to Fig. 1) is computed by the equation:

y ¼ f xð Þ¼
Xn
i¼1

wjiu jj x−ci jj þ w0 ð1Þ

where wji=connection weight between the i-th hidden neuron
(of n numbers) and j-th output neuron; x=input vector, w0=bias.
φ∣∣x− ci∣∣ indicates a radial basis function which is normally
Gaussian having following expression:

u jj x−ci jj ¼ exp −
jj x−ci jj 2

2r2i

 !
ð2Þ

where ci are centres and σi are widths of the Gaussian function
which are indicative of the selectivity of a neuron.
3. The database

The study area pertained to the western side of the Indian
coastline (Fig. 2). A radar altimeter aboard the satellite
‘TOPEX’ collected the remotely sensed information. Observa-
tions of the significant wave heights (Hs), average zero-cross
wave period (Tz) and wind speed (u) made by this satellite
along its various tracks in deep water for the years 1998, 2001,
2002, 2003 and 2004 were available for this study along with
the wave rider buoy measurements taken during this period at
the coastal location SW (15.367°N and 73.751°E, water depth:
25 m). The satellite data were sensed along different tracks and
at several points over a given track. The tracks repeated
themselves after an interval of 10 days. For mapping purpose
the desirable input of deep water waves would have belonged to
a fixed path roughly parallel to the western coastline (See Fig. 2)
from where the waves driven by wind and controlled by bottom
refraction, diffraction could propagate to the coastal location of
SW. However such input information was difficult to get due to
the changing position of the track. Hence satellite data closest to
the selected ideal track, which in turn was near the coastline,
were selected at one-degree intervals of the latitude. Daily
observations of significant wave heights, wave period and wind
speed collected in this way over 10° above and 10° below the
central deep location DS (15.236°N and 69.371°E, water depth:
3800 m), and including it, and falling along the ideal track



Table 1
The testing error measures

Network Input Output r mae rmse

{Hs in m Tz
in s u in m/s}

{Hs in m Tz
in s u in m/s}

1 Hs Hs 0.85 0.30 0.41
2 Tz Tz 0.81 0.57 0.70
3 u u 0.49 1.30 1.60
4 Hs, Tz, u Hs 0.90 0.24 0.31

Tz 0.85 0.53 0.64
u 0.47 1.36 1.70

5 (monsoon) Hs, Tz, u Hs 0.95 0.21 0.26
Tz 0.90 0.30 0.47
u 0.69 1.36 1.63

6 (non-monsoon) Hs, Tz, u Hs 0.88 0.08 0.09
Tz 0.90 0.18 0.24
u 0.86 0.62 0.76
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formed the input to the network while the output belonged to the
projected daily significant wave height, average zero-cross
wave period and wind speed at the coastal location SW. For the
purpose of network training simultaneous measurements made
by a rider buoy at station SW were utilized, with the
understanding that for routine application of this network,
deployment of the buoy after initial calibration period was not
necessary. Getting simultaneous observations at so many
Fig. 4. Comparison of network derived and observed wave period. (Network:
19×8×1).

Fig. 5. Comparison of network derived and observed wind speed. (Network:
19×5×1).
locations during the entire duration of analysis was difficult
and the given measurements sometimes suffered from lack of
data at all the points. For network training gaps over a few days
were filled up by linear interpolation; however no such attempt
was found to be necessary during testing.

4. Network testing and validation

Five different networks were developed. For the first
network, the satellite-sensed data of significant wave heights
at 19 locations over a track parallel to the coastline were used to
estimate the corresponding significant wave height at the
coastal location SW. The deep water waves from any of these
locations can strike the coastal location, SW. The number of
such input locations was decided as a trade-off between the need
to account for waves coming from a wider deep region and
avoidance of a situation where the network becomes un-
parsimonious against the given sample size. The number of
input and output nodes for the networks was 19 and 1
respectively. The number of hidden nodes for the RBF gets
determined in the mathematical training process and this was 6
in the present network. About 80% of the available data
(continuous over the years 2001–2004) were used for
calibrating the network and the remaining ones (of the year
1998) were employed to test or validate it. The observations



Fig. 6. Comparison of network derived and observed wave and wind parameters. (Network: 57×16×3), A. Significant wave height Hs (m), B. Wave period Tz (s),
C. Wind speed u (m/s).
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pertaining to the year 1998 were somewhat less gappy and more
consistent and hence were selected for testing. Fig. 3 shows the
time history as well as the scatter plot-based comparison
between the actual significant wave heights and their predic-
tions made by the network. Generally satisfactory match
between the two may be noted. This was confirmed by values



Table 2
Statistics of the observed data

Monsoon months Non-monsoon
months

Yearly

Hs
(m)

Tz
(s)

u
(m/s)

Hs
(m)

Tz
(s)

u
(m/s)

Hs
(m)

Tz
(s)

u
(m/s)

Mean 1.92 7.59 7.11 1.12 5.93 4.43 1.58 6.69 5.74
Standard
deviation

0.58 1.40 2.45 0.36 1.09 1.97 0.86 1.60 3.17

Skewness 0.11 0.61 0.14 0.88 0.99 0.18 1.63 1.16 0.67
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of the error measures, namely, the correlation coefficient, r, the
mean absolute error, mae and the root mean square error, rmse
(see the first row of Table 1). Expressions for these measures
could be seen in Appendix 1. The magnitude of r for the first
network (Fig. 3) was high as 0.85, while the same of mae, rmse
were low as 0.30 m and 0.41 m respectively, indicating
satisfactory working of this scheme.

The second and the third network corresponded to projection
of the zero-cross wave period only and thereafter the wind speed
only. Hence the number of input and output nodes for the two
networks was 19 and 1 respectively. The number of hidden
nodes for the second network was 8 and for the third was 5. The
second and the third row of Table 1 respectively show the
testing performance of these networks. The magnitude of r,
mae, rmse for the second network producing the output of Tz
was 0.81, 0.57 s and 0.7 s respectively. Variability among the
observed values of Tz is normally high compared to that of Hs
and hence their prediction accuracy can be expected to be
relatively low. As regards the outcome of wind speed is
concerned the associated correlation coefficient was 0.49 while
the mean absolute and the root mean square errors were 1.3 m/s
and 1.6 m/s. Wind speed is a quantity that varies highly
randomly (along with its direction) and this has been reflected in
relatively less accuracy obtained. Time history as well as the
scatter plot-based comparison of second and third network is
shown in Figs. 4 and 5 respectively.

In order to improve on the testing accuracy a few more
networks were developed as described below. The satellite-
sensed values of wind speed in deeper locations along with
those of wave heights and wave period were given as input to
obtain these three parameters in coastal locations. The number
of input and output nodes was 57 and 3 respectively and the
number of hidden nodes was 16. It was found by comparing the
resulting testing performance (row 4 of Table 1, Fig. 6) with
earlier error measures that the use of all the three parameters of
significant wave height, wave period and wind speed added
sufficient flexibility to the modeling involved resulting in
improvement in the prediction of wave height and wave period
but there is no considerable change in the wind speed mapping.
The large variations in wind speed do not seem to have been
addressed in this way.

It was then thought worthy to examine if the accuracy of
results could be improved by splitting the data as per their
statistical homogeneity into two separate populations of
monsoon months (May to October) and non-monsoon months
(November to April). Table 2 shows the data statistics namely
mean, standard deviation and skewness for the monsoon and
non-monsoon months. As expected the monsoon values have
high mean, high standard deviation and low skewness than the
non-monsoon observations. The above network was trained and
validated for the two seasons. The number of input and output
nodes was 57 and 3 respectively and the number of hidden
nodes was 42 for monsoon and 35 for non-monsoon period. In
case of all the RBF networks used in this study it was ensured
that the number of training patterns was larger than the number
of unknowns required to be determined. The performance of the
networks for the two periods is given in Figs. 7 and 8 and rows 5
and 6 (Table 1) which show that there is an increase in the
accuracy levels for the wave height and period and significantly
larger increase in the accuracy in respect of the wind speed,
whose accuracy now goes close to that of wave height and
period. Network training done on the basis of statistical
homogeneity thus paid rich dividends compared with that
aimed merely at bringing additional flexibility in the mapping
process. Significant difference in the statistics of wind speed for
the two populations (Table 2) has contributed to its highest gain
in accuracy when such training was used, compared to the cases
of wave height and period. Since long investigators (e.g. More
and Deo, 2003) have been struggling to carry out accurate
spatial mapping of the wind speed. The present work shows
encouraging results in this regard.

A comparison of the above results of derivation of wave
heights with the earlier works of authors (Kalra et al., 2005a,b)
indicates that the wave height estimation done in the present
work for monsoon months is more accurate than the same based
on an annual data set as earlier. However this is not so clearly
established for the non-monsoon months. Nonetheless it should
be noted that the present study is based on a larger database and
accordingly has more reliability in results.

The coefficient of correlation (as against the other error
measures used) in respect of the significant wave height
estimation for non-monsoon months is lower than the same for
the monsoon months. A possible reason behind this could be
that the non-monsoon heights have relatively high skewness,
which makes their linear correlation with corresponding
predictions weaker.

It may appear that the current study involved only a simple
mapping of the input–output vectors for which complexity of the
neural networks might not be required and hence the same work
could be aswell carried out by the traditional statistical regression.
In order to investigate this aspect a linear as well as a non-linear
regression equation was derived and fitted to the training data of
the fifth network described above. The equations are indicated in
Appendix 2. The regression when validated with respect to the
testing pairs indicated a high level of discrepancy between the
predicted and the observed parameters of wave height, wave
period and wind speed at the coastal location. The error measures
given in Table 3 confirm relatively very poor performance of the
regression as reflected in significantly lower values of ‘r’ and
higher values of mae and rmse compared to the neural network.
This was true for both monsoon as well as non-monsoon months.
The regression-based predictions of Hs, Tz and u for non-



Fig. 7. Testing performance for monsoon months (Network: 57×42×3), A. Significant wave height Hs (m), B. Wave period Tz (s). C. Wind speed u (m/s).
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Fig. 8. Testing performance for non-monsoon months (Network: 57×35×3), A. Significant wave height Hs (m), B. Wave period Tz (s), C. Wind speed u (m/s).
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monsoon months involve a higher difference with corresponding
ANN predictions than the same for the monsoon months. The
relatively high skewness of the non-monsoon data seems to the
underlying reason.
The study reported in this paper pertained to locations in the
Arabian Sea where wave conditions may not be as complex as
they may exist elsewhere say around Hawaii due to the sheltered
area and absence of multiple swell penetrations. This might



Table 3
Comparison of results of ANN and regression

Monsoon months Non-monsoon months

r mae (m) rmse (m) r mae (m) rmse (m)

Significant wave height (m)
ANN 0.95 0.21 0.26 0.88 0.08 0.09
LR 0.63 0.42 0.56 0.38 0.16 0.20
NLR 0.66 0.40 0.57 0.40 0.17 0.20

Wave period (s)
ANN 0.90 0.30 0.47 0.90 0.18 0.24
LR 0.52 0.78 1.00 0.31 0.58 0.71
NLR 0.64 0.66 0.88 0.41 0.56 0.67

Wind speed (m/s)
ANN 0.69 1.36 1.63 0.86 0.62 0.76
LR 0.33 2.34 2.81 0.36 1.33 1.53
NLR 0.37 2.87 1.36 0.40 1.18 1.20

LR — Linear Regression Model. NLR — Non-linear Regression Model.
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have made the offshore–coastal mapping process easy. The
repeatability of this exercise at other locations needs to be
assessed in future. However because neural networks are
essentially used to carry out highly non-linear and complex
mapping exercises, innovative training schemes coupled with
latest algorithms can be expected to produce useful solutions in
such complex situations as well. Similarly it may be seen that
regression techniques completely failed to predict the wind
speeds, indicating that unlike ANN it cannot take into account
the larger variations in input at any acceptable level of accuracy.

5. Conclusions

The paper showed how values of the wind speed and the
wave period along with those the wave height sensed by a
satellite in deep region can be used to derive their transformed
values over a specified coastal location with the help of ANN.

Separate networks to cater to the monsoon and the fair
weather season produced more accurate predictions than a
network that is common to all seasons. Incorporation of
statistical homogeneity of measured values in network training
thus can effectively tackle highly random variations in the input.
The larger the difference between the seasonal statistics, the
better is the gain in accuracy of the results.

An accurate spatial mapping of the wind speed with the help
of ANN is a difficult problem to solve due to tremendous
variations in their magnitudes over shorter durations. As shown
in this study development of separate networks for statistically
homogeneous measurements could be an effective way to tackle
this problem.
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Appendix 1. The error measures used:

Correlation coefficient (r),

r ¼
P

xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2
P

y2
p ð3Þ

where x=(X− X̄ ), y=(Y− Ȳ ), X=observed values, X̄ =mean of
X, Y=predicted value, Ȳ =mean of Y. The summation in the
above equation as well as in the following two equations is
carried out over all ‘n’ number of testing patterns.

Mean absolute error (mae),

mae ¼
P jX−Y j

n
ð4Þ

Root mean square error (rmse),

rmse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

X−Yð Þ2
n

s
ð5Þ

Appendix 2. The multiple regressions

Multiple regression equations were developed using the
training set of data discussed in the earlier sections. The
resulting equations were as follows:

Linear regression equation Hs ¼ A½ �1�57 X½ �57�1 þ B ð6Þ

Non� linear regression equation

ln Hsð Þ ¼ a½ �1�57 X½ �57�1 þ b

ð7Þ

where [A] and [a] are coefficient matrices, [X] is a matrix of 57
input (variables) of the offshore region (sensed by the satellite)
namely, wave height, Hs in m, wave period, Tz in s, wind speed,
u in m/s for all the 19 offshore locations. B and b are constants.
The above equations were also established for wave period, Tz
and wind speed, u at the coastal location.
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