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The formulation of a nonlinear frequency domain parabolic mild-slope model is detailed. The 
resulting model describes two-dimensional wave transformation and nonlinear coupling between 
frequency components. Linear dispersion and transformation characteristics are dictated by 
fully-dispersive linear theory, an improvement over weakly-dispersive Boussinesq theory. Both the 
present model and a weakly-dispersive nonlinear frequency domain model are compared to 
laboratory data for both two-dimensional wave transformation and pure shoaling. It is found that, in 
general, data-model comparisons are enhanced by the present model, particularly in instances where 
the wave condition is outside the shallow water range. Q 1995 American Institute of Physics. 

I. INTRODUCTION 

The Boussinesq equations of Peregrine* are often used 
for nonlinear wave propagation in shallow water. These 
equations have been treated in both the time domain (e.g. 
Rygg”) and the frequency domain (Freilich and Guza3; Liu 
et ~1.~; Kirby’). They provide reasonably accurate descrip- 
tions of the wavefield provided that the water is sufficiently 
shallow (kh4 1, where k is the wavenumber and h the water 
depth). Unfortunately, errors in wave shoaling and celerity 
predictions become evident in intermediate or deep water, 
since the linear dispersion relation and shoaling mechanisms 
associated with these models become entirely inadequate 
outside the shallow water range. For example, the “consis- 
tent” model of Freilich and Guza3 (which is a frequency 
domain treatment of the Boussinesq equations of Peregrine’ 
in one dimension) has Green’s Law as its shoaling mecha- 
nism: 
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This dictates a monotonic increase in wave amplitude a with 
a decrease in h. Applying this shoaling relation to a typical 
wind-wave spectrum would result in overshoaling in fre- 
quency components which are in either intermediate or deep 
water, where kh is not small. 

In this study we wish to derive a nonlinear frequency 
domain parabolic mild-slope equation. This model would 
have the correct linear dispersion and shoaling characteristics 
(i.e., that of fully-dispersive linear theory), while retaining 
nonlinear coupling between frequency components. Several 
investigators have previously worked on models similar to 
the one described herein. Bryant6.7 formulated a model from 
the boundary value problem for water waves over a flat bot- 
tom by specifying spatially periodic Fourier expansions for 
the variables C$ and 7 which satisfy the Laplace equation and 
the bottom boundary condition, substituting these into the 
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two free surface boundary conditions, and then integrating to 
solve for the amplitude coefficients, which vary slowly in 
time. The interaction coefficients which determine the degree 
of energy exchange among resonant triads were derived 
without restrictions on the size of the dispersion parameter 
kh. However, the time varying, spatially periodic formula- 
tion is not suitable for most applications, since wave infor- 
mation is usually taken in the form of time series from sta- 
tionary gauges. These data are processed and stored by 
means of a frequency-domain Fast Fourier Transform (FFT), 
which presupposes equal intervals of frequencies rather than 
wave numbers. Additionally, the waves over varying 
bathymetry can evolve rapidly in space, precluding the as- 
sumption of spatial periodicity. Keller8 developed a set of 
equations describing the evolution of two interacting wave 
components. He demonstrated that, in the nondispersive 
limit, this same set of evolution equations can be derived 
from the exact Euler equations, the nonlinear shallow water 
equations, and the Boussinesq equations. The model de- 
scribed in this paper would match his model before the non- 
dispersive limit is taken if the number of frequency compo- 
nents is truncated to two and slow time dependence is 
reincorporated. Keller8 did not model his equations. Agnon 
et al.’ derived a one-dimensional nonlinear shoaling model 
for time periodic, spatially varying waves from the boundary 
value problem. 

We take a different approach in the present study to de- 
rive what is essentially a two-dimensional extension of the 
model of Agnon et a1.9 We begin with the boundary value 
problem for water waves and derive the basic model in Sec- 
tion II. In Section III we assume periodicity in time and 
transform the problem into the frequency domain by factor- 
ing out the time dependence, resulting in a nonlinear elliptic 
mild-slope equation. In the process we explicitly formulate 
the nonlinear coupling between frequency modes. Section IV 
details the use of the parabolic approximation to develop 
two-dimensional evolution equations governing the spectral 
amplitudes. We show comparisons of the resulting model to 
both experimental data and weakly-dispersive spectral trans- 
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formation models in Section V. We present conclusions and 
propose extensions of the work in Section VI. In Appendix 
4 1 we present an alternative derivation of the basic model 
using the Lagrangian for water waves. In keeping with the 
general nature of the discussion, we extend this formulation 
to include the effects of ambient currents in Appendix A 2. 

II. BOUNDARY VALUE PROBLEM 

We consider a waveiield propagating over a spatially 
varying bottom. The Cartesian coordinate system (x,y,z) is 
located on the still-water level, with z considered positive 
upwards from the origin. The wavefield is denoted in terms 
of the free surface elevation g(x,y,t) (where t is time) 
which is defined from the still water level z = 0. The water 
depth is denoted h(x,y). The fluid is assumed to be inviscid 
and irrotational. In concert with this assumption, we use the 
water wave boundary value problem for the velocity poten- 
tial 4: 

v2q5=v;++ cpzz=o; -la=ws?J, (2) 

4Z= -V,h.V,& z= -h, (3) 

g.17+~i+4(vh~)2-t8(~2)2=0; z=‘17, (4) 

77~-~z+v,77’vh~=o; z=q (5) 
where Vh denotes the gradient operation in the horizontal 
coordinates (x,y) and g is the gravitational acceleration. 
Subscripts denote differentiation. 

We wish to retain leading order nonlinearity in the free 
surface boundary conditions. Rather than scale and nondi- 
mensionalize the problem, we instead follow the approach of 
Bryant6 and retain dimensional quantities, with the under- 
standing that leading order nonlinearity is 0( e2), where 
e(=ka, where a is a characteristic wave amplitude) is the 
nonlinearity parameter. We note here that the scaled, nondi- 
mensionalized problem had been addressed by Agnon et ~1.;~ 
the approach here is entirely equivalent. 

The free surface boundary conditions are both nonlinear 
and applied at a position not known a priori; thus we expand 
these in Taylor series about z= 0 and retain terms to 
O(e2). The truncated boundary value problem is now: 

V&p+ q&=0; -h=sz=zO, (6) 

&= -V,h.V,& z=-h, (7) 

gv+ 9%+ 4(vh4)2+ s?q2+ 77&=0(& z=o, (8) 

17t-&+Vh?pVh+ 17q&=o(E3); z=o. (9) 
Instead of using the approach of Bryant,6 who substituted an 
appropriate form for c5 that would satisfy the Laplace equa- 
tion and the bottom boundary condition, we instead use the 
approach of Smith and Sprinks,” who used Green’s second 
identity to derive a linear mild-slope equation. We first as- 
sume a superposition of solutions: 

4(x,y,z,i)=n~l fn(kn,h,z)~,(k,,o,,-~,y,t), (10) 

where w, is the radian frequency and k, is the wave number 
of the nth frequency component, and: 

(11) 

or the usual depth dependence dictated by linear theory. The 
frequency w, and the wave number k, are related by the 
linear dispersion relation: 

m;=gk, tanh k,h. (12) 

It is convenient to combine the two surface boundary condi- 
tions (8) and (9) into a single equation for 4 only. Eliminat- 
ing 17 from the surface boundary conditions leads to: 

#z= - i 4t,+$vh4jf+ fM,>f- &btj~r 
[ 

+v,*(q$v,cpj ; z=o. I (13) 

In the manner of Smith and Sprink~,‘~ we will use Green’s 
second identity on the variables f,, and 4, , as follows: 

Vh’ ( /y-3zvdn) - I_:pZ& 
= -fn&z[z=O+O(E,ti2) 04) 

where (Y is a parameter characterizing the bottom slope. For 
our purposes it is assumed that 

&~O(E). (15) 

In this manner we can eliminate bottom boundary terms in 
comparison to O(2) terms from the free surface. Develop- 
ment of the linear part of the models is identical to Smith and 
sprinks; *e reference is made to their paper. We simply note 
that: 

“f,(O) = 1, (16) 

f,,(O) = z , 07) 

08) 

(19) 

where C, is the wave celerity and C,, the group velocity of 
the nth component. The subscript z refers to partial differen- 
tiation with respect to z. Substitution of (lo), (13), (16), (17), 
(18), and (19) into (14) and manipulation of the integrals 
yields a time-dependent mild-slope equation with nonlinear 
coupling between modes: 
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?I 
where the notation On on the right-hand side of (20) indi- 
cates that the nonlinear coupling occurs between the mode 
under consideration (n) and two other modes in the spectrum 
(I and m). .Explicit relationships between I, m, and y1 follow 
the des of resonant triad interaction theory (Phillips”). 
These restrictions will be imposed in the next ‘section. 

Despite the fact that we have decomposed the wavefield 
into individual components, we have not made any assump- 
tions concerning. the behavior of these components; they 
could represent propagating or standing ‘waves with charac- 
teristics that vary slowly in time,and space. It is noted here 

that, in the linear limit, (20) approaches a representation of 
decoupled, independent waves. In the shallow water limit (as 
k,h approaches zero) we approach a frequency domain rep- 
resentation of Boussinesq-type shallow water waves, as dis- 
cussed by Freilich and Guza.3. additionally, Bryant7 showed 
that a system’ like (20), with coefficients expressed as a 
power series in E, will join smoothly to a solution for Stokes 
waves in deep water for N= 3 components. 

III. TIME-HARMONIC WAVE PROPAGATION IN TWO 
DIMENSIONS 

We wish to develop a series of evolution equations for 
the propagation of time-harmonic waves in two spatial di- 
mensions. Hence, we can completely factor out the time de- 
pendence by assuming: 

$n(XYfjk&e-iut “* n + + pnt , , 2 

and using resonant triad interactions to formulate the nonlin- 
ear coupling between frequency components (e.g. Phillips*‘). 
This yields a time-harmonic wave equation with modifica- 
tion by nonlinearity: 

A 
- ~l&WhZ+E- “ly’“” (6+ op,+~+ w;,lj@&+~ . 1 (22) 

I 

We note here that the solution of Bryant6 can be recov- 
ered by assuming spatial (rather than temporal) periodicity in 
(20). While we have incorporated an assumption of time pe- 
riodicity into our problem, we have still not explicitly speci- 
fied the spatial variation of the wavefield. Additionally, (22) 
is elliptic, with the linear terms comprising the elliptic mild- 
slope equation model of Berkhoff12 and Smith and Sprinks.” 
Numerical solution of the equation in this form would re- 
quire fine resolution (many gridpoints per wavelength) and 
complete specification of the boundary. This is not well 
suited for coastal propagation problems in which the shore- 
line location is not known a priori and the modeled region 
can be on the order of kilometers in size. 

IV. PARABOLIC APPROXIMATION 

We will restrict the problem to that of a progressive 
wave field with the following form: 

&,*(x,y) = - E An(X,y)eiJk~(x,y)d*, (2% 

$X(x,yj= z A~(x,yje-jlk,(x,~)dx, (24) 

where the complex amplitude A, is assumed to be a slowly 
varying function of the spatial coordinates (x,y), and the 
wave is assumed to be traveling primarily in the + x direc- 
tion. Substituting (23) and (24) into (22) gives: 

+ [ (cc,),(A,e’lk,(X.y)dX)y]ye -ifk,(X,y)dX 

where 
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= ~[o~k~k,_l+(kr+k,-l)(o,-rk,+olk,-,)o.l 

w%-lf&j, (26) 

(27) 

Because (25) is still elliptic, we need to explicitly invoke 
the parabolic approximation (Radder;13 Lozano an4 Liu14). 
We have assumed that the wave propagates primarily in the 
+x-direction; thus we retain fast wave-like variations in the 
x-direction but not in the y-direction. The fast variations in 
the &irection are accounted for by me complex exponential 
in (23) and (24). We use the scaling approach of Yue and 
Mei15 to order the derivatives of A, as follows: 

since the fast variations in x have already been factored out. 
The ordering of the y-derivative in (29) allows us to keep 
d2A, / G’y2, thereby allowing us to model the slow phase-like 
variations of the wave in the y-direction that occur when it is 
turned at a small angle to the’x-direction. Additionally, since 
we assume the wave to propagate primarily in the 
x-direction, changes in the amplitude A, would be due 
mostly to x-derivatives of the depth h. Thu$ the order of 
bottom slope in the x-direction (h,j, as well as x-derivatives 
of depth-dependent properties (e.g,, C, C,), should also be 
O( e2). This allows us to order the relative amplitudes of the 
first two terms of (25) as: 

E4C(CC,),A,,I,~E2C2i(kCCg)nAnxlr (30) 

where the subscript x refers to differentiation with respect to 
X. Since we are keeping terms to O(i2) we drop the first 
term in (25). Additionally, we need to factor out any y ,de- 
pendence from the phase function. This must be done since 
we are only integrating the phase in x, but the wave number 
k, is a function of both x and y . There are several ways ‘to 
address this; we choose the method of Lozario and Liu,13 
where they defined’ a y-averaged wave number En(x) as a 
reference phase function. Thus, we, rewrite (23) and (24) asf 

&(x,y) = - $ a,(x,y)e’Jk‘Jx)d~, 
n 
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which gives: 

A,(x,y) = a ix yjej(fk(x).dx-fk,(x.y)dx) II 9 
and: 

A;(x,y) =a;(x,y)e -i(lk(x),dx-fk,(x.y)dx). 

Substituting this into (25) yields: ’ 

2~ikCC,L~,, -2ikCC,),ik,-k,)a,-ti(kCCg!nxan 

+ [wcgM4,1y 

=$ 
n-l 
z Rala,_le’f(kl+~-,-,)dX 1 1 

(32) 

(33) 

(34) 

N-n 

+ 2 C ~a~a,+~a’f(k,+r-~-~)~~ . (35) I=1 

The two-dimensional parabolic equation (35) was modeled 
with the Crank-Nicholson numerical scheme. This scheme 
is unconditionally stable fop linear ‘problems, and is second- 
order accurate in x and y.’ The paraboljc model (35) was 
converted to finite differences much like the Kadomtsev- 
Petviashvili (KP} model ‘of J&r et al. ,4 where the numerical 
scheme was detailed; thus, it will not be shown here. For the 
case of unidirectional wave shoaling we reduce the model to 
one dimension: 

WC,L 
Anx+ 2(kCC,), An 

N-n 
+ 2 ‘2. 

171 
SA:Anflejf(k,+j-kl-k.)dx (36) 

where we revert back to the A, notation since the reference 
wave number k, is identical to k,. This one-dimensional 
model is identical to that of‘Agnon et a1.i9 which was derived 
using continuous Pourier integrals rather than discrete Fou- 
rier transforms, as we have done here. We model (36) with a 
fourth-order. Runge-Kutta scheme with error checking and 
adjustable stepsize control. 

V. COMPARISONS TO DATA 

To verify the performance of the model, we will com- 
pare it to available experimental.data. The first comparison 
will be to the data of Whalin,? who conducted a laboratory 
experiment to investigate the &nits of linear refraction 
theory. He generated sinusoidal waves of 1,2, and 3 second 
periods and ran them over bathymetry that resembled a tilted 
cylinder. The bottom contours and tank dimensions are 
shown in Figure 1. We only compare the 2 and 3 second 
cases; the 1 second case will be discussed later in this sed- 
tion. The wave parameters for the cases used in the compari- 
son are shown in Table I, where the’tank depth used in cal- 
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FIG. 1. Wavetank layout of experiment of Whalin.16 (Top) bottom contours; 
(bottom) centerline depth. 

culating the nonlinearity parameter ka and the dispersion 
parameter‘kh were chosen to maximize the values of these 
parameters Lk was calculated by (12) using the primary bar- 
manic]. Wl~alin’~ placed gages at certain locations along the 
centerline, and recorded the amplitudes of the first three har- 
monics. This experiment demonstrated the inadequacy of 
non-diffractive linear refraction theory as a general modeling 
methodology; ‘wave ray crossing downwave of the top of the 
tilted cylinder would indicate an infinite waveheight accord- 
ing to linear refraction theory, .which would be impossible. 
Diffraction is very prevalent there. Additionally, using a lin- 
ear sinusoidal wave as .input generates higher harmonics 
since.the nonlinear surface boundary conditions cannot be 
satisfied by a single harmonic. ” 

We’ ran the parabolic nonlinear mild-slope model (35) 
and the Rl? parabolic frequency domain model of Liu et al.” 
against the data ‘of Whalin using the parameters shown in 
Table I. This KP model is essentially a frequency, domain 
treatment of a reduction. of the Boussinesq equations of 
Peregrine,’ and so ‘has lowest-order dispersion and Green’s 
Law shoaling. We used N= 5 harmoni& for the T= 3 second 
case and N= 3 harmonics for T= 2 seconds. A grid spacing 
of 4x= 12 cm and Ay=8 cm was used for both models. No 
substantial improvements were noted when the stepsizes 
were halved. 

TABLE I. Wave parameters of experiment of Whalinr6 used in data-model 
comparisons (hi=457 cm; h,=15.2 cm). 

afl 
(cm) ku kh 

3 0.68 0.0068 0.464 
3 0.98 0.0098 0.464 
3 1.46 0.0146 0.464 
2 0.75 0.0120 0.733 
? a 1.06 0.0169 0.733 
2 1.49 0.0238 0.733 

0 
4 

0 5 10 15 20 2s 
x W 

0 
0 6 10 15 20 

*. x (m) 
5 

FIG. 2. Comparisons between models and Whalin’s experiment, T=3 s, 
ao=0.68 cm. Nonlinear mild-slope model (-), I@ model of Liu et ~1.~ 
(- -). data of Whalin16 (0). (Top) first harmonic; (middle) second har- 
monic; (bottom) third’haimonic. 

Figures 2 through 4 show the comparisons between the 
models and Whalin’s data for the case of T= 3 seconds. It is 
apparent that neither model predicts the first harmonic am- 
plitudes particularly well. This seems to’ be endemic of most 
data-model comparisons done in the literature where Wha- 
lin’s T= 3 second data were used ie.g., .Rygg;’ Madsen and 
SBrensen;i7 Nwogu’*). Liu et aL4 maintain that the relatively 
short evolution distance for a 3 second wave period (roughly 
two wavelengths) may at least partially ‘violate the si0Wiy 
varying ‘assumption used to derive their frequency domain 
KP model. In any case, both models show reasonable com- 
parison with the T=3 second data for the second and third 
harmonics. 

The T=2 second case is more demonstrative of the ad- 
vantages of the dispersive model. The value of the dispersion 
parameter kh in the deep portion of the tank is 0.733, which 
may violate the shallow water assumption used in the KP 
model of Liu et al.4 Figures 5 through 7 show’these results. 
It is apparent that (35) models the first harmonic amplitudes 
better than the KP model. The overprediction of these ampli- 
tudes by the KP model is most likely due to the inherent 
Green’s Law shoaling.’ The prediction of the-second and third 
harmonic amplitudes are equivalent between the two’mbdels, 
despite the relatively high values’of kh in the deep portion of 
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FIG. 3. Comparisons between models and whalin’s experiment, T=3 s, 
ao=0.98 cm. Nonlinear mild-slope model (-), KP model of Liu et aL4 

FIG. 4. Comparison between models and Whalin’s experiment, T=3 s, 

(- -). data of Whalin14 (0). (Topj first harmonic; (middle) second har- 
ao=1.46 cm. Nonlinear mild-slope model (-), KF’ model of Liu et aL4 

monic; (bottom) third harmonic. 
(- -), data of whalin16 (0). (Top! Fist harmonic; (middle) Second har- 
manic; (bottom) third harmonic. 

the tpk (kh = 1.92 for the second harmonic and kh=4.94 
for ,the third). This equivalence may be due to the fact that 
these harmonics are input with zero amplitude and allowed 
to grow initially due to nonlinear energy exchange between 
components. For such a relatively short slope, ‘it is possible 
that nonlinearity, rather than first-order quantities lik& shoal- 
ing and refraction, control the evolution of these harmonic 
amplitudes, and as such are not affected by the disparity 
betwZen a dispersive shoaling mechanism and Green’s Law. 
‘I& would not be the case for a broad spectim of irregular 
waves shoaling over a long slope, as we shall se& in the next 
set of compesons. 

It can be argued that the T= 1 second case of Whalin16 
would be a more severe test case for (35). The value of kh 
for this case is 1.92 in the deep portion of the tank. Both 
Madsen and SBrensen17 and Nwogu” compared their time 
domain dispersive Boussinesq equations to this case; they 
both demonstrate reasonable agreement with the data. How- 
ever, the effectiveness of the frequency domain formulation 
used here is contingent upon the relative size of the argu- 
ments of the complex exponentials in the nonlinear right- 
hand side of (35). These arguments can become large in deep 
water, invalidating the assumption of slow spatial variation 
used in deriving the model. This problem will likely arise in 
the simulation of the T= 1 second case; thus we do not com- 
pare our model to it. We  feel, however, that the favorable 

results demonstrated by the T=2 second case is sufficient 
attestation to the importance of incorporating dispersion and 
shoaling characteristics in nonlinear wave transformation 
which are valid for arbitrary water depth. 

We  also compare our one-dimensional model (36) to 
Case 2 of the wave shoaling experiment of Mase and 
Kirby.lg This experiment was conducted to study the shoal- 
ing and breaking characteristics of irregular waves. Case 2 of 
this experiment was notable in that the peak frequency of the 
simulated wave spectrum was actually in fairly deep water 
(kh = 1.9), well outside the probable range of validity for 
Boussinesq theory. The experimental setup is depicted in 
Figure 8, which was taken from Wei and Kirby.“’ Mase and 
Kirby I9 generated Pierson-Moskowitz spectra at the wave- 
maker in two different experiments; Case 2 had a peak fre- 
quency of 1 Hz. This choice of peak frequency, combined 
with the broad-banded spectral shape, allowed significant en- 
ergy in frequencies that were well into the deep water range, 
thus providing a demanding test for dispersive shoaIing mod- 
els. 

We  will be taking the model through the surf zone, re- 
quiring implementation of a dissipation mechanism in our 
model. We  use the methodology of Mase and KirbyI to 
formulate this dissipation, which revises (36) to: 
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FIG. 5. Comparisons between models and Whalin’s experiment, T=2 s, 
no=0.75 cm. Nonlinear mild-slope model (-), KF’ model of Liu et ak4 
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RAIA,_lz’s(kI+k’-l-k.)dx 

+2:x: SA;EAn+leiS(k,+r-kl-kn)dx 

where: 

% I = (P(x) - %o) 
f ;eak%~4~2 

% f%Li" ' 

36 B3fpea&n, 
P(x) = ~ 

4va 
, 

Km,=2 45i 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

and where fpeak is the peak frequency of the spectrum. The 
free parameters B, F  and y are assigned values of 1.0, 0.5 
and 0.6, respectively. This was based on comparisons to the 
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FIG. 6. Comparisons between models and Whalin’s experiment, T=2 s, 
ao=1.06 cm. Nonlinear mild-slope model (-), KP model of Liu et aL4 
(- -), data of Whalin16 (0). (Top) first harmonic; (middle) second har- 
monic; (bottom) third harmonic. 

data of Mase and Kirby” and are close to values found from 
field data by Thornton and Guza.” The dissipation function 
(41) is the so-called “simple” probabilistic dissipation model 
of Thornton and Guza.21 The frequency distribution of the 
dissipation mechanism is divided into CY,~, which drains an 
equal amount of energy across all frequencies, and LY,~, 
which weights the dissipation higher toward higher frequen- 
cies; this is shown in (38). The distribution (~,t represents 
the f2 dissipation trend found from the data. A detailed deri- 
vation of this dissipation model is found in Mase and 
Kirby.” We  will compare (37) to the “consistent” shoaling 
model of Freilich and Guza,3 which was equipped with the 
same dissipation mechanism as described above. 

Figures 9 through 12 show comparisons between the 
data, the nonlinear mild-slope model (37), and the “consis- 
tent” shoaling model. Most of the waves began to break at 
h = 17.5 cm, so Figs. 11 and 12 detail the effectiveness of the 
dissipation function as well as that of the model equations. It 
is apparent that the nonlinear mild-slope model compares 
very well to the data for much of the frequency range 
throughout most of the domain. The “consistent” model, on 
the other hand, exhibits a strong deviation from the spectral 
peak even at the first slope gage (d= 35 cm). This deviation 
is due to the overshoaling of frequency components in 
deeper water than that for which Green’s Law (1) is valid. As 
the waves shoal and break, deviation of both models from 
the data becomes more pronounced. This may be due to pos- 
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FIG. 7. Comparisons between models and Whalin’s experiment, T=2 s, 
ao=1.49 cm. Nonlinear mild-slope model (-), KP model of Liu et al’ 

(- -), data of Whalin16 (0). (Top) first harmonic; (middle) second har- 
monic; (bottom) third harmonic. 

sible inadequacies of the dissipation mechanism. Overall, 
however, one may conclude from both data-model compari- 
sons that the parabolic nonlinear mild-slope model performs 
better than equivalent models with lowest-order dispersion 
and Green’s Law shoaling. This is primarily due to the mild- 
slope formulation, which retains fully-dispersive linear 
theory for the dispersive and shoaling characteristics. 

VI. SUMMARY 

This study detailed the development of a nonlinear para- 
bolic frequency-domain mild slope equation. The linear char- 
acteristics of the model utilize fully-dispersive linear theory, 

Wave Paddle 
. . 

FIG. 8. Experimental setup of Mase and Kirbylg (taken from Wei and 
Kirby20). 

f IHd 

FIG. 9. Comparison of shoaling models to Case 2 of Mase and Kirby.*’ 
Experimental data (-), nonlinear mild-slope model (- -), consistent model 
of Freilich and Guza3 (-w-). (Top) input spectra at d=47 cm; (bottom) 
d=35 cm. 

thus insuring the validity of the linear terms of the model in 
arbitrary water depth. This represents an advance over 
frequency-domain Boussinesq models, which are weakly dis- 
persive and thus limited to shallow water. The resulting 
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FIG. 12. Comparison of shoaling models to Case 2 of Mase and Kirby.lg 
Experimental data (-), nonlinear mild-slope model (- -), consistent model 
of Freilich and Guza3 (-.-). (Top) d=lO.O cm; (middle) d=7.5 cm; (bot- 
tom) d=5 cm. 

model was compared to experimental data and a frequency- 
domain Boussinesq model. In general the present model 
demonstrated improved comparisons with the data over the 
Boussinesq model, especially in instances where the data 
were outside the shallow water range. This was especially 
apparent in the comparisons to the data of Mase and Kirby,” 
where most of the frequencies were in intermediate or deep 
water. We also added a surf zone dissipation mechanism to 
the model to enhance the comparisons to the experiment of 
Mase and Kirby.” 

One drawback of the parabolic formulation used in this 
study is the limitation to small angles of incidence. Future 
work will likely involve overcoming this limitation and in- 
vestigating other possible dissipation mechanisms, as well as 
generalizing this dissipation to two horizontal dimensions. 

ACKNOWLEDGMENTS 

The first author was supported by an ASEE National 
Science and Engineering Graduate Fellowship from the Of- 
fice of Naval Research while a Ph.D. candidate at the Uni- 
versity of Delaware. The second author was supported by 
University Research Initiative Grant No. DAAL-03-92- 
GO116 from the Army Research Office. 

APPENDIX: LAGRANGIAN DERlVATlON OF THE 
MODEL IN A NONSTATIONARY DOMAIN 

1. Lagrangian derivation of Equation (20) 

A variational principle governing the motion of fluid de- 
scribed by (2) is given by Luke:‘” 

s L(qqh;x,t)dxdt=O, W) 

where 

L= w 

is the Lagrangian density of the motion, and {x, t} is the 
propagation space of the waves. Since variations of L with 
respect to arbitrary S# and Sg will reduce L by one order of 
E, we need to retain terms to O(e3) in L, after which linear 
terms will arise due to variations of O(ez) quantities of L.. 
Taking 77 and (b to be O(E) and expanding L about z = 0 
then gives 

+t+ ; &+;(vh+)2+;b$‘z)2 - 643) 
2-O 
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Variation of L with respect to 77 gives the dynamic free sur- 
face boundary condition (8) directly. Varying L with respect 
to C$ then yields 

4z( W,dz + v( Wh 

‘=’ I, /i $( Sqbj,, 

+ TlG( 4% II dxdt. 644) 
z=o 

After one partial integration, the integrand of the second in- 
tegral becomes 

vi- 17t+#%l w),=o(~4) (-45) 
z=o 

due to (5). The remainder of the equation can be manipulated 
by recognizing that only terms proportional to & in the 
0( E’) portion of (A4) will contribute to the linear portion of 
equations for 4, after variations with respect to +, . We can 
then write (A4) as: 

ftjJ( -V,-Il)j=:dZbz&+ j_oj-$-hb7n,i(si) 
-vh’(~vh+)(G6) 1 1 dxdt=O, W) 

z=o 

where we must set SC$/,=,= SC& to obtain nonlinear terms 
contributing to the 5, components. Substituting for vn, from 
(8) then gives 

= -~h+#$Vh~k;(Vh~):- ;(4,): 
I 

+$.4tj;t 9 
1 I 

WY 
n z=O 

where we have used (16) through (19). Substituting for (b 
from (10) then gives (20). 

2. A nonstationary domain: Effect of ambient currents 

The results of the preceding section may be conveniently 
extended to the case of a moving domain containing an am- 
bient current U(x,y)={U,V}=VhCpO. The current is as- 
sumed to be constant over depth, consistent with irrotation- 
ality and a slowly varying depth h(x,y). It is further 
assumed that U=vh&=O(l); the solution to O(E) for a 
single wave component from (10) is then known to be 

4= 4o+f& h>Zj&z(kl ,%I AYJ) L48) 

with 

‘39 

for progressive waves. The absolute frequency w, may be 
written in terms of the intrinsic frequency CT,, according to 

w,-cr,+k,*u, (AlO) 

cr,= (gk,tanhk,h)1’2. (All) 

We proceed to 0( e2) by assuming forms for Cp and 17 
according to 

=40+W+1T (A12) 

1?= 170f(4’171* (A13) 

Here, v. represents the 0( 1) setdown due to the strong cur- 
rent U. The O( 1) water depth is thus given by 
h=h,+ vo, where now h, is the still water depth. We use 
the Lagrangian approach of this appendix. Accordingly, 
(A12) and (A13) are substituted into (Al) to obtain 

LIp=L&+(E)L; f(2)Li 6414) 

where 

L, =g hi-h3 
0 2 + 31U12(v0+~o>~ W5) 

G=g170771+ I R”(p~,+U.Vh~,jdz+~~U12~~, 6416) 
ho i 

+(~l,+uavh+lj 71 

‘10 

+~(vh~,)‘+(~,321,11, - 
1 

6417) 

Variations of the integral of LA with respect to p. and ~$0 
yield the relations 

c418) 

Vh*(@O+ oO)u}=o, NW 

as required for a steady current. L; is altered from (A3) by 
the advective term. Variation with respect to q1 yields the 
dynamic boundary condition 

k%+{ %+“I( ~)~~vh#d2+i(r’l,~2/ Iv0 

=O(e3j. 6420) 
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Varying the integral (A17) by c,& and eliminating the kine- 
matic boundary condition yields 

ff[f 
~“‘bV’O,W~+ 

t x -ho 

0771 - 
~+Pw-hl 

I J dxdt=O, (A21) 

‘lo 

where the last term is O(E~,CY)-O(F) due to (A19). The 
operator 

D d -G 
Dt ,+u.v,. 

Eliminating v1 and substituting -the expansion of (pr from 
(A12) gives the desired form of the wave equation for the 
n’th component at w, : 

2- 
04 

g+wh.u)* -vhwc,>nMt~ 

+v,-( 2 V,dm) ..,.( % V/j+)]]; WW 

This extends (20) to include an ambient current U where 
kU/w=O(l). The linearized form of (A22) is the wave- 
current equation of Kirby.“3 Proceeding directly to the 
coupled parabolic equations following the method of section 
II, we obtain 

2i&,,+ U)AnX--2r,JC,,+ U)&-k,)A, 

+i-;i (%q+( g-)jV%[ (C%$),) 
Y 

1 =- 
4 

R’AIAn-lei(kIo+kn-l,-k,o)x 

1 
+-Es rAIAn+lei(k~+~o-k~O-k,o)X, 

“/ 

21 
(A23) 

where R’=R(a,,~~-l,crl,k,_l,kl) and so on. The linearized, 
one-dimensional (in x) form of (A23) is equivalent to the 

linearized form of the wave-current equation of Turpin 
et al.% after neglecting time dependence.-In this derivation, 
we have assumed that waves propagate primarily in the 
,x-direction, and we have further restricted the large current 
assumption by specifying that 

(A24) 

as in KirbyZ3 and Booij.= Consistent with the first assump- 
tion, it would be appropriate to calculate (T, according to 

vn=ian-knU 6425) 

since propagation has been assumed to be nearly colinear 
with the x-direction. 
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