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Abstract

On the basis of an eddy viscosity assumption compatible with the
two-layer model (wall and defect layers) of the turbulent boundary
layer, a method of ecalculating various characteristics of the wave
boundary layer, such as the friction coefficient, universal profiles of
the stress and velocity in the defect layer have been developed.

Numerical results show that amplitude and phase of the friction
coefficient increase with the decrease of the amplitude of the reference
velocity and/or the period of wave. The criteria for the smooth-rough
and laminar-turbulent transitions are also suggested from the analogy
to the case of steady flow.

Most of the experimental data on the friction coefficint and the.
velocity profile in a wave boundary layer seem to be favorably compared
with the prediction derived from the present model.

1. Introduction

The knowledge about bottom friction under waves is required to
understand various phenomena related to wave modification and sediment
movement in shallow water. Although the case of laminar flow has
been clarified to a considerable degree by Iwagaki et al. (1967), the
structure of the turbulent frictional boundary layer under waves is not
well understood, so that the friction law applicable to the oscillatory
turbulent flow is quite ambiguous.

Bagnold (1946) was the first to give an empirical formula of the
friction coefficient of the quadratic friction law for an oscillatory flow
in the presence of artificial ripples. He found that the friction co-
efficient . decreases with the increasing excursion distance; namely with
increasing period and/or the amplitude of velocity oscillation. Putnam
and Johnson (1949) took Bagnold’s formula into account and adopted
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0.01 as a reasonable value for the friction coefficient for wind waves
and swells in their discussion of the dissipation of wave energy in
shallow water. However, the field observations of wave decay in shallow
water by Bretchneider (1954) and by Iwagaki and Kakinuma (1965)
indicated much larger values than 0.01 for the friction coeflicient, and,
in particular, the results by the latter showed the tendency of the
friction coefficient to decrease with the increase of wave period. On
the other hand, laboratory experiments on wave decay over a sandy
bottom were presented by Savage (1953), Inman (1962), and Zhukovets
(1968). According to Savage (1953), the wave decay depends on the
stage of the development of sand ripples compatible to the existing
water wave, and the energy dissipation is smaller in the final, stable
state compared with the initial, unstable state of sand ripples. This
indicates the important difference between the artificial ripples and the
natural sand ripples.

In the ordinary method of bottom stress estimation by means of
the energy dissipation of waves, the phase difference between the
reference velocity and the bottom stress is not explicity taken into ac-
count, although the energy dissipation is related to the in-phase
components of the bottom stress and the reference velocity. It is well
known that, for a laminar case, the bottom stress and the water particle
velocity just outside the wave boundary layer have the phase difference
of m/4, and, for the turbulent case, too, the phase difference is expected
if the boundary layer is very thin. Indeed, Lukasik and Grosch (1968)
found a thin wave boundary layer in their field observation of ocean
swell. Since the bottom friction and the phase difference between the
bottom stress and the reference velocity are intimately related to the
velocity profile near the bottom, it is very important to study the
structure of the wave boundary layer. However, this kind of study is
very rare, except for the observation in tidal currents, because of the
difficulty of observation. In this regard, Jonsson’s contribution (1963)
is important. According to his experiment on a turbulent wave boundary
layer, the velocity profile near the bottom is logarithmic and the phase
difference exists between the bottom shear stress and the reference
velocity outside the frictional layer. Based on the experimental result,
he proposed formulas for the friction coefficient and the boundary layer
thickness. Later he (Jonsson, 1967) summarized the empirical knowledge
and attempted to delineate the viscous-turbulent and smooth-rough flow
regimes in wave boundary layer for short period wave motions. Recently,
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Yalin and Russel (1966) also discussed the friction over a rough surface
under waves and pointed out the importance of the phase difference
between the reference velocity and the bottom stress, by indicating the
dependence of the bottom stress on both the reference velocity and the
surface slope.

To understand the frictional processes in the turbulent oscillatory
flow, a theoretical model was presented by the author (Kajiura, 1964,
hereafter referred to as [1]). The basic idea was to consider the aver-
age state of turbulence over one wave period and to adopt the assumption
of the eddy viscosity analogous to that for the steady turbulent flow.
This theory enables us to estimate the thickness of the frictional
boundary layer and the velocity profile in an oscillatory flow.
Consequently, the frictional coefficient is given as a function of
certain non-dimensional parameters constructed from known quantities
of wave and bottom conditions.

In the present paper, some modification of the model presented in
Paper [1] is attempted by introducing the concept of wall and defect
layers, which seems to be adequate for the case of short period waves,
in which the thickness of the bottom frictional layer is very thin
compared with the total depth of water, and the results are compared
with the experimental findings published so far.

2. Elementary considerations on the bottom friction

It may be instructive at first to consider some diagnostic relations
derived from the equation of the oscillatory motion in the frictional
layer. If we assume that the total thickness ¢ of the bottom frictional
layer is very small compared with the wave length of the potential
wave considered, and the non-linear effect is negligible (except turbulence),
the equation of oscillatory mean motion in the layer may be considered
predominantly horizontal and is given by

0 0/
—at—(u U)—‘aQ p), (2-1)
where t is time, z is the vertical co-ordinate directed upwards with the
origin at the bottom, u is the horizontal velocity, and 7 is the horizontal
shear stress with p the density of water. U is the horizontal velocity
near the bottom derived from the potential theory of waves and is
given by
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oU =_l op
o p o (2-2a)

where 0p/ox is the horizontal pressure gradient near the bottom. Since

the thickness ¢ is assumed small compared with the wave length, it is
reasonable to put

%;U‘ZO’ for 0<z<d. (2-2b)

The boundary conditions are
=0 at 2=0, (2-3a)
—0 as z—d. (2-3b)

It should be noticed that in this formulation of the problem, the total
depth of water H does not play a role in the processes within the
frictional layer if 0< H, provided that op/ax or U is given at the top
of the frictional layer. In the extreme case of a shallow water wave,
however, 6 may be limited by the depth of water H.

If we formulate the energy equation from (2-1), the energy dis-
sipation E within the bottom frictional layer per unit area per unit
time is given by

S )
E= Sou P dz. (2-4)

(2-4) may be -transformed to

Be S”Uﬁdz_ S"(u_ 1) 2% 4. (2-5)
o 0z 0 0z

Partially integrating the first term and substituting (2-1) into the
second term of the right hand side of (2-5), we have

E=Ut —ﬁfi (u—U)dz (2-6)

R R Y ’
where 7, is the bottom stress and the conditions (2-2b), (2-3b) are taken
into account. If averaged over one wave period, the second term of
the right hand side vanishes because of the periodicity of the motion,
and we arrive at
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<E>=<Urp>, (2-7)

where < > denotes the time average over one wave period.
Now, we define the vertical average velocity u by
. 1 ]
az——s udz, (2-8)
0Jo
and write the oscillatory quantities with the angular frequency ¢ in
complex form:

U=Ueé", (2-9a)
T=ue o+, (2-9D)
Tp= g6 0, (2-9c)

where A denotes the real amplitude, ¢ and 6 are the phase lead of #
and 7, relative to U. The phase lead ¢’ of 7 relative to @ is given by

0 =0—0o. (2-10)

The integration of (2-1) with respect to z for the whole frictional
layer yields

b2 (U—)=zalp (2-11)

and the substitution of (2-9a, b, ¢) into (2-11) gives
25/o=Uad(1—27 cos p+77), (2-12)
1 cos 0’ =cos 0, (2-13)

where r:z_l/ UU. It is interesting to notice in (2-13) that the components
of the potential velocity U and the mean velocity % in phase with the
bottom stress 7 are equal, so that the mean energy dissipation <E>
given by (2-7) is written in the form

%m‘? cos 0, (2-14a)
<E>=!7
%m cos 0. (2-14b)

The two limiting cases, when i) the pressure gradient force is
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almost balanced by the frictional force and ii) the pressure gradient force
is almost balanced by the inertial force, can be examined eagsily by means
of (2-12) and (2-13). In the first case, which is analogous to a steady
channel flow, we may consider 6/H—1, r—0, 0'—0, so that #,/o—U0cH,
0—x/2. In the second case, which is encountered for relatively short
period waves, we may take 9/H—0, r—1, so that ¢—0, #4/o—006
X{(1—=7)*+¢%, and tan 0= (1—7)/e.

Although 0 is a convenient length scale to discuss the structure of
the frictional layer, it is advantageous to introduce more definite length
scales in analogy with the displacement thickness and the scale of the
defect layer commonly used in the steady turbulent flow. Furthermore,
it is convenient to define the friction velocity u* and the friction co-
efficient C in parallel to the case of steady turbulent flow. Thus, we
define the following quantities:
the amplitude of the bottom friction velocity #j:

()2 =1,/p, (2-15)

the modified friction velocity u*:

Aur=r/p, (2-16)
the wave displacement thickness d*:

U9 = Amp. j:(U—u)dz, (2-17)

the scale of the defect layer 4:
4% 4=Amp. s:(U—u)dz, (2-18)

the wave friction coefficient” C:
CUU=r;/p. (2-19)

Taking (2-9a, ¢) into account, (2-19) may be written as

C=Ce?, (2-20)

1) In Paper {1], C® is defined in terms of % in the form

ralp=C W% 7, i:( 8 )ﬁ (A)

3
However, for the deep water case, % approaches U, so that the friction coefficient
becomes identical in both forms, (A) and (2-19), if we replace w by u.
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and
CU=2%5/p. (2-21)
Or, by the combination of (2-16) and (2-19),
wi|U=C"%". (2-22)
In terms of the friction coefficient C, the mean energy dissipation
< E> given by (2-14a) becomes
<E>=(0/2)CU* cos 6. (2-23)

In ordinary definition of the drag coefficient C, (=2t;/(|U[U)) without
taking the phase difference between the bottom stress and the reference
velocity into account, the wave energy dissipation due to bottom stress
is given by

<E> :(%)pc,m (2-24)

(i.g., Putnam and Johnson, 1949) and the comparison of (2-23) and (2-24)
shows that

C,/2=(37/8)C cos 0. (2-25)

By inspecting (2-1) and (2-9a, ¢) together with (2-17) and (2-18), it
is easily found that
Uod* (2-26a)

P
0= asod (2-26D)

and making use of the definitions of u} and C, we may write (2-26a, b)
in the form:

6*=CUo=C"*a}%/o, (2-27a)
4=10%lc=C"UJo. (2-27h)

If we remember that UJe is the amplitude of the horizontal movement
of a water particle near the bottom when the frictional effect is absent,
and C is of the order less than unity, the thickness ¢* is found to be
very small compared with the wave length of the potential wave under
consideration so that the assumption of (2-2b) is justified.

Now, (2-26a) can be transformed to
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0* Amp. [0p/dx]/ts=1, (2-28)

because of the condition (2-2a). The left hand side of (2-28) is analogous
to the pressure gradient parameter for the case of the steady turbulent
boundary layer. For relatively shallow water when 6* is limited by
the total water depth H, (2-28) becomes

£p=H Amp. [0p/ox], (2-29)

which is analogous to the expression for the bottom stress in a steady
channel flow. In this case, (2-27a) gives C=(vH)/U and the phase @
increases up to 7/2 with the increase of U/(cH). On the other hand,
for the deep water case when 6*< H, the main frictional effect is
limited to a small portion of the water column and the frictional
processes are more likely similar to the case of the turbulent boundary
layer. This type of flow is realized for U/(cH)<1/C. In the present
paper, we forcus our attention to the frictional layer of the boundary
" layer type. For U/(cH)>1/(10C), it is better to define the quadratic
friction formula in terms of the mean velocity # instead of U, to
conform to the ordinary friction formula of a steady channel flow for
large values of U/sH). This case was already discussed in Paper [1].

To solve (2-1) in an explicit form, we need to have another equation
connecting the velocity % and the stress z. If we introduce the
vertical eddy viscosity K, by

Kow_c (2-30)
0z p
the combination of (2-1) and (2-30) gives the basic equation
Fur _ 10 %=, (2-31)

02 K,

where z/o is replaced by u* with the aid of (2-16).

For the case of a laminar oscillatory motion in deep water, K, is
the molecular kinematic viscosity v and the solution of (2-81) with the
condition (2-3b) is given by

u¥uf=e"r. (2-32)

where
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Bi=+ave"™/", (2-33)

In terms of velocity % and the outer velocity U, we have, from (2-30),
(2-32) and (2-3a),

(U—u)|U=e"f17, (2-34)
and
wslo=Ulow) %™, (2-35)

The wave displacement thickness 6* now becomes

0*=06,=+/vo. (2-36)
With a Reynolds number R defined by
R=U0d,v, (2-37)

the friction coefficient C derived from (2-19) and (2-35) is
C=¢"*|R. (2-38)

If we consider that the important quantities, related to the bottom
frictional processes in deep water for the case of a smooth bottom, are
U, o, and v, dimensional analysis indicates that the friction coefficient
C in the turbulent case, too, can be expressed as a function of R alone.
For the case of a rough bottom, we usually introduce some length scale
D and neglect v, so that the friction coefficient is expected to be given
by a function of U/(¢D). To find the explicit functional form for C,
we have to assume a suitable K,. This will be done in the next section
where the assumptions on K, applicable to the case of a steady turbulent
flow are translated into the mean state of the oscillatory turbulent flow.

3. Assumptions on the structure of an oscillatory turbulent flow

(a) THE CASE OF A SMOOTH BOTTOM

Following the concept of the wall and the defect layers established
for the case of a steady turbulent boundary layer (see, for example,
Clauser, 1956, Mellor and Gibson, 1966), we assume the frictional layer
of the oscillatory flow to consist of 3 parts: the inner layer, the overlap
layer, and the outer layer. The inner and overlap layers are collectively
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called the wall layer in which the direct effect of the bottom boundary
is felt, and the overlap and outer layers are the defect layer where
the defect velocity profile is governed by the overall characteristics of
the frictional layer. The characteristic of the overlap layer is that the
velocity profile is expressed by both the wall and the defect forms. In
the overlap layer for the case of the steady equilibrium turbulent
boundary layer, Prandtl’s mixing length theory seems to be applicable
(Mellor and Gibson, 1966) so that the eddy viscosity can be written in
the form K,=k|uyl|z, with the definition of uy as t/o=|uy|u,. In the
outer layer, eddy viscosity is assumed to be proportional to the outer
velocity and the displacement thickness. In the inner layer, the
effective viscosity varies from the molecular viscosity to the eddy
viscosity corresponding to the base of the overlap layer in the range
5 uyz/v<30 (Mellor, 1966).

In the reformulation from the eddy viscosity assumption valid for
the case of steady turbulent flow to the case of oscillatory flow over a
smooth bottom, we make some simplifications. Thus, we introduce the
thickness D, of the viscous sub-layer, in a conventional way, by

W4FD/lv=N with N= const. (3-1)

We neglect the transition region between the viscous sub-layer and the
overlap layer, so that, in the present case, the viscous sub-layer and
the inner layer are identical. The eddy viscosity K, then assumes the
form: :

y, for 0<z<D,, (3-2a)
K,=1ku}z, for D <z<d, (3-2b)
K;, for d<z<og, (3-2¢)
and
K,=kuid=KUd*, ' (3-2d)

where k£ and K are universal constants and d is the upper limit of the
overlap layer. Although we have no reliable information on N, k, and
K for oscillatory turbulent flow, we tentatively assume

N=12, k=0.4, and K=0.02, (3-3)

which may be compared with those for the case of steady turbulent
flow: N=11.6, k=0.41, K=0.016. Transforming (3-2d) by making use
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of (2-27a, b), we have
d/4=K|k=0.05. (3-4)

The critical condition, when the overlap layer disappears (D.,=d) is
given by R'=(kN)/(KC), and the formal substitution of (2-38) yields
R=240.

At this point, it is remarked that if the variation of stress with
height is taken into account, it might be better to replace 7% in (3-1)
and (3-2b, d) by the modified friction velocity #* with the definition
t/o=u*u* instead of (2-16). However, this modification has not been
attempted because of the uncertainty of the analogy of the eddy viscosity
assumptions between steady flow and oscillatory flow. It is expected
that when the thickness of the frictional layer becomes comparable to
the thickness of the viscous sub-layer, the results obtained on the
assumptions of (3-1), and (3-2a, b, e, d) are somewhat different from
those derived from the modified version of the eddy viscosity assump-
tions. Also, the assumption (8-2d) in the outer layer is only the first
approximation, and in reality the eddy viscosity may vary with height
following some unknown law.

(b) THE CASE OF A ROUGH BOTTOM

For the case of a rough bottom, the eddy viscosity in the defect
layer is the same as for the case of a smooth bottom, but, in the wall
layer, we introduce the roughness length 2, (or Nikuradse’s equivalent
sand roughness D, D=30z,), although, in reality, the equivalent roughness
D is not well understood physically. There is also a question about the
origin of the vertical coordinate, namely, the level of the equivalent
bottom surface.

If we follow the ordinary formulation of the eddy viscosity in the
wall layer, the overlap layer extends to 2=z, and K, is given by

K,=ku}z, for z,<z<d. (3-6)

This eddy viscosity assumption is expected to be adequate for the case
(0*%/D)*>»1. However, to include the case when (0*/D)*<1, we assume
the alternative form of the eddy viscosity as follows:

_ {alm;!‘DR, for 0<2<Dp, (inner layer), (3-6a)
~kagz, for Dp<z<d, (overlap layer), (3-6b)




86 K. KAJIURA

where D is the height of the inner layer in which the eddy viscosity
is constant. From the requirement that, for (0*/D)*>1, the velocity
profile above D derived on the assumption (3-6a, b) coincides with that
derived on the assumption (3-5), we take (see §4, (4-40))

1/a=In (Dg/z,). (3-7)

Furthermore, since the inner layer exists in a statistical sense only
because of the presence of roughness elements, we assume

Dp=D|2=15z,, (3-8)
and, consequently, it follows
1/a=In 15=2.708. (3-9)

For small values of 6%/D,, the friction coefficient is essentially
governed by K, in the inner layer, so that, by replacing v in (2-38) by
aki3Dy;, we have

C=(akoDy|U)*e", ~ (3-10)

Roughly speaking, the range of applicability of (3-10) is given by
0*/Dp<1 which can be transformed, by means of (3-10), into U/(¢Dy)
<(ak)~?, and the substitution of numerical values yields U/(0z,) < 685.
On the other hand, the condition of the vanishing overlap layer is
given by U/(oD;)<k/KCY?, and taking (3-10) into account, we may
estimate the critical value of U/(sz) somewhere around 10°. The
delineation of various flow regimes, such as the smooth or rough bottoms,
and the viscous or turbulent flows will be discussed later (see §5, (c)).

4. Derivation of the velocity profile and the friction coefficient

(a) THE CASE OF A SMOOTH BOTTOM

The substitution of the eddy viscosity assumption (3-2a, b, ¢) into
(2-31) yields :

Cw*_ 10 x—0, for 0<z<D, (4-1a)
022 Y
@_( g ) *=0, for D,<z<d 41b
azz G k?ft}l;z w ’ or L< =W, ) ( )

and
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o*u* o .
———u*=0, for d<z<ad. 4-1
2 Kdu or z2< (4-1c)

For the deep water case when the bottom frictional layer is very thin
compared with the total depth of water, the boundary conditions at the
bottom and the outer edge of the frictional layer are

u=0 at 2z2=0, (4-2a)
u*—>0 as z—oo, (4-2b)

The conditions between the inner and overlap layers at z=D, and
between the overlap and outer layers at z=d are determined by the
continuity of # and u*. However, the continuity of % may be replaced
by the continuity of du*/6z in view of equation (2-1), so that we put

u*, 0u*/0z continuous at z=D,, z=d. (4-3)
In the inner layer, a solution of (4-1a) is given by
w*/u¥f=Asinh 8, (D, —2)+ cosh B,(D,—z), - (4-4)

where A is an integration constant, 8,=+/c/ve"’* and the suffix L denotes
the quantity at z=D,;. Then (2-30) yields

wjut=40%/(vB.)[sinh 8, D; — sinh 8, (D, —2)
+ A {eosh 8., D,— cosh 8.(D.—2)})], (4-5)

where the boundary condition (4-2a) is taken into account.
In the outer layer, a solution of (4-1¢) with the condition (4-2b) is
given by ‘

u¥juf=e fali=d, (4-6)

where Bi=+/d/Kz™* and the suffix d denotes the quantity at z=d.
From (2-30), then, the velocity u is

(U—u)/ui= {@h/(Kafs)} €727, (4-7)

where U is the reference velocity outside the frictional layer.
In the overlap layer, it is convenient to change the independent
variable z to y defined by

y'=(42)/(k4) = (402) | (k3), (4-8)
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where 4 is defined by (2-18). Then, (4-1b) is reduced to Bessel’s dif-
ferential equation and the solution can be written as

}ﬁ= YZ:(y, c) (4-9
u:zk yaZI(ya’ C), )

where y=ye /%, and the suffix a denotes the quantity at z=a within
the overlap layer. In later use of (4-9), we put a=d or D, according to
the situation and, in particular, D, is abbreviated by L when used as
a suffix. It is mentioned here that the substitution of (3-4) into (4-8)
yields

yi=4K/k’. (4-10)
Z,(y, ¢) is a cylindrical function defined by
Z(y, c)=cJ.(y) +HP(y), (4-11)

where J,.(y) and H?(y) are the Bessel function and the Hankel func-
tion of the second kind of order =, respectively and c(=c,+ic,) is a
complex constant. Z,(y, ¢), for n=0, 1, satisfies the following relations:

Lz (v, ) ==2v, o), (4-12a)

y

-d‘i Z.(y, O} =yZ(y, ¢). (4-12b)
y

For small values of y(y*/4<1), Z,(y, ¢) may be approximated by

Zo(, ¢) :cl—i—icz—f—%——i(—%)(r—[— In _?2/.) (4-12¢)
Z(y, ¢) =z<%> / , (4-124)

where y=0.5722--- (Buler’s constant).

The velocity u is obtained by the substitution of (4-9) into (2-30)
with a suitable change of variables. With %, as the velocity at the
level z=a, we have

L)
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Applying the boundary conditions (4-3) at z=d to (4-6) and (4-9)
with a=d, the constant of integration ¢ can be determined by the
following equation ‘

Z(y4, €) =1Zy(pq, ). (4-14)

Substituting u./u¥ derived from (4-7) into (4-13) with a=d, replacing
4%/(K,8;) by its equivalent expression —2i/(ky,), and taking (4-14) into
account, we may derive, in the overlap layer,

U—u _(2\ Zly, ¢ )
¥ (k/ YoZ\(ya, ©) U-15)

Now, applying the boundary conditions (4-3) at z=D, to (4-4) and
(4-9) with a=D,, we have

A=(vB.[0%)B, (4-16a)
with
—(2\Z(y1, ©) .
B_( k>yLZ1(.vL9 c) , (-16b)

and the substitution of u./u} obtained from (4-5) into (4-15) with a=D,,
yields

Uui= (smh 8D+ A cosh 8,.D,). (4-17)

(v ﬂL)
It should be noticed that if the eddy viscosity K; in the outer
layer is assumed in the form of (3-2d) even after the overlap layer

disappears, we can derive the same equation as (4-17) from (4-4) and (4-7),
provided that

B=¢"/*|+/K. (4-18)

From (4-4) with z=0 and (4-17), it follows
Ui _ vB.\/ Atanh 8,D;+1 4-19
U (72§>< tanh . D, + A ) (4-19)

Now, since we may put

B.D. = '\/gNyLe—iz/ai ”ﬂL 1 \/ k LTS em/4 (4_20)
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we can express the friction coefficient given by (2-22) in the form
C2e? =y} U=L{y,.). (4-21)

On the other hand, the Reynolds number R defined by (2-37) can be
expressed as

R=(4N/k)3(C2y ) (4-22)

Therefore, we may compute the friction coefficient C as a function of

R alone.

The formula (4-19) may be simplified for two limiting cases; namely,
i) tanh 8,D,~1 and ii) tanh 8.D,—f.D.. The range of transition in
terms of d,/D, from the condition i) to ii) is approximately given by

0.5<0,/D, <2. (4-23)

This condition can be interpreted that if the main part of the
frictional layer is in the viscous sub-layer, the frictional law reverts to
the laminar law. Indeed, for large values of S,D, (small values of
0./Dyp), (4-19) is reduced to

uy/ U=vp.l0%, (4-24)

which is equivalent to (2-38) derived for the case of a laminar flow.
For small values of 8.D; (large values of 0,/D,), (4-4) and (4-19) are

approximated by ‘
w*luf=1, for 0<z<Dy, (4-25)

uf/U=(N+B)7, (4-26)

where N and B are given by (3-1) and (4-16b) respectively. Further-
more, in this case, we may approximate B by

B tlon(rrl)-er ) e
with the aid of (4-12¢, d). Thus, the friction coefficient is given by
A (2Y (P ¥eY L .

1/c_<k) {(P In 2) +Q } (4-28a)

tan (9=Q/<P— In %), (4-28b)

where
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e

P=_ N+ gcz—r, (4-29a)

Q:%@ﬁ%). (4-29b)

These formulas (4-28a, b) are analogous to those given in Paper [1],
(5-8), where the approximations of (4-25) and (4-27) were made from
the beginning and ¢, and ¢, were neglected.

If y, is very small, further simplification of (4-28a, b) is possible.
By neglecting @* compared with (P— Iny./2)?, we have

N1/2 __ 2 ( yL)
/2 _In¥% }
16 <k> P—in ), (4-30a)
0= — In ¥z). -
Q/(P In 2) (4-30D)
Taking (4-22) into account, we may transform (4-30a) into
k 1\ _ 1 k
Jetn (‘ém‘) =P+ In <N>+ In R. (4-31)

(b) THE CASE OF A ROUGH BOTTOM

The difference of a rough bottom from a smooth bottom lies in the
eddy viscosity assumption in the inner layer. Thus, the discussions for
the case of a smooth bottom can be translated into the case of a rough
bottom by the following transformation in (4-4), (4-5), (4-16a, b), (4-17)
and (4-19):

W%/ (v8) =2/ (v a kyre™) ,' (4-32a)
BLD—y 6™ |2V a), (4-32D)
YL —=Yr, (4—320)

where the suffix R denotes the quantity at z—=D;. Thus, in place of
(4-21) and (4-22), we have

Ci%e =L (ys), (4-33)
U/(oDg) =4/ (kC*y%), (4-34)

and L(y.) is obtained from L(y;) by the transformation
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N—1/(ak), yi—vi. (4-35)

(4-33) and (4-34) show that the friction coefficient C can be computed
as a function of U/ (eDy) alone.

In particular, for large and small values of y}/(24/ «), approximate
formulas become

w U=+ aky$/2, (4-36)
i/ U= {1/(ak)+ B}, (4-37)

in place of (4-24) and (4-26) respectively, and (4-36) is now equivalent
to (3-10) as is expected.

If the ordinary eddy viscosity assumption (3-9) is adopted, we have,
in general, from (4-15),

u}/U=1/B, (4-38)

where B should be evaluated at s, namely, at z=z, instead of at
yr(or z=Dg). Since we assume that, for small values of y%/(2va), (4-
37) is equivalent to (4-38), we have the condition

1/{ek) + B(yz) = B(ys). (4-39)
The substitution of the approximate formula for B into (4-39) yields
1a=21n (ye/ys) = In (Dzr/z), (4-40)

which is the condition for « assumed in (3-7). Taking this condition
into consideration, the friction coefficient C can be written in the form
(4-28a, b), provided that y, is replaced by yz and P by P’ where

P’ =(x/2)cs—7. (4-41)

This, in turn, means that the friction coefficient for the case of a
smooth bottom can be expressed by the formula for a rough bottom, if
we put

P—1n (y./2)=P'— In (y4/2). (4-42)
Taking (4-29a) and (4-41) into account, (4-42) becomes
In (ys/y.) = —kN/2. (4-43)

Thus, the equivalent roughness D for the smooth bottom with the
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laminar thickness D, is given by
D=(30¢"*")D,=0.366D;,. (4-44)

If y; is very small, we can deduce the equations similar to (4-30a,
b) for a rough bottom. Taking (4-34) into account, it follows,

-;lL+ 1n< Al ): Ins+ In <_[_7_ , (4-45)
Gz Cue 02,

where
Ins=2P'+ Ink. (4-46)
The formula for the length scale 4 given by (2-27b) can be derived
easily from (4-45) as
(sd/2) In (sd]z0) =skU](02,). (4-47)

It is mentioned here that (4-45) and (4-47) are analogous to the semi-
empirical formulas proposed by Jonsson (1963) for the friction coeflicient
and the boundary layer thickness? (see §6, (a) ii). Futhermore, for the
derivation of the friction formula for a smooth bottom, Jonsson (1967)
assumed D~0.435D, in place of (4-44).

5. Numerical results

(a) VERTICAL DISTRIBUTIONS OF SHEAR STRESS AND VELOCITY

At first, let us summarize the principal results of the preceding
section for the case of a smooth bottom and express them in terms of

2) In particular, the wave boundary layer thickness ‘4> defined by Jonsson is
(46" [20) log (6" [20)=1.20 (o D). (B-1)
Transforming (4-47) in the form of (B-1), we have, with constant factor =,
(ns In 10)(d/z0)[log {(n In 10)(4/20)} — log (n In 10)]=nsk X 30 ﬁ/(uD). (B-2)

Neglecting the second term in the bracket in the left hand side as small, we have,
by comparison of (B-1) and (B-2),

(ns In 10)4=%5", (B-3)
30nsk=1.2. (B-4)
Since %©=0.4, (B-4) yields ns=0.1 and (B-3) becomes
0.234="5". (B-5)
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y and y; for the convenience of numerical computation. The universal
constants, k, K, N, and consequently y, are assumed known.

With reference to the bottom friction velocity u%, the vertical
distribution of stress given by (4-4), (4-6), and (4-9) are written, with
the aid of (4-16a, b) and (4-20), as

N Sz, ¥)[S(ye, 0), for 0<y<Ly,, (5-1a)
% /uﬁz{
Gy Fi(y), for y,<y, (5-1b)
where
S(Yr, ¥)=Alys) sinh {np¥(1—y*/y})} + cosh {mp¥(l—yi)},  (5-2a)
Gyz) = {SWz, 0)y.Z,(y1)} 7, (5-2b)
Fl(y>=’!yz1(.l’): for y.<y<y,, (5~2¢)
WaZ:(va) exp [(v¥/2) (1—y/y3)], Tor y.<vy, (5-2d)
Alyn) =myt2[k) Zyly.) | o2, (1)}, (5-2¢)
and
1 [k

m=oV 737, n=mN=+EkN/2,
ni=ye™ yi=e, ye=2v K/k. (5-2f)

The corresponding velocity distribution given by (4-5), (4-7) and
(4-15) can be transformed into

U—-u ={1/<my%)[T(yL, ¥[8y, 0)1, for 0<y<y, (5-3a)
ui (2/k)G (y.) Faly), for y,<y, (5-3b)
where
T(yz, y)= sinh {ny¥(1—9*/y:)} +A(y.) cosh {mpE(1—2*y?)},  (5-4a)
Zo(y), for ¥, <y<y,, (5-4b)
Fz(y):{ % 21, 2 _
Zy(ys) exp [(v§/2) (1—v*y)], for y.<y. (5-4c)

If y, is smaller than y,, the overlap layer vanishes and the stress and
velocity distribution in the outer layer, y,<y, given by (4-6), and (4-7),
together with (4-18), become

w*ut=exp [yi/(2ys) 1—v"/y})1/S(ys, 0), (5-5a)
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(U—u)fus= exp [/ (@ys) 1—v*/yl) —in/4)/ (v K Sy, 0))- (5-5b)

For the case of a rough bottom, similar expressions can be given
by replacing ¥, by ¥z In this case, the definition of m and n in (5-2f)
should be replaced by

m=kv a2, n=1/2v a), N-1/(ek). (5-6)
To compute Z,(y), n=1, 2,
defined by (4-11), we need numeri- | C
cal values of J,(y), H?(y), and c. 05
J.(y) and H?(y) may be found,
for example, in the ‘‘Table of s™
Functions”” by Jahnke and Emde 6’“’ Ce
(1945), pp 244-268, where J.(p¥) 0217
and H? (y*) are given. For small 0.1
values of vy, Z.(y) can be approxi- 0 T
mated by (4-1lc,d). The constant  -o.- o0 y' ; R 20

¢(=c,+1ic,) determined by the
condition (4-14) is shown in Fig.
1 as a function of y, where it is
seen that the amplitude ¢é(=+/ci+cj) decreases rapidly with the increase
of v, so that for large values of ¥.(¥.>2), Z.(y) may be closely approxi-
mated by H?(y) and v, does not play an important role in the friction
coeflicient.
In the following computation, we have assumed

Fig. 1. Constant ¢ (=c1+14c2) as a fune-
tion of yL or y¥=.

k=0.4, y,=0.7, N=12, a=1/(ln 15), (5-Ta)
go that it follows from (4-10), and Fig. 1,
K=0.0196, ¢,=0.2361, c,=—0.0593. (6-Th)

If we look into the profiles of the stress and defect velocity in the defect
layer (y>y, or ¥z), the important quantities are G(yz), G(yz), Fi(y), and
F,(y), among which G may be called the profile factor and F; and F,
are the universal profiles of the shear stress and the defect velocity,
respectively. The amplitudes G and phases ¢ of the profile factors
G(y;) and G(yz) are shown in Fig. 2 as functions of ¥ or ¥ respectively,
where it is seen that the variation of the amplitudes of G(y.)and G(yz)
are relatively small and the deviation from z/2 is only a few percent




96

K. KAJurA

o7 T

0.6

0.5

04

0.3

Yo s Ye

0.2

0.1

00 L~

1 1 Al

1.50

Fig. 2. Amplitudes and phases of G(yz) and G(yr) as a function of YL or Y=,

N

155 77t/2

160

where Phase [G(yr)]=¢1, and Phase [G(yz)|=¢r.

A

1.65

170

IOO ,\ 1 I T T I ] T T I 1} 1 ¥ ]
\§>\ :
\\ 5
-1 N
10 NI
NN
< N
N \
F \ \‘-z
-2 N
% AN
aQ \
5
3 \
N\
1031 1 1 11 || I ! I \u !
0.0 05 1.0 1.5

Amp. [F] . Amp. [F]

Fig. 8a. Amplitudes of F1 and F: as a function of z/4.




A Model of the Bottom Boundary Layer in Water Waves 97

|O° T T T T =T T T T T 1 T T T

v 15155-5051(z/a)

-07289-505I (Z/A)\\ \
-2

10 AN
\

|63'1"¥"'\"‘\"

00 05 10 15
Phase [Fi], Phase [Fe]

Fig. 8b. Phases of F1 and F: as a function of z/4.

even for the condition of y, or yz=v,. The universal profiles Fi(y) and
F.(y) are shown in Fig. 8a, b where the amplitudes and phases are shown
as a function of z/4(=%%10). It is seen that, in the lower part of the
overlap layer, the variation of Fi(y) is small and the corresponding
variation of F,(y) is logarithmic. In the outer layer, Fi(y) and Fy(y)
are given explicitly by

F,(y)=0.6336¢"*". exp {(141)-5.051-(2/4)}, (5-8a)
and
F,(y) =0.9044¢'*™%. exp {(1+1)+5.051-(2/4)}. (5—8b)

If the overlap layer vanishes, the stress and defect velocity are given
by (5-5a) and (5-5b) respectively, and it is found that the profiles with
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Fig. 5. Amplitudes and phases of A(yz)
and A(yr) as a function of yr or yz.

and S(yz) as a function of ¥z or y=z.

respect to z/4 are the same as (5-
8a), (b-8hb), apart from the constant
factors depending on %, or y,.

The amplitudes and phases of
the factors S(y., 0), S(yz, 0), T(ys,
0), and T'(yg, 0) are shown in Fig.
4a, b as functions of ¥y, or v,
where it is seen that for small
values of y, and v, pairs of S(y,,
0) and S(yz, 0), T(yz, 0) and T(y,
0) coincide and, for large values
of y, and yp, pairs of S(y, 0), and
T(ye, 0), S(ye, 0) and T(yz, 0)
coincide with each other. A(y,)
and A(yz are shown in Fig. 5 for
the convenience of computing S(y,,
¥), SWe, ¥), T(ye, ¥), and T(yz, ),
where phases of A(y.) and A(y;)
are equal for the same values of
Y and Y;.
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(b) FRICTION COEFFIENT

From (5-3a) and (4-21) the friction coefficient C for the case of a
smooth bottom is given by

CH2e" = L(ys) =my$S(yz, 0)/T ¥z, 0), (5-9a)
and the Reynolds number R is expressed by
R=1/(C"*myy). (5-9b)
For the case of a rough hottom, we have
C2¢” = L{yz) =my§S(z, 0/ T(yr, 0), (5-10a)
and the parameter U/(cz,) is given by (4-84), namely
U/ (02) =60/ (kC**y3). (5-10b)

In Fig. 6a, b and Fig. 7a, b, the friction coefficient C for the cases of
smooth and rough bottoms are shown as functions of R and U/ (024)
respectively. In these figures, it is clear that the amplitude ¢ and
phase & of the friction coefficient increase with the decrease of the
parameters R or U/(sz,), and for small values of these parameters, C=1/R
for the smooth case and C=1.70% {U/(02,)} ~** for the rough case with
the phase approaching z/4 in both cases, as is already expected from
(2-38) and (3-12). For large values of the parameters E or Ul(oz,), the
friction coefficient can be calculated easily from (4-31) or (4-42). Here
it is remarked that if v, is assumed to be, say, 1, instead of 0.7, the
amplitude of the friction coefficient increases about 10 percent and the
phase decreases about 20 percent for large values of the parameters R
or Ul(oz,).

(¢) DELINEATION OF THE FLOW REGIMES

In the case of a steady turbulent pipe flow, a measure of whether
the bottom is considered hydrodynamically smooth or rough seems to be
given by the ratio D/D, centered around 1 (Rouse, 1937), and the range
of transition may roughly be given by

0.4<D/D,<5. (5-11)

According to Colebrook and White (1937), the beginning of transition is
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controlled by large grains, so that the lower limit of (5-11) may better
be represented by the maximum grain size D, as D,/D,~0.4. This is
interpreted that if the roughness element is completely submerged in
the viscous sub-layer, the bottom is hydrodynamically smooth and if the
roughness element is much larger than the thickness of the viscous sub-
layer, the bottom is considered rough. In the present formulation, the
eddy viscosity in the inner layer (3-10a) becomes equal to the molecular
kinematic viscosity v at Dy/D,=(@¢kN)—*~0.56. In terms of D, this
condition gives D/D.~1 and is consistent with the empirical result for
steady turbulent flow (5-10).

For the transition between the viscous and turbulent flows we use
similar reasoning, and consider the ratio of the wave displacement
thickness 0* to the thickness of the viscous sub-layer D,. If (6*/D,)2<1,
the main part of the frictional layer is submerged in the viscous sub-
layer, so that the bottom friction would be governed by a viscous law
such as (2-38) for the case of a smooth bottom. Appreciable deviation
of the friction coefficient from that governed by a viscous law would be
expected if (0%/D;)*>»1. Therefore, in both smooth and rough bottoms,
the transition of the friction coefficient from the laminar type to the
turbulent type may be found in some range of 6%/D,, say

0.4<6*/D,<5. (5-12)

To show these criteria (5-11) and (5-12) in a figure, it is convenient
to write

Ul(oz,) =30R*/ M, (5-13a)
M=UD|y, (5-13b)

and express the amplitude of the friction coefficient ¢ as a function of
R with M as a parameter, as shown in Fig. 8. Then, it is easy to
delineate the zones of the smooth-rough, and viscous-turbulent transitions
according to (5-10) and (5-12), since we may write

D/D,=C""M|N, (5-14a)
0*/D,=C*R?N. (5-14b)

In Fig. 8, it is found that the Reynolds number for the viscous-turbulent
transition over a smooth bottom is given by
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25< R<650, (5-15)

and the critical Reynolds number, R=113, determined by Colling (1963)
seems to be in the middle of the above range. If we make use of

(3-12), we may transform (5-14b), for the condition d*/Dp<1, as
0*/Dy=akM/(2N), (5-16)

and (5-12) becomes
66 <M< 815. (5-17)

On the other hand, Fig. 8 also shows that the relation defined by (5-11)
may be roughly approximated by 10°<M<10° in the range 10*°<< R< 10
Therefore, from a practical point of view, it appears possible to use

10°< M<10° (5-18)
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as a rough measure for the development of a rough turblent flow in
the whole range of R.
For the smooth-rough transition, the condition

0.22< D|0,<0.35 (5-19)

is sometimes used (Li, 1954, Manohar, 1955). On the R-C diagram
shown in Fig. 8, it is found that (5-19) is not very different from (5-11),
at least in the range 2X10°<R<10°, so that (5-19) can be used as a
criterion of smooth-rough transition in a limited range of R. Jonsson
(1957) proposed essentially the same criterion as (5-11).

For the viscous-turbulent transition over a rough bottom, various
criteria have been proposed on the basis of experimental data. However,
the transition was defined differently and we are not certain which of
the criteria proposed so far is most reliable. In terms of the present
notations, Li (1954) and Manohar (1955) gave, from their oscillating plate
experiments,

M=104, for 0.22<D[5,<0.35 (5-20a)
UD"|v=1.55X10°, (C.G.S. units), for 0.35<D/d,. (5-20b)

Later Kalkanis (1964) criticized the above equations and gave some
evidence that

M~100 (5-20c)

for the whole range of the rough bottom. It is interesting to notice
that the criterion (5-20c) is near the lower limit of the transition range
defined by (5-18).

On the other hand, Vincent (1958) gave the relation

UD'">=1.2, (C.G.S. units), (5-21)

from the experiment on progressive waves for the period range of 1 to
5 see. According to him, the beginning of turbulence over a rough bottom
is found for very low values of M, say 15 to 30. If (8-10) is assumed
to hold in this limiting case, it may be possible to approximate (5-21)
roughly by

R, =Ud*|v~ const., (5-22a)

since we can transform (5-22a) into
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UDY2= (R, +v)*4(ak[2)~M25"4, (5-22D)

Comparing (5-22b) with (5-21), the vah}e of R, seems to be somewhere
around 15 to 20. In terms of R and C, (5-22a) is written as

C=R,.R™. (5-22c)

Jonsson’s criterion (1967) for the fully developed turbulence over a
rough bottom is

U8’ Jv=>500, (5-23)

where ‘0’ is the height scale of the boundary layer defined by Jonsson
and is closely approximated by 0.234 of the present paper. Transforming
(5-23), we have

R,=Ud/y~2.2Xx10°, (5-24a)
or, in terms of R and C,
C=RiR™. (5-24b)
If we substitute (3-10) into (5-24b), we may derive
UDYs|v= (o[v)¥s(ak|2) 5 R%s~a¥5 X 10°(C.G.S. units) (5-24c)

which is somewhat similar to the relation (5-20b), if the range of period
is around 2 second.

The question of transition between the viscous and turbulent flows
over a rough bottom is not settled up to present, but it seems interesting
to notice that if (3-10) is assumed to hold, most of the criteria proposed
can be approximated by the form

C~const. R, (5-25)

_’ 4/3 , for (5-14b)
with n= {2 , for (5-22¢)
' 4 , for (5-20b) and (5-24b).

6. Comparison with experimental data

(a) FRICTION COEFFICIENT
i) Bagnold (1946) gave the drag coefficient ‘£’ from his ingenious
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experiments using an oscillating plate. He used artificial ripples with
two different pitches (p=10 ecm, 20 cm) but kept the pitch-height ratio plh
as 6.7/1. The ripple trough sections consist of circular ares meeting to
form sharp crests at an angle of 120°. Similar ripples were examined
for a steady turbulent flow by Motzfeld (1937), who gave the equivalent
roughness D as D=4k. Therefore, we assume the roughness length as
2= (4p)/(6.7x30)~0.2, 0.4 cm. As noticed by Jonsson (1967), the drag
coefficient ‘““ £’ defined by Bagnold corresponds to 1/3 of the ordinary
drag coefficient C; and, from (2-25), (4/x) “‘ k" corresponds to C cos 6.
Since the range of Bagnold's experiment was 152.5X U/(0z)>12.5, we
may compute the theoretical friction coefficient ¢ and 6 easily from (3-10),
where D now becomes 2h. According to Bagnold, ““ k'’ becomes almost
constant for U/(op)<1. This result may be understood by the following
model. If we assume the thickness of the inner layer D, or the equi-
valent roughness D decreases for U/(op)<<1 with the decrease of the
relative amplitude of the horizontal motion of water U/s compared with
the ripple pitch p, we may put, in place of (3-6a),

K,=aki}D,-U/(op), for Ul(op)<1. (6-1)

Substituting this eddy viscosity in place of v of (2-38), we have, in
place of (3-10),

C= (akDy/p)*'s = (2akh/p)*=, (6-2)

and the phase 6 is 7/4. Thus, C becomes constant irrespective of
Ul(oz) for Ulop) <1, if p/h is kept constant. If releyant numerical
values are substituted in (6-2), we have C=0.125 and C cos 8=0.089.

Table 1. Comparison of the experimental values of (4/x) “‘k”
(Bagnold, 1946) with the theoretical prediction.

A, A

Ullep)>1 Ullop)<1
U/(oz0) 1562.5 101.5 76.25 50.75 50 38.13 25 12.5

p=10cm _ _ _
. (20=0.2 cm) 0.041 0.056 0.066 0.096 0.105
_ukn
T p=20 cm _ o _

(20=0.4 cm) 0.060 0.092 0.097 0.099 0.110
. Eq. (3-12) 0.042  0.055 0.067 0.083 0.089 (0.106) (0.141) (0.223)
Ccos @

Eq. (6-2) — — — — — 0.089 0.080 0.089
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In Table 1, (4/7)*“k’’ estimated from Fig. 3 of Bagnold’s paper is
compared with the theoretical estimates where it is seen that the
agreement between (4/z)‘ k"’ and Ccos€ is very good for Ul(op)>1
and fairly good for U/(ep)<1.

ii) Jonsson (1963) measured the velocity distribution in a turbulent
oscillatory flow over an artificially roughened surface, by making use
of the oscillating water tunnel (Test No. 1). The roughness on the bottom
surface was provided by a two-dimensional elevation of the triangular
shape, 0.6 cm high and 1.7 em apart. The velocity was measured by a
small propeller type current meter of 0.5 cm diameter.

His experimental conditions were Ujo=285cm, U=211cm/sec,

T:E=8.39 sec, and from the measured velocity profile, the roughness
ag

length was estimated to be 2,=0.077 em. Later, Carlsen (1967) added
new data (Test No. 2) on the velocity distribution for the case Ulo
=179 e¢m, U=153 em/sec, T=17.20 sec, 2,=0.21 cm.

The analysis of Jonsson’s velocity profile will be given in the next
sub-section, but here, in Table 2, the estimates of the friction factor
(Jonsson’s friction factor is equal to 2C), phase 0, the energy dissipation
< E> and the thickness of the wave boundary layer “d’’ by Jonsson
and Carlsen are compared with the prediction based on the present
theory, according to which, ¢ and 6 can be found as a functiion of
U/(oz), and <E>[p="/,CU*cos 0, “6"’=0.234=0.23C"*U/o.

In Table 2, it is found that the overall agreement is satisfactory
but the theoretical values of the phase ¢ are somewhat larger than the
experimental estimates. It may be remarked that Jonsson’s semi-
empirical formula for the friction factor reads, in terms of the notations

Table 2. Comparison of experiments (Jonsson 1963, Carlsen,
1967) with theoretical prediction.

.. Boundary
N Friction Energy Loss
Ul(oz0) Factor /Phgse <E>|p- Tl%i?:iil(‘ess
20102 / 10-4 cm3/sec? “5 em
Test No. 1
(Jonsson, 1963) 3.66x103 2.00 25° 3.92 6.00
Theory 1.82 29° 3.74 6.25
Test No. 2
(Carlsen, 1967) 8.52x102 3.95 30° 2.88 5.70
Theory 3.76 43° 2.31 5.64
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in the present paper,

0.41 1 U
=~ +In——=-1.852+1 -
«/C+ vé +n<oz0> (6-3)

On the other hand, (4-45) becomes, by substitution of relevant numerical
values,

~

0.4 U
1 ~—=—2.2 1 . -
+ n«/C 5+ n<oz0> (6-4)

The difference between (6-3) and
(6-4) is roughly about 10 percent

o

2P0 (41K, Bomold (1946) in the friction coefficient. Fig. 9
S. \ o G2 Jonsson(1963) shows the comparison of the
¥ \ § oo} Present Theory friction coefficients by Bagnold and
@16 ey § Jonsson with the prediction based
8 A
S LRI on the present model.
: \\ iii) Yalin and Russel (1966)
= s\\ measured bottom shear stresses
16" Q{E due to long waves and proposed a
. - ; , formula
10 |10 ~ 10 ¢]
U/(azo)

tplo=a|u|u+pgsH, (6-5)
Fig. 9. Comparison of the theoretical . .
prediction of the friction coefficient with Where «¢ and B are experimental

Bagnold’s data and Jonsson’s empirical constant, u is the velocity measured
formula. at a point 4.5 cm (~H/4) below the

mean water level in a channel of
depth H(=8.5cm), s is the surface slope and g is the acceleration due
to gravity. The experimental ranges of periods T and wave heights
H,... are: 2min.<T<20 min., 0.5em<H,..<2.5em and two kinds of
equivalent roughness D(5 mm and 3 mm) are used. If we make use of
the potential theory of waves, the experimental range was approximately
given by 6<U/(cH)<147. Referring to the discussion in §2, in this
experimental range of U/(¢H), the depth H plays an increasingly important
role with increasing U/ (cH), so that it is better to compare the experi-
mental result with theoretical prediction given in Paper [1]. If we
assume u in the experiment is the mean velocity # in Paper [1], and
approximate gs by (ic#%), which is a good approximation, at least when
the thickness of the frietional layer is thin compared with the total
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depth®, (6-5) may be transformed to

ero=a(1+i 2 oH )aa (6-6)
a @
where | u | % is approximated by ##% with a:—géﬁ. Therefore, the fric-
T

tion coefficient C® defined in Paper [1], (3-23) becomes

C(n:a\/l—[—(_ﬁ__ogi)Z’ (6—73)
a u
tan ozﬁ(ifi . (6-7h)
a\ 4
Yalin and Russel put

a=4.41x10"%, [=1.8%x10"? for H/D=37, (6-8a)
a=3.T5x10"%, p=1.8x107% for H/D=61.7, (6-8b)

and mentioned that the differences of «, B for the two relative depths
were difficult to identify Dbecause of the scatter of data points. The
values of C® and 0, computed from (6-7a, b) with the above numerical
values may be compared with the theoretical prediction given in Paper
[1]- Fig. 2a, b, for the experimental range 5< /(e H)<130 (in Paper [1],
the water depth is written as z, instead of H). For small values of
%i/(cH), we can use Fig. 7a, b of the present paper, which give the
revised version of the friction coefficient of Paper [1] for the deep water

» ) ) 3r o 8\ 1D U
dition. Taking the relations C*=2"C and _:<4>._._.
condition arKing e relations 3 an O'H 30 i .

into account, we may find C® and ¢ from Fig. 7a, b.

Sample estimates of the friction coefficients are given in Table 3,
in which we see that the phases of the friction coefficient are reasonably
close, but that the theoretical predictions of C® are consistently higher
than the empirical estimates by (6-7a) This is the opposite trend to the
case given in Table 2. However, taking the uncertainty of the replacement
of (6-5) by (6-6) and the determination of a and § into consideration,
we may say that the overall agreement is fairly good. For @/(¢cH ) >107,

3) For small values of U/ (cH), u~U. For large values of ﬁ/ cH), say, for ﬁ/(aH)
=102, u/U~0 9 expi(0.45) from Fig. 4a, b of Paper [1], and it may be better to approximate
" gs by icU. At any rate in this situation, SgsH is negligible compared with ajulu.
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Table 3. Comparison of the estimates of the friction coefficient
derived from the theory and experiment.

Theory Empirical Formula
HID ﬁ/(aH) ﬁ/(azo) Theory, Paper [1] Present Paper Egs. (6-Ta, b)
Cw.108 6 Cw.103 0 Cw.108 0
37 5.3 0.040 — — 4.41 0.041
102
61.7 4.6 0.040 — — 3.75 0.048
37 1.30x104 (7.0) (0.243) 7.16 0.475 4.74 0.387
10
61.7 2.18X104 (6.0) (0.240) 6.07 0.435 4.15 0.448

the friction coefficient becomes constant, as shown in Fig. 2a of Paper
[1], and in agreement with one of the conclusion given by Yalin and
Russel. However, for small values of 4/(cH), (6-5) becomes inadequate
for the expression of the bottom stresses. Their statement that for
small values of T the second term of the expression (6-5) is important,
is misleading, because a and 8 defined by (6-5) ean no longer be expected
to be constant for small values of i/(cH).

(b) VELOCITY PROFILE

i) As already mentioned in the preceding sub-section, Jonsson (1963)
measured the velocity distribution in a turbulent oscillatory flow. However,
the oscillatory motions in the experiment were not perfectly sinusoidal
due to various experimental limitations, so that his velocity data are
subjected to harmonic analysis and velocity amplitudes and phases for
the fundamental mode are extracted. The contribution of the higher
mode oscillations is found to be about 10 percent of the fundamental
mode at each level and seems to show some regularity in the vertical
direction, but in the present analysis, only the fundamental mode
oscillation is examined.

The experimental conditions for the fundamental mode oscillations
are somewhat different from Jonsson’s original estimates and it is found

that ) )
U=213.1cm/sec, 2,=0.05em, U/(0z,)=5.69X10°, (6-9)

where U is the mean value of velocity amplitude at three higher levels
(height above the crest of a roughness element: 23 cm, 20cm, 17 em)

and z, is estimated by the profile analysis of the velocity amplitude.
For the condition (6-9), the friction coefficient is
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C=0.718x10"2, 6=0.555. (6-10)

Now, we compare the observed velocity profile of the fundamental
mode with the theoretical one, which is based on (5-3a, b) and can be
expressed, with the aid of (5-6), in the form

U-u _ {T(ym Y)[T(yr, 0) for 0<Y<ys, (6-11a)
U (26 ya) Fuly)C2e”, for y2<y. (6-11b)
If we abbreviate (6-11a, b) by
(U—u)| U=fe""?, (6-12)
it follows
Amp [u/Ul=+1+f2—2f, cos f,, (6-13a)
Phase [u/U]= tan™ [ f1 sin f3/ (1 —f1 cos f2)]. (6-13b)

Therefore, the theoretical values of amplitudes and phases of w/U as a
function of 2z can be computed readily. Namely, for the condition (6-9)
and (6-10), we have
#%=18.22, %°=0.3979z, d=1.231cm 614
ye=0.5463, G(yz)=1.563, ¢=—1.594. (6-14)
The computed values of amplitudes and phases are shown in Fig.
102, b together with the experimental values. The zero level of the
experiment is adjusted, following Jonsson, to be 0.25cm below the crest
of the roughness element. From the figure, it may be concluded that
the overall agreement between theory and experiment is good in both
amplitude and phase, suggesting that the estimated roughness length z,
and the height of the overlap layer d are also reasonable. It is mentioned
here that if we increase z, from 0.05 cm to 0.077 cm as Jonsson estimated,
the velocity profile moves upwards in the figure, and if we assume a
larger value of K (or d) the level of the maximum amplitude moves
upwards. The discrepancy of the detailed shape of the profiles may
indicate the limitation of the present theory and to some extent the
deficiency of the experiment in the lowermost levels.
ii) Kalkanis (1964) measured the velocity distribution in a turbulent
oscillatory flow induced by the periodic oscillation of a flat plate at the
bottom and presented data on the amplitude and phase relative to the
movement of the plate, namely, f; and f; in (6-12). The empirical
formulas proposed by Kalkanis seems to indicate that the experiment
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Fig. 10a. Comparison of the theore- ~ Fig. 10b. Comparison of the theore-
tical prediction of the amplitude profile tical prediction of the profile of phases

of velocity (full line) with Jonsson’s 1963 (full line) with Jonsson’s 1963 data (black
data (black dots). ¢ and yr indicate the dots). y4 and yr indicate the upper and

upper and lower boundaries of the overlap lower boundaries of the overlap layer and

layer. 0 is the theoretical phase angle between
the outer velocity U and the bottom
stress zp.

may not be in the range of a fully developed turbulence, because the
length scale 0,=+/vfo plays a very important role, in contrast to our
expectation that the important length scale does not depend on v for a
fully developed turbulence over a rough bottom.

Now let us re-examine the data in the light of the present theory.
Since most of his data are found to be in the outer layer, we concentrate
our analysis for the outer layer only, where we have from (5-8b) and
(6-11D),

Ji= Amp[W]exp[—5.051z/4], (6-15a)

f>=5.0512/4+ phase [W], (6-15D)
where .

W=4.523C"G exp —[¢+60+0.7289]. (6-15¢)

If yr exceeds y,, the expression for W becomes, according to (5-5b) and
(5-9a),

W=myz exp [g_f/%%)] / WET(ys). (6-15d)
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Fig. 11a. Comparison of the theoretical Fig. 11b. Comparison of the theoretical

prediction of the amplitude profile of the prediction of the phase f, with Kalkanis’
defect velocity, fi/ Amp.[W], (full line) data for the smooth plate (black dots).
with Kalkanis’ data for the smooth plate

(black dots).

¢, e, G, ¢, 4, and yp can be determined from given experimental
conditions, if the roughness length 2z, is estimated from the actual
roughness.

For the three dimensional roughness h® of grains, it is reasonable
to assume z,=h®/30, but, for the two-dimensional roughness h®, there
is uncertainty about the estimation of z,. Furthermore, there is a problem
of the zero-plane adjustment. Therefore, we omitted the data for the
two-dimensional roughness and examined data for the smooth bottom
and for the three dimensional roughness with the zero plane adjustment
of 0.7 h® below the crest level (Kalkanis assumed an adjustment of 0.2 %),
It is mentioned here, that Jonsson (1966) made a somewhat analogous
analysis of Kalkanis’ data for the two-dimensional roughness.

For the case of a smooth bottom, the normalized amplitude factor
fi/ Amp [W] and the phase f, are shown in Fig. 11a, b respectively, as
a function of z/4, where the origin of z is displaced 0.06 cm (2Xx107° ft.)
below the actual bottom to obtain better agreement between the data
and the prediction. The theoretical line for fi/ Amp[W] can be easily
drawn by using (6-15a). The theoretical line for f; given by (6-15b) is
a linear function of z/4 with the constant factor Phase [W] at 2/4=0.
In the experimental range of Kalkanis, the values of Phase [W] turn
out to be about 0.5 but in Fig. 11b, the constant factor is assumed to
be 1.35 instead of 0.5. :

Now, in Fig. 11a, it is seen that the experimental values for z/4<0.2
are in agreement with the theoretical line. However, for larger values
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Fig. 12a. Comparison of the theoretical prediction of the defect velocity,
Ji/Amp[ W], (full line) with Kalkanis’ data for the three dimensional roughness
on the hottom. Black dots for M>2000, and circles for 1500 < M < 2000.

of z/4, the decrease of the experimental values with height is slower
than the theoretical expectation, suggesting the increase of the eddy
viscosity with height. Similar tendency can be observed in Fig. 11b
where the increase of f, with height becomes smaller than the theoretical
expectation for 2/4>0.2. Furthermore, in view of the necessity to make
the adjustment in both the zero plane level and the initial phase angle,
some factors not included in the present model seem to exist in the
inner layer for the case of a smooth bottom.

For the three dimensional roughness, the data are divided into two
groups with M>1500 and M <1500, since, for smaller values of M, the
fully developed turbulence may not be realized as discussed in §4(c).
In Fig. 12a, b and Fig. 13a, b the amplitude factor £/ Amp[W] and the
phase f, for M=1500 are shown, respectively, together with the theoretical
lines. The theoretical line for Jf: is drawn with the initial phase angle
of 0.25 which is the average value of Phase [W] in the experimental
range.




A Model of the Bottom Boundary Layer in Water Waves 115

25 T

20

00 L+ v v o 1 s+

¢ M>2000 A
o [500<M<2000 4

0.0 0.1

0.
YA/

Fig. 12b. Comparison of the theoretical prediction of the phase f;
with Kalkanis’ data for the three dimensional roughness on the bottom.
Black dots for M>2000, and circles for 1500 <M <<2000.

10 T S T I T

osf

06F ° [000<M=|500
o N

+ M<i000

4t

fi/Amp (W1

o

o

[0 JY [ AT ST SN U SIS S S B

00 ol 02 03 04 os
/5

Fig. 18a. Comparison of the theoretical
prediction of the defect velocity, fi/ Amp
[{W1, (full line) with Kalkanis’ data for the
three dimensional roughness on the bottom.
Cireles for 1000<M<1500, and crosses for
M<1000.

ZISFX'IHXH
L o 1000<M<I500
+ M<|000
20
1.5 |-
~
o
3
810 - -
o L
; +
05 .
0.0_‘..x | PRSI SRR
00 0.1 0.2 03 04

Zmn

Fig. 18b. Comparison of the theoretical
prediction of the phase f» with Kalkanis’
data for the three dimensional roughness
on the bottom. Circles for 1000<M<1500
and crosses for M<1000.
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For M>1500, the experimental values of f;/ Amp[ W] are in reasonable
agreement with the theoretical expectation as seen in Fig. 12a, but the
phase f, (Fig. 12b) indicates more rapid increase with height than the
theoretical values and still shows some dependence on M. For M< 1500,
the experimental values of the amplitude factor scatter in a wide range as
shown in Fig. 13a, and show very rapid decrease with height for M< 1000,
suggesting that the fully developed turbulence may not be established.
The corresponding phase f, for M< 1000 indicates a very slow increase
with height as shown in Fig. 13b.

Judging from Fig. 12a, b and 13a, b, the fully developed turbulence
in the outer layer for a moving plate experiment seems to be established
for M>2000, but the increases of the phase is somewhat faster than
the theoretical expectation. For M<1000, it seems that the turbulence
in the outer layer is distinctly different from the fully developed case
and cannot be explained by the present model. It is remarked that the
empirical formulas for f; given by Kalkanis seems to give better agree-
ment with data than the present prediction.

(c) ONSET OF SAND MOVEMENT UNDER WAVE ACTION

The bottom frictional stress and the movement of sand grains on
the bottom of water are expected to be closely related. Following the
concept of the critical tractive force producing sand movement in a
steady channel flow, we may consider the following relation to hold for
the onset of grain movement under wave action :

ts/(0g*D tan ) =1, (6-16)

where g*=g(o’—p)/p, g is the acceleration due to gravity, p and o’ are
the density of water and grain, respectively, D is the grain diameter,
and ¢ is the angle of repose. The complicated relations between forces
acting on an individual grain and the mean bottom shear stress are
absorbed in the factor I. Although it is essential to clarify the role of
I for the understanding of the mechanics of grain movements, we discuss
the problem only from the phenomenological point of view. For the
case of a steady channel flow, I seems to be a function of u,D/v and,
for the fully developed turbulence (large values of u,D/v), I is practically
constant at about 0.05. Near the transition between the hydrodynamically
smooth and rough bottom, namely near u,D/v~12, I reaches a minimum
of about 0.03 and below this Reynolds number, I gradually increases up
to about 0.15. (See, for example, Ishihara (Ed.), Applied Hydraulics,
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I1(1), p. 18, Fig. 2.1.12, 1957). Therefore, it is probable that I becomes
a constant of the order 0.05 for a turbulent oscillatory flow over a
rough bottom.

Now (6-16) is transformed into

g*D|U2=C/I, (6-17)

and, for a rough turbulent flow, € is given as a function of U/(0z,) as
shown in Fig. 7a. If we approximate C in the range 3 X 10*< U/ (02,) <10
by

C=0.6(c2,/U )"z, (6-18)

and substitute into (6-17), assuming D=30z,, we have

A

A 0.11N\/ U\
D U2:<——~><——> . 6-19
g*D] — oD (6-19)

An empirical formula given by Bagnold (1946, Eq. 4a) for the initial
movement of sand grains is of the form

o=A(U|o) g1 2DV, (6-20a)
with
A=21.5D""%g~"  (C.G.S. units).

This formula can be transformed to .

wpre— 1 E>‘1’2 _

g*DIT _A2<0D . (6-20b)
where the value of A® in his experimental range (0.33 cem<D<0.09 cm)
is 0.417<A%<0.282. Therefore, the expected value of I in (6-19)
becomes 0.026<1<0.046 for the initial movement of grains. A similar
empirical formula was presented by Sato and Tanaka (1962) for the
general movement of grains. Their formula can be reduced to the form
(6-19) where I/0.11=0.6, so that I becomes 0.066.

For the general movement of grains, more direct comparison between
the experimental data and the theory is made by using the data by
Manohar (1955), Goddét (1960), Sato and Tanaka (1962), Horikawa and
Watanabe (1966).

As discussed in §5-(c), the lower limit of the rough turbulent flow
may be delineated by M>60 for R<10% and a little larger value of
M for R>10%. However, for simplicity of the discussion, we assumed
M=60 as the criterion of smooth-rough transition in the whole range
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Fig. 14a. Comparison of the theoretical prediction of the general movements
of grains (I=0.06) for the rough turbulent flow with experimental data by Manohar
(1955), Goddét (1960) and Sato & Tanaka (1962). Criterion of the rough turbulent
flow is described in the figure.
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Fig. 14b. Comparison of the theoretical prediction of the general
movements of grains (I=0.11) for the laminar or smooth turbulent flow with
experimental data by Manohar (1955), Goddét (1960), Sato & Tanaka (1962),
and Horikawa & Watanabe (1966). Criterion of the laminar or smooth
turbulent flow is described in the figure.
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of the experiments by Goddét, Sato and Tanaka, Horikawa and Watanabe.
For the data of Manohar, we followed the criterion given by Manohar
that D/6,=0.35 is the critical value of the smooth-rough transition. In
terms of M, therefore, the data by Manohar for M<120 are included
in the case of a smooth bottom.

In Fig. 14a, the data for a rough turbulent flow are shown as a
function of U/(¢D) with the theoretical curve transcribed from Fig. 7a,
assuming D=30z, and I=0.06. In Fig. 14b, the data for a smooth
bottom are shown as a function of R with the theoretical curve transeribed
from Fig. 6a, assuming I=0.11.

As seen in Fig. 14a, b, the experimental results seem to be in fairly
good agreement with the theoretical prediction with 7=0.06 for a rough
turbulent flow and I=0.11 for a smooth flow. This, in turn, means
that the theoretical prediction of the friction coefficient may be realistic.
It is remarked here that the data of Goddét for M< 60 and R<10* do
not show any systematic deviation from the data for M>60 if plotted
in Fig. 14a for a rough bottom. This suggests the difficulty of separating
the smooth and rough bottom for small values of M and R. Horikawa
et al. (1966) made a similar analysis for the initial and general movements
of grains on the basis of the result given in Paper [1]. However, since
the friction formula given in Paper [1] was not adequate for small values
of U/(0z,), their conclusions should be revised accordingly.

7. Summary and conclusion

The eddy viscosity assumptions [(3-2a, b, ¢), (3-6a, b)] analogous to
those for the steady flow in a turbulent boundary layer are introduced
by defining various quantities in the oscillatory flow, such as the modified
friction velocity u*[(2-16)], the wave displacement thickness 0*[(2-17)],
and the vertical scale of the defect layer A[(2-18)]. The boundary layer
is divided into three parts: inner, overlap, and outer layer, and two
universal constants k(=0.4) and K(=0.02) are assumed. In particular,
the effective viscosity in the inner layer is assumed somewhat differently
from that commonly used for the steady flow and we introduce a constant
Reynolds number N(=12) related to the viscous sub-layer and the roughness
height Dy(=15z,) (§3).

Making use of the eddy viscosity assumptions, the linearized equation
of oscillatory motions in the boundary layer is solved for the case of a
boundary layer thin compared with the total depth of water. The
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vertical distributions of shear stress and velocity, and also the friction
coefficient can be derived straightforwardly (§5). In particular, in the
defect layer, the shear stress and defect velocity can be expressed in
universal forms, F, and F, (Fig. 3a, b), if they are suitably nondimen-
sionalized by means of Gu} and 4. The parameter G and the friction
coefficient C, both of which are defined in complex forms, are functions
of R(=Ud,/v) or U/(oz,) only and are shown in Fig. 2, Fig. 6a, b, Fig.
Ta, b.

The comparison of the present theory with empirical results shows
reasonable agreement in both the velocity profile and the friction
coefficient (or energy dissipation). The critical tractive force for the
movement of sand grains under wave action can also be formulated
parallel to the case of steady turbulent flow, by making use of the
present formula of the friction coefficient (§6).

The gross features of the boundary layer under waves are thus
simulated satisfactorily. However, if we look into the details of the
strueture of boundary layer, it is obvious that the discussion based on
a model assuming the average state of turbulence over one wave period
cannot be sufficient. The instantaneous state of turbulence is completely
left out of the consideration, and we are not certain how the instantaneous
state of turbulence and the average state of turbulence as assumed in
the present paper can be related. For the development of the study
of a wave boundary layer, it seems essential, at first, to understand
the generation and maintenance of turbulence on a more rigorous basis.

As for the rough surface, our knowledge is far from satisfactory.
Among many problems related to the rough surface, we need more
definite knowledge about the roughness length z, or its equivalent, and
the location of the zero plane, in view of the fact that for small values
of U/ (02), the scale of the boundary layer 6* becomes comparable to
the height of roughness elements.
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5. PrictEn S KEEBERBIZOWT
HEwIERT MR JH Rk = BB

KEF DO FEMEDIZ & » TKERETAEFERBE LT, 3% G, 1964) <, EEE
PRI RSB RBORCEOREGEE L LTHR 7228, 22 TiHERBERAEI < &_T/h
SRR EEZ 5.

£, W w, BEREINGE U, BB o AKROBE p 25, FEREE u* (ro=4*u*), 8

Wi % (7= Amp| (U~ de/U) HaEnt s ToT, MEE ¢ CRF SRR TS

BbL, BECE ~ 2215, §2
Kiz, EEROBECHE T, BEREE 3BICHY, ThERICHIET 28R N(=12), k(=
04), K(=0.02) #HAL THZMERR Kz 2ROBIERET 5.
v , 0<2< Dy, " B, (1-a)
Kz—{kugz D <z<d, (braiE), (1-b)
KUd*, d<z , G =), (1-¢)
T, v BATEREREK, 48 GEMEREEORIE, 2 AERS0OHS, Dy RBREE
JBS (@FDijv=N) THY, *ﬁ@@L@®ﬁédw;kad KU w5,
EmSHREAIE, WNE 1-a) ofvig,

K.=ak{%Dg, 0<2<Dp (1-d)
L BE, 2 (Nikuradse DY D=30z,) ZHEES LT 2L, Dr=152, ja=In(Dg/z) &
FE+ 5. (§8)
BSUErmoED R
0 i
¢ U—w==——(lp), (2)

LRGBS N D, K RFEF AL (2 A CHROBTEEA 20 bh5. (§4)
BEORIE dd=Amp| (U —w)dlif) BFFT DL, I, SUETORIL S RIHIE R

(U~u), RO w*) OHTE (2/4) OBOFEHE UTETHNRS. £/, BHREERK C %

tplp= CUUTE%T%& %@&M(J&UMWOim@m BEAHESCE 2T, FhEh

R(=Ubylv, 5,=+/5]a) Xix Ullozy) OFELE LTEHEHSES L, BifrRgf, BNERibZ D o
JERPERIC & 2T T3 — 5% (B 11,

<E>=(p/2) CU3c050 (3)
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5.
HE—BHOBBEREEEROEAICE b »T 044 D|D L5 2 2L THTE, BHE—FLE
OFERBEIIL, 04L6%/ D L5 LEZAONEY L Bbh, BEIC 2>V To Collins (1963) DFEH
{1 6%/D =085 Th 5. (§5)

BTG Jonsson (1963) o> SEERfE LIBNE, (AL Dighi D) Tv—3ERL, BEREREX
Bagnold (1946) MEBREZHBAL, KX 3ERDOBERMc > VW TLHETREHFALE
%2%. (§6)




