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The nonlinear triad interaction of two opposing gravity waves with almost identical
frequencies and one much longer acoustic-gravity wave is studied for non-resonance,
as well as for exact resonance conditions. For non-resonance conditions the previously
known results for a ‘bound’ acoustic-gravity wave are recovered. For resonance, or
near-resonance conditions, where all three waves are ‘free waves’, the interaction is
recurrent and the amplitude of the free acoustic-gravity wave turns out to be much
larger than that known for the bound wave. The results for the recurrent evolution are
given analytically, in terms of Jacobian elliptic functions and elliptic integrals.
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1. Introduction

The importance of the nonlinear triad interaction of gravity waves and acoustic-
gravity waves in an ocean of finite depth, for the generation of microseisms in the
solid earth, as well as in generating atmospheric noise, has recently been explained in
a comprehensive paper by Ardhuin & Herbers (2013), which also includes a long list
of related references. Among the most significant earlier works on this topic are the
contributions of Longuet-Higgins (1950), Hasselmann (1962) and Kibblewhite & Wu
(1991).

It is our understanding that most of the work published so far treats the acoustic-
gravity wave as ‘bound’ to the ‘free’ gravity waves, and thus avoids the more
complicated case of exact resonance, for which the acoustic-gravity wave is also
‘free’. It is hoped that the contribution of this paper will close this gap.
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The general equations and their linear solutions are presented in §§ 2 and 3,
respectively; whereas the existence of resonating triads is discussed in § 4. In § 5 we
develop the appropriate second-order interaction equations, and discuss the difference
between bound waves and free waves. In §§ 6 and 7 we include the solutions for
the bound acoustic-gravity wave, and for the resonating triads (i.e. free acoustic-
gravity wave), respectively. The newly found results are discussed in § 8. Interesting
background material on the general theory of nonlinear interaction can be found in a
recent book by Kartashova (2010).

2. General equations

Take Cartesian axes (x, z) with the origin in the undisturbed free surface, and the
z-axis vertically upwards. Let z=−h be the equation of the rigid flat bottom and z= η
the equation of the free surface. We shall assume that viscosity is negligible and that
the velocity ū is irrotational, so that ū = gradϕ. We assume also that the density is
a function of the pressure alone. Then the equations of motion can be integrated and,
according to Longuet-Higgins (1950), produce the field equations

∂2ϕ

∂t2
− c2
∇

2ϕ + g
∂ϕ

∂z
=−

∂

∂t
(ū2), −h 6 z 6 η, (2.1)

where c is the speed of sound in the medium, g is the acceleration due to gravity,
and t is the time. Note that in (2.1) and below we keep linear and quadratic terms
only. From the continuity equation we know that Dρ/Dt − ρ∇2ϕ = 0, where (D/Dt)
is the differentiation following motion, and ρ is the fluid density. Since the flow is
barotropic and a particle at the free surface remains at the free surface, where the
pressure is atmospheric, the kinematic boundary condition is reduced to the following
(see e.g. Longuet-Higgins 1950):

∇
2ϕ = 0, z= η. (2.2)

On the other hand, the dynamic free-surface boundary condition is obtained from the
equation of motion, giving

gη =−
∂ϕ

∂t
+

1
2

ū2, z= η. (2.3)

Expanding (2.2) in a Taylor series around z= 0 and using (2.3), we obtain

∇
2ϕ =

1
g
ϕtϕxxz +

1
g
ϕtϕzzz, z= 0. (2.4)

The boundary condition on the bottom is

ϕz = 0, z=−h. (2.5)

Equation (2.1) is rewritten in terms of the potential

ϕtt − c2
∇

2ϕ + gϕz =−2ϕxϕxt − 2ϕzϕzt, −h 6 z 6 0. (2.6)

The field (2.6) together with the boundary conditions (2.4) and (2.5) define the
problem for the potential ϕ(x, z, t) within the region −h 6 z 6 0. Some simple
manipulations with (2.4) and (2.6) lead to an alternative formulation of the free-surface
boundary condition:

ϕtt + gϕz =−2ϕxϕxt − 2ϕzϕzt +
1
g
ϕtϕttz + ϕtϕzz, z= 0. (2.7)
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Note that to quadratic order, (2.4) together with (2.6) is equivalent to (2.7) with
(2.6).

3. Linear solutions

Ignoring the right-hand side of (2.4) and (2.6), and seeking a progressive-wave
solution with frequency ω, one obtains

ϕ =
giA
2ω

λ cosh[λ(h+ z)] − γ sinh[λ(h+ z)]

λ cosh(λh)− γ sinh(λh)
eγ z ei(kx−ωt)

+ c.c., (3.1)

where γ = g/2c2, k2
= λ2
+ ω2/c2

− γ 2, and the dispersion relation is given by

ω2
= g(λ2

− γ 2)/[λ coth(λh)− γ ]. (3.2)

Here A is the freely chosen wave amplitude, so the free-surface elevation is

η = A cos(kx− ωt). (3.3)

Details of the above derivation can be found in Dalrymple & Rogers (2006).
For all practical purposes one can replace γ by zero in the above equations, which

yields

ϕ =
giA
2ω

cosh[λ(h+ z)]

cosh(λh)
ei(kx−ωt)

+ c.c., (3.4)

ω2
= gλ tanh(λh), (3.5)

k2
= λ2
+ ω2/c2. (3.6)

The dispersion relation (3.5) always has one real root λ0, and infinitely many
imaginary roots λn, n = 1, 2, . . . . According to (3.6), λ0 always produces a real
wavenumber k0. Hereafter we shall call this mode a ‘gravity wave’. For a given
frequency ω, and for a water depth h < hcr ≡ πc/2ω, all λn, n = 1, 2, . . . produce
imaginary kn, i.e. evanescent modes. However, for water depth h > hcr at least λ1

produces a real k1, which we will refer to as an ‘acoustic-gravity wave’. As an
example, taking ω = 2 s−1, c = 1500 m s−1, g = 9.81 m s−2, and h = 4000 m gives
hcr = 1178 m, k0 = 0.41 m−1, and k1 = 0.00062 m−1. The corresponding wavelengths
are λ0 = 15 m for the gravity wave, and λ1 = 10 km for the acoustic-gravity wave.

4. Existence of resonating triads

In this section we show that if the water is deep enough, for a given gravity wave
(with frequency ωa and wavenumber ka) there exists another opposing gravity wave
(with ωb and kb) of nearly the same wavelength, and an acoustic-gravity wave (with ωc

and kc), where the three waves satisfy the conditions

ka + kb = kc, ωa + ωb = ωc, (4.1)

and obey the dispersion relation (3.2).
From the example in the previous section it is clear that the gravity waves are in

so-called deep water, for which (3.5) simplifies to

ω2
j = g|kj|, j= a, b. (4.2)
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Substituting (4.2) into (4.1) finally yields

ωa =
1
2

(
ωc + g

kc

ωc

)
and ωb =

1
2

(
ωc − g

kc

ωc

)
. (4.3)

Note that in order to obtain accurate triad solutions, we first choose λc. Substituting in
(3.2) and then in k2

= λ2
+ω2/c2

− γ 2, we obtain ωc and kc. Substituting these in (4.3),
we obtain the frequencies ωa and ωb. Now, substituting ωj (j = a, b) in the dispersion
relation (4.2), we finally obtain the wavenumbers ka and kb, accurately.

For the values of c, g, and h as in § 3, the following example of a wave triad (with
two opposing gravity waves and one acoustic-gravity wave) has been calculated:

ka = 0.102249 m−1, ωa = 1.00153 s−1, (4.4a)

kb =−0.101625 m−1, ωb = 0.99847 s−1, (4.4b)

kc = 0.000624 m−1, ωc = 2.00000 s−1. (4.4c)

The corresponding wavelengths are ∼60 m for the gravity waves, and 10 km for the
acoustic-gravity wave. In order to examine the accuracy of the solution, we take kj and
ωj (for j = a, b) from (4.4) and substitute into λ2

= k2
− ω2/c2

+ γ 2 to obtain λj; then
we substitute these into (3.2), which yields

ωa = 1.00153 s−1, ωb = 0.99847 s−1. (4.5)

These values are identical to those in (4.4) up to the 16th significant digit (from
which we present only six). Note that for the sake of simplicity we have limited
the discussion to collinear triads only. Non-collinear resonating triads, for which (4.1)
must be replaced by

ka + kb = kc, ωa + ωb = ωc, (4.6)

do exist, and exhibit very similar behaviour to that of the collinear case.

5. Second-order interaction equations

5.1. Gravity waves (a) and (b)
For the gravity waves, (2.6) reduces to

∇
2ϕ(a,b) = 0, z 6 0. (5.1)

Equation (2.7), together with the fact that to leading order ϕ(c)z = −g−1ϕtt, at z = 0
(see (2.4) and (2.6)), yields

ϕ(a,b)tt + gϕ(a,b)z = 2g−1ϕ(c)tt ϕ
(b,a)
zt + 2g−1ϕ(c)ttt ϕ

(b,a)
z − g−2ϕ(c)ttttϕ

(b,a)
t , z= 0. (5.2)

Note that terms with first x-derivatives of ϕ(c) at z = 0 have been neglected, due to
their smallness in comparison to terms with first z-derivatives.

5.2. Acoustic-gravity wave (c)
For the acoustic-gravity wave, (2.6) reduces to

ϕ(c)tt − c2
∇

2ϕ(c) + gϕ(c)z =−2ϕ(a)x ϕ
(b)
xt − 2ϕ(b)x ϕ

(a)
xt − 2ϕ(a)z ϕ

(b)
zt − 2ϕ(b)z ϕ

(a)
zt , z 6 0 (5.3)

whereas (2.4) together with (5.1) give

∇
2ϕ(c) = 0, z= 0. (5.4)
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Due to the very different vertical structure of the acoustic-gravity wave (c) in
comparison to the gravity waves (a) and (b), (5.3) is rewritten as

ϕ(c)tt − c2
∇

2ϕ(c) + gϕ(c)z =

{
−2ϕ(a)x ϕ

(b)
xt − 2ϕ(b)x ϕ

(a)
xt − 2ϕ(a)z ϕ

(b)
zt − 2ϕ(b)z ϕ

(a)
zt , z= 0,

0, z< 0.
(5.5)

Substituting (5.4) into the upper line of (5.5) gives

ϕ(c)tt + gϕ(c)z =−2ϕ(a)x ϕ
(b)
xt − 2ϕ(b)x ϕ

(a)
xt − 2ϕ(a)z ϕ

(b)
zt − 2ϕ(b)z ϕ

(a)
zt , z= 0. (5.6)

The lower line of (5.5) gives the field equation

ϕ(c)tt − c2
∇

2ϕ(c) + gϕ(c)z = 0, z< 0. (5.7)

Additionally, ϕ(c) has to satisfy the bottom boundary condition

ϕ(c)z = 0, z=−h. (5.8)

5.3. The distinction between bound waves and free waves
To quadratic order, any two gravity waves, similar to (a) and (b) of § 4, will generate
a bound acoustic-gravity wave to be denoted by (d). The bound wave (d) will have a
similar structure to (3.4), it will satisfy (3.6) and (4.1), but not the dispersion relation
(3.5). The wave amplitude of the bound wave A(d) depends on the wave amplitudes
of the gravity waves: A(d) ∝ A(a) × A(b), and all three amplitudes are constants. On the
other hand, in the case of resonating triads the wave amplitudes A(a), A(b), and A(c) are
interdependent through a system of ordinary differential equations, and are evolving
with time. The bound wave solution and the resonating triad solution are presented in
§§ 6 and 7, respectively.

6. Solution for the bound wave (d)

For gravity waves in deep water, (3.4) yields

ϕ(j) =
giA(j)

2ωj
e|kj|zei(kjx−ωjt) + c.c., j= a, b. (6.1)

For the acoustic-gravity wave (d), (3.4) gives

ϕ(d) =
giA(d)

2ωd

cosh[λd(h+ z)]

cosh(λdh)
ei(kdx−ωd t)

+ c.c. (6.2)

Equation (6.2) satisfies the bottom boundary condition (5.8). It also satisfies the field
(5.7), provided that k2

d = λ
2
d + ω

2
d/c

2.
Substituting (6.1) and (6.2) into the free-surface boundary condition (5.6) and

requiring that

ka + kb = kd, ωa + ωb = ωd, (6.3)

leads to

A(d) =−
gωd

ω2
d − gλd tanh(λdh)

(
kakb

ωa
+

kakb

ωb
−
|ka||kb|

ωa
−
|ka||kb|

ωb

)
A(a)A(b). (6.4)

For opposing waves |ka| = ka and |kb| = −kb, (6.4) reduces to

A(d) =−
2gω2

d|ka||kb|

ω2
d − gλd tanh(λdh)

A(a)A(b)

ωaωb
=−

2ωaωbω
2
dA(a)A(b)

g[ω2
d − gλd tanh(λdh)]

. (6.5)
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It is reassuring that for ωb = ωa, kd = 0 and (6.2) with (6.5) agree with the third line
in equation (172) of Longuet-Higgins (1950). Note also that (6.5) tends to infinity at
exact resonance, since the denominator contains the dispersion relation (3.5).

7. Resonating triad solution: free wave (c)

For resonating triads, (6.5) gives infinite values. To overcome this difficulty we
assume that A(a), A(b) and A(c) are slowly varying functions of the variable

ζ = (t − ωcx/kcc
2), (7.1)

which guarantees that (5.7) is satisfied to appropriate order. Substituting (6.1) and
(6.2), with (d) replaced by (c), into (5.2) and (5.5) produces the following system of
ordinary differential equations:

A(a)ζ = (iωc/4g)(−2ω2
b + 2ωbωc − ω

2
c)(A

(b))
∗

A(c), (7.2a)

A(b)ζ = (iωc/4g)(−2ω2
a + 2ωaωc − ω

2
c)(A

(a))
∗

A(c), (7.2b)

A(c)ζ = (−iωaωb/g)(ωa + ωb)A
(a)A(b). (7.2c)

According to (4.4), ωb ' ωa ≡ ω and ωc ' 2ωa = 2ω. Thus the system (7.2) simplifies
to

A(a)ζ =−i(ω3/g)(A(b))
∗

A(c), (7.3a)

A(b)ζ =−i(ω3/g)(A(a))
∗

A(c), (7.3b)

A(c)ζ =−2i(ω3/g)A(a)A(b). (7.3c)

By standard techniques (see Shemer & Stiassnie (1985)), one can show that

|A(a)|
2
= (2ω3/g)Z + |A(a)0 |

2
, (7.4a)

|A(b)|
2
= (2ω3/g)Z + |A(b)0 |

2
, (7.4b)

|A(c)|
2
=−(4ω3/g)Z + |A(c)0 |

2
, (7.4c)

where Z is governed by

[(2ω3/g)Z + |A(a)0 |
2
][(2ω3/g)Z + |A(b)0 |

2
][(−4ω3/g)Z + |A(c)0 |

2
]

= Z2
ζ + [Re{A(a)0 A(b)0 (A

(c)
0 )
∗

}]
2

(7.5)

and A(j)0 = A(j)(ζ = 0), j= a, b, c.
Without loss of generality we take A(c)0 = 0, for which (7.5) simplifies to

Z2
ζ = (−4ω3/g)Z[(2ω3/g)Z + |A(a)0 |

2
][(2ω3/g)Z + |A(b)0 |

2
]. (7.6)

Using (236.00) on p. 79 of Byrd & Friedman (1971), assuming |A(b)0 | < |A
(a)
0 |, and

inverting, we obtain

Z = (−g/2ω3)|A(b)0 |
2
sn2
[−(21/2ω3/g)|A(a)0 |ζ, |A

(b)
0 |/|A

(a)
0 |], (7.7)

where sn(u, θ) is the Jacobian elliptic function of argument u and modulus θ .
Substituting (7.7) into (7.4) yields

|A(a)|
2
= |A(a)0 |

2
− |A(b)0 |

2
sn2
[−(21/2ω3/g)|A(a)0 |ζ, |A

(b)
0 |/|A

(a)
0 |], (7.8a)
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|A(b)|
2
= |A(b)0 |

2
cn2
[−(21/2ω3/g)|A(a)0 |ζ, |A

(b)
0 |/|A

(a)
0 |], (7.8b)

|A(c)|
2
= 2|A(b)0 |

2
sn2
[−(21/2ω3/g)|A(a)0 |ζ, |A

(b)
0 |/|A

(a)
0 |]. (7.8c)

From (7.1) and (7.8) it now becomes clear that the amplitudes A(a), A(b), and A(c) are
functions of the slow variable (21/2ω2A(a)0 /g)(ωt − 2ω2x/kcc2), where ω2A(a)0 /g is the
initial steepness of the gravity wave (a). Note that the maximum value of |A(c)| is

max|A(c)| = 21/2
|A(b)0 |, (7.9)

and that the evolution period T is

T = (21/2g/ω3
|A(a)0 |)K(|A

(b)
0 |/|A

(a)
0 |), (7.10)

where K(v) is the complete elliptic integral of the first kind. For ocean waves, the
amplitude of a reflected wave, say wave (b), is |A(b)0 | � |A

(a)
0 |; then K(v)' K(0)= π/2

and the period reduces to

T = gπ/(21/2ω3
|A(a)0 |). (7.11)

8. Results

The main results of this paper are: (i) a clear demonstration of the exact resonance
between two almost identical opposing gravity waves and one acoustic-gravity wave;
and (ii) the derivation of an analytical solution for their subsequent recurrent
behaviour. The physical importance of this phenomenon is related to the generation
of microseisms by acoustic-gravity waves. In this respect it is important to note that
we found that the amplitude of the ‘free’ acoustic-gravity wave generated at resonance
or near-resonance conditions is significantly larger than the amplitude of the ‘bound’
acoustic-gravity wave, which is generated at conditions far from resonance. As an
example of a condition far from resonance, we take the Longuet-Higgins (1950) case
with two identical opposing gravity waves:

ka = 0.101936 m−1, ωa = 1.0 s−1, (8.1a)

kb =−0.101936 m−1, ωb = 1.0 s−1, (8.1b)

kd = 0 m−1, ωd = 2.0 s−1. (8.1c)

For this case (6.5) gives

|A(d)| = 0.2|A(a)0 ||A
(b)
0 | (8.2)

where every A, here and below, is in metres.
On the other hand, for the resonating triad case (4.4) equation (7.9) gives

max|A(c)| =
√

2|A(b)0 |. (8.3)

The ratio between (8.2) and (8.3) gives

A(d)

max|A(c)|
= 0.14|A(a)0 |, (8.4)

which is indeed much smaller than one.
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Note also that for the resonating triad (4.4), the ratios between the period of the
amplitude evolution and the period of the acoustic-gravity wave itself,

T

Tc
=

7

|A(a)0 |
, (8.5)

is much larger than one, as it should be. The actual separation between resonating
triads and nearly resonating triads on one hand, and far-from-resonance triads on the
other hand, is given by the condition

δ = g
|ω2

c − gλc tanh(λch)|

ω4
a(|A

(a)
0 ||A

(b)
0 |)

1/2 , (8.6)

which has to be much smaller than unity for the former and much larger for the
latter. The condition (8.6) was obtained by studying the solution of the more general
‘combined’ problem, for which (7.2c) is replaced by

A(c)ζ + i[ω2
c − gλc tanh(λch)]A

(c)/4ω =−2i(ω3/g)A(a)A(b) (8.7)

whereas (7.2a) and (7.2b) are left as before. The technique is the same as that of § 7,
and it was encouraging to recover the results of that section when δ� 1.

For δ� 1, (7.2a), (7.2b) and (8.7) give

max |A(c)| = 2|A(d)|, (8.8)

where |A(d)| is the bound wave amplitude of (6.5).
The resonance response curve, for the system with (8.7), in terms of the detuning

parameter ∆= δ2/27 (where δ is given by (8.6)), has the analytical expression

|A(c)max|/|A
(b)
0 | = {1+∆µ+ µ

2
− [(1+∆µ+ µ2)

2
− 4µ2

]
1/2
}

1/2

, (8.9)

where µ= |A(a)0 |/|A
(b)
0 |. For ∆= 0, (8.9) gives |A(c)max|/|A

(b)
0 | =

√
2 as in (8.3), for any µ.

For the example µ = 0.1, (8.9) gives |A(c)max|/|A
(b)
0 | = 0.13 and 0.01 for ∆ = 1 and 10,

respectively.
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