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NONRESONANT AND RESONANT REFLECTION OF LONG WAVES IN VARYING CHANNELS 

James T. Kirby and Padmaraj Vengayil 1 

Coastal and Oceanographic Engineering Department, University of Florida, Gainesville 

Abstract. One of the principal drawbacks Svendsen and Buhr Hansen [1978]. Liu et al. [1985] 
associated with the use of equations of Korteweg- have similarly provided a variable depth form of 
deVries (KdV) or Kadomtsev-Petviashvili (K-P) form the K-P equation and have applied that equation to 
to model wave propagation in a varying channel is the study of wave focusing and refraction by 
the implicit neglect of reflection in those equa- variable topography; a derivation of the variable- 
tions. This study formulates pairs of KdV or K-P depth K-P equation appearing in that study is 
equations which are coupled through inhomogeneity given here. 
in bottom slope or channel width, and applies Despite their usefulness in describing the 
these equations to several propagation problems evolution of the dominant incident wave over 
involving aperiodic and periodic wave motion. The topography, the KdV and K-P equations are consid- 
formulation eliminates the neglect of reflection 
effects in the single KdV or K-P equation 
approach. Forms of the KdV equations are given 
which totally account for mass flux balance 
between the incident and reflected wave. We then 

examine several cases involving waves propagating 
in variable channels and compare model results to 
previously available data. 

1. Introduction 

ered by a number of investigators to be flawed, 
since the reflected wave is implicitly neglected 
and hence may be constructed only after identifi- 
cation of a mass sink in the incident wave, which 
then serves as a source for the reflected wave 

calculation [Miles, 1979; Knickerbocker and 
Newell, 1985]. The purpose of this study is to 
derive a set of coupled evolution equations for 
incident and reflected waves which account for 

mass exchange directly, and thus restore the 
direct applicability of the KdV and K-P equations 

Evolution equations for weakly dispersive waves in regions where strong reflection may signifi- 
in the form of the Korteweg-deVries (KdV) or cantly affect wave evolution. 
Boussinesq equations have long been known to be In section 2 we outline a scheme for construct- 
reasonably good predictors of wave form and ing coupled equations of KdV or K-P form using a 
propagation in channels of uniform and shallow heuristic approach based on the method of operator 
depth, with the Boussinesq equations being able to correspondence. Domain inhomogeneity is limited 
describe general two-dimensional (in plan) motions to variations in still water depth. In section 3 
but the KdV equation or its variants being limited we turn our attention to propagation in channels 
to strictly one-dimensional, one-way propagation. 
Recently, the weakly two-dimensional equation of 
Kadomtsev and Petviashvili [1970] (K-P), which 
describes nearly one-dimensional propagation with 
weak transverse modulation, has been added to the 
arsenal of equations describing uniform depth 
motion. 

and extend the KdV form of the equation to include 
variations in channel width as well as depth. 
Development of the model equations in mass- 
conserving form is considered in section 4. In 
section 5 the ability of the model to predict 
reflection is tested by comparison with the 
previous results of Goring [1978], who studied 

Recently, interest in shallow water wave motion transmission and reflection of solitary waves at a 
has been extended to the consideration of shoaling sloping step. In section 6, examples of the 
and other effects due to propagation in an inhomo- scattering of a solitary wave in a channel with 
geneous domain. This interest has lead to a gradually varied width are given, and the influ- 
number of variable depth extensions to the evolu- ence of mass balance effects on wave evolution in 
tion equations listed above. Peregrine [1967] has the study of Chang et al. [1979] are investigated. 
provided a variable depth extension to the Finally, in section 7 we turn to the problem of 
Boussinesq equations which allows for the shoaling scattering of periodic waves by periodic bottom 
and reflection of waves incident on a bottom disturbances, and extend the study of the gradual 
slope. Peregrine's and other equations of similar reflection of a cnoidal wave by a sinusoidal bed 
form may be regarded as general models for two- 
dimensional propagation in regions of gradually 
varying depth. Variable depth forms of the KdV 
equation have also been developed which similarly 
allow for shoaling effects in one-dimensional 
propagation; a relevant form of equation of this 
type is chosen for this study from the work of 
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started recently by Yoon and Liu [1987]. Two- 
dimensional calculations based on the K-P forms of 

the model equations will be reported separately. 

2. Reflection From Varying Bottom Topography 

The goal of this section is to derive a set of 
coupled equations of KdV or K-P type to model the 
forward-scattered and backscattered wave trains in 

a variable domain and to describe the exchange of 
energy between the waves due to interaction with 
bottom topography. The derivation is based on 
heuristic arguments and is aided by several key 
points. First, we neglect nonlinear interactions 
between incident and reflected waves to the order 

of terms considered. In particular, consideration 
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of the three-wave resonance conditions for oppo- 
site going periodic waves shows that no resonant 
interaction takes place between the waves at the 
order of quadratic nonlinearity. For the different 
case of aperiodic waves such as solitary waves, 
previous results (Maxworthy [1976] and Su and 
Mirie [1980], among others) have documented a 
phase-shifting, nonlinear interaction between 
colliding solitary waves. The present formulation 
neglects this possibility, which should not be of 
importance in the present study of reflection 

traveling in +x direction, •+ and the backscat- 
tered wave traveling in -x direction, •-. Coupled 
equations of the form 

+ •+ - • = i¾• + + F( ,• ) (5a) 
x 

n- iyn- F(n + - --- - ,n ) (5b) 
x 

are sought, where F is the desired unknown 
because of the expected smallness of the reflected coupling function. Repeated substitution of (5) 
wave, 0(cm), relative to the incident wave at 
0(c), where m characterizes a bottom slope or 
channel width variation. (The case of resonant 
reflection of periodic waves represents reflection 
+ 0(e); however, the conclusion on three-wave 
interactions covers this case.) 

The scaling for weakly nonlinear, weakly 

in (3) gives 

F -- 1 (Yh)x q+ - ( -n) 
2 yh 

(6) 

From (4), ¾ is a pseudo differential operator 
dispersive shallow water waves in a varying domain which may be approximated by binominal expansion 
is if the following assumption holds: 

2 
0(•)--0(u )= 0(•) << 1 

2 

i K << 
where g denotes nonlinear effects and is charac- 

terized by max(Inl/h), •2 denotes dispersive This indicates a restriction to small propagation 
effects and is proportional to w2h/g, and m char- angles with respect to the x direction. This re- 
acterizes maximum bottom slope. Further, n is the striction is analyzed (and the connection to the 
surface displacement, h is water depth, g is grav- parabolic approximation is discussed) in 
itational acceleration, and w is a characteristic 
frequency. It is clear that under the scaling used 
here, nonlinear, dispersive, and wave-bottom 
coupling effects need only appear at leading order 
in equations involving all three effects. As a 
consequence, the coupling due to bottom slope 
effects may be derived directly from the nondis- 
persive linear wave equation for variable depth, 
after which the terms describing noniinearity and 
dispersion may be added in a consistent manner. 

The method of operator correspondence is used 
to derive the set of coupled linear equations 
describing wave-bottom coupling effects. The 
general wave equation describing the propagation 
of linear, nondispersive waves over a variable 
topography is given by 

Appendix A. 
Using a binomial expansion, the general 

expression for ¾ is 

"tt - gVh'(hVh") = 0 (1) 

where here • represents a general two-dimensional 
surface displacement. Substituting frequencies 
for time derivatives in (1) according to 

qt = -im,; w = (gh)1/2k = ck (2) 
equation (1) is rewritten as 

X c 2wh •y 

To leading order, ¾ is given by (from Appendix A) 

w 2 
¾ =-+ o(o ) (9) 

c 

where 0 denotes a necessarily small propagation 
direction with respect to the x axis, (we assume 
02 = O(½)) and hence 

h 

w w x (10) ¾x 2 Cx 2c h 
c 

Using (9) and (10), equation (6) is rewritten 
as 

F - 

h c 

x rl+ - x - 4h ( -" ) -- 2c ("+-" ) (11) 
h 

qxx + •' qx + Y -- 0 (3) The coupled equations are obtained from (5) using 
the expressions for F and ¾ and are written 
together as 

where 

c 

ñ iw • x •+ - ic • 2 " --+--" • ( -" ) + 2-g-ff (h.) (12) 2 m 1 x c •cc y 
Y O = • 0 + y (hOy)y (4) 

Inverting the operator form of the im• terms and 
The surface displacement • is written as the sum further using w=kc in the y derivative terms, (12) 
of the displacements of the forward-scattered wave is written as 
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• c 1 2ñ ; f 1 2ñ • ñ c, + • (,+- n-)} = ; •cc (c ny)y x ñ ik {Ot x y •c (c ny) dx = 0 (18) 

(13) The variable depth K-P equation given by Liu et 
al. [1985] is obtained by neglecting the coupling 

Allowing 1/ik to correspond to an integral over x, in (18) and differentiating with respect to x. 
Further, neglecting y dependence yields the 

1 + 1 - - 

x x 

(13) may be rewritten as 

C • 

"t f cqf + • (q+-q-) ; f 1 2 ñ ax = 0 •cc (c qy)y x 
x 

This corresponds to the integro-differentiai form 
of the K-P equation, which has proven to be more 
convenient for numerical computations (see, for 
example, Katsis and Akylas [1987]). The set of 
coupled equations (15) represents linearized, 
nondispersive K-P equations describing incident 
and reflected wave fields which are linearly 
coupled through the bottom slope h x. 

It may be shown by back substitution that the 
set of linear nondispersive equations neglecting y 
derivatives are completely equivalent to the one- 
dimensional form of (1). Similar correspondence 
between (15) and the original model (1) does not 

desired coupled KdV equations, while further 
(14) neglecting coupling recovers (17) for the incident 

wave alone. 

To the order of approximation assumed, spatial 
derivatives may be replaced by time derivatives in 
the linear dispersive terms to improve estimates 
of linear dispersion. We adopt a form of the 
equations incorporating one time derivative in the 
dispersive term, leading to equations analogous to 
the regularized long wave (RLW) equation of 

(15) Peregrine [1966] and Benjamin et al. [1972]. The 
resulting model for one-dimensional propagation is 
then taken to be 

• c 3c, • h2 
• t • c• + • (•+-•-) • x ß x 2h 6 "xxt = 0 

(19) 

We further note here that the form 

c 

im x ic (20) •x = •-- • - •c • + 2• (h•y)y 
exist, of course, because of the binomial approxi- from (12) may be inverted twice in time to obtain 
mation used. For the case of localized 

disturbances vanishing at x+• together with their 
derivatives, summing the two components of (15) 
(neglecting y derivatives) and integrating from -• 
to +• gives 

a__ f -- o dt 

c 

ntt+ Cnxt +•-- n t = • (C2ny)y (21) 
This is equivalent to the second approximation to 
a radiating boundary condition obtained by 

(16) Engquist and Majda [1977], further extended to the 
case of variable depth. 

The linear nondispersive reflection process thus 
conserves the total mass of displacement in the 
two wave trains. 

The equations (15) may be extended to include 
weakly nonlinear, weakly dispersive effects. The 
variable depth KdV equation in stationary coordi- 
nates, given by Svendsen and Buhr Hansen [1978], 
may be written as 

3. Equations for a Gradually Varied Channel 

Shuto [1974], among others, has considered an 
extension to the one-dimensional KdV equation for 
the case of waves propagating in a long channel of 
depth h(x) and half width b(x). Shuto's equation 
may be written in dimensional form and stationary 
coordinates as 

c 3c.n h 2 (bc) x c x 3bc bch 2 
• +bc• + • + + = 0 + c• + • + + = 0 b"t x 2 2-•- • • t x 2h • •xxx x 6 "xxx 

(17) 

Equation (17) is valid for the scaling assumed 

(22) 

The extension to Svendsen and Buhr Hansen's [1978] 
equation to account for varying channel width is 

here. The appropriate forms of the nonlinear term readily apparent. In this section, we extend (22) 
and linear dispersive term of (17) can be added to account for reflections from changes in channel 
directly to (15) to give the coupled equations for width as well as depth. 
weakly nonlinear, weakly dispersive shallow water Starting with the linear wave equation (7), we 
waves. Adding the appropriate terms in equations impose lateral boundary conditions 
(15) gives the K-P type coupled evolution 
equations for nonlinear shallow water waves 

c 3cn ñ ñ 
ß ß + • (n+_n -) • x h2c • t • c• x 2h • --g-- • xxx 

ny- bxn x = 0 y = ñ b(x) (23) 

Integrating (1) from y=-b to b, applying Leibnitz 
rule, and assuming cross-channel variations of • 
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to be weak enough to ignore, we obtain an 
integrated wave equation given by 

1 

ntt - • (ghbnx) x -- 0 (24) 

Following the procedure of section 2, we expand 
(24) and employ operator correspondence in the 
time domain to obtain 

the level of the approximation used here, follow- 
ing the arguments of Miles [1979]. Rearranging 
the nonlinear and dispersive terms in (30) gives 

(be) 

(b•ñ)t ñ bc•ñ + x •+ - x 2 ( -•) 

3bcnñ2 bch2 ñ } = 0(•a,• ) (31) ñ { 4h + 6 •xxx x 2a 

(bh) 
+ x 2• •xx bh •x + ¾ = 0 

where now ¾2 is given simply by 

2 
2 m 

¾n=•O 

Terms appearing on the right-hand sides of (31) 
(25) are formally small with respect to the present 

approximation and may be dropped, leaving the 
proposed mass-conserving form of the equation. 
Corresponding results for a channel of constant 
width follow by setting b = 1. 

For the case of disturbances • which vanish as 

(26) Ixl +=, mass conservation in the total system 
follows simply by adding the component equations 
of (31) and then integrating over x, to obtain 

Employing the procedure of section 2 leads to 
coupled equations of the form (5) with F(O+,O -) 
given by d f b(• + • ) dx = f bndx = 0 (32) dt •-• 

(bC)x •+ - F = 2bc ( - • ) (27) An alternate arrangement of equations (31) and 
integration from some fixed position x 0 to • 
yields the relations 

Use of (27) in the coupled equations along with 
1 

d f (b. m dt 

¾" = c(x)" (28) x 0 x 0 
(33) 

then leads directly to the coupled linear 
equations 

(bC)x .+ - 1 ß ñ .• + ( - n ) = 0 (29) • "t x 2bc 

Assuming bottom slope and width changes to be 
small, we consistently add dispersive and 
nonlinear effects to obtain 

(bc) x 
bnt • ñ bcn ñ + - x 2 

(n+ - 3bc ñ ñ -" ) ñ 2-•--" "x 

bch 2 ñ 
ñ 6 "xxx = 0 (30) 

Neglecting coupling in each component equation of 
(30) leads to two separate equations of Shuto's 
type describing waves propagating in each direc- 
tion in the channel. The coupling term implies 
that any varying channel whose variations maintain 
the constancy of bc is completely transparent to 
the passage of a wave, even though the wave itself 
undergoes evolution due to variations in h(x). As 

where 

•ñ(x0) = {bc• ñ + 3bcnñ2 bch2 ñ } (34) 4h + 6 •xx x 0 
represents flux of mass across station x 0 into x 
> x 0. The integral term on the right-hand side of 
(33) represents the sink or source of mass flux 
into or out of each wave system, which is seen to 
be equal and opposite in sign for each equation, 
indicating equivalence of interchanged mass in 
each subsection of the x interval. For the case 

of weak reflection, 0[•-[ << 0[•+l, the integral 
on the right hand sides of (33) reduces to the 
approximate form 

f (bC)xndX • f (bC)xn+dx + O(•2a) 
x x 

(35) 

We note that Miles [1979], who analyzed Shuto's 
one-way equation, gave the mass flux Q+(x) as 

Q+(x) = Y(x) +• f (bc)xrl+dx 
x 

(36) 

was the case with the results of section 2, the and then identified the approximation in (35) as 
model equations (30) may be arbitrarily altered to the principal source of mass to the reflected wave 
RLW form. because of its dominance of the term Q+(x) 

as x + - •. This interpretation arises naturally 
4. Mass-Conserving Forms of the KdV Equations here through the analysis of the corresponding 

equation for the reflected wave motion, with the 
The sets of coupled KdV equations (21) and (30) addition that the integral may be immediately 

may be written in forms which lead to exact identified as a source-sink mechanism without the 
conservation of mass in the total wave system, to intermediate analysis of residual fluxes. In 
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Fig. 1. Reflection and transmission of a solitary wave propagating onto a shelf. (a) 
Hi/h 1 --0.15, L/l = 0.5, hl/h 2 = 3.0. (b) Hi/h 1 --0.05, L/l = 4.0, hl/h 2 = 3.0. 

addition, we obtain the complete feedback between 
the reflected and incident wave through the 
unapproximated form of (35). 

In the following, we use the mass-conserving 
equations (31) written in RLW form, which gives 

(bc) 

b•t i + bc• + x •+ - x 2 ( -• ) 

3bc•+2 bh2 + ) = 0 (37) + I •t• •T"xt x 

The corresponding nonconservative forms are 
obtained from (30) after multiplying by bc. The 
numerical scheme used in the following two 

5.1. Reflected Waves 

The independent length scales involved in the 
reflection problem are the incident wave height 
HI, upstream water depth hl, downstream water 
depth h 2, and slope length L. The reflected wave 
height is given by H R . A characteristic hori- 
zontal length I of a solitary wave is completely 
defined by the incident wave height H I and 
upstream depth hl, and is defined by Goring [1978] 
as 

The reflection process is characterized by three 
sections is a simple extension of the three-level, nondimensional parameters; the relative incident 
implicit scheme developed by Ellbeck and McGuire wave height, Hi/hl, the length ratio L/l, and the 
[1975], extended to account for variable depth ratio, hl/h 2. Choosing specific values for 
coefficients. Details are omitted and may be the nondimensional parameters L/l and hl/h 2 
found in the work of Vengayil and Kirby [1986] for characterizes the slope as mild or steep. 
the nonconservative forms of the RLW equations. In Figure la, an example of the propagation of 

an incident wave of HI/h 1 = 0.15 over a fairly 
steep slope of L/l = 0.5 and hl/h 2 = 3 is 

5. Solitary Waves Propagating Onto a Shelf presented. As the wave propagates up the slope, a 
reflected wave similar in shape to the incident 

We first test the ability of the linear wave and nearly a fifth of the incident wave 
coupling mechanism to calculate reflection. An amplitude emerges. As it propagates on the shelf, 
accurate set of measurements of reflections from a the transmitted wave disintegrates into a series 
solitary wave propagating over a slope is avail- of solitary waves with the leading wave being the 
able from the study of Goring [1978]. We consider largest. The mildly sloping shelf shown in Figure 
waves of initial height Hi, in water of depth lb produces a reflected wave which is less peaked 
hl, which propagate into water of depth h 2 over than the incident wave. The rear end of the wave 
a linear transition of length L and slope shows a higher amplitude, indicating an increase 
(hl-h2)/L. The depth transitions considered here in reflection as the incident wave moves up the 
are fairly short (L/l = 0(1), where I is a charac- slope. For this case, L/l = 4.0, hl/h 2 = 3, 
teristic wave length) and the mass balance correc- and HI/h 1 = 0.05. Goring [1978] presented an 
tions discussed in the preceding section are not extensive study of the effect of the length ratio 
significant, with results of conservative and non- L/l on the shape of the reflected wave. Results 
conservative calculations agreeing to within 1-2%. obtained in the present study are in excellent 
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Fig. 2. Variation of reflection coefficient 
HR/H I with length ratio L/k, for a depth 
ratio hl/h 2 = 4.0. The solid line shows the 
present results, the dashed line shows Goring's 
[1978] nonlinear dispersive results, and the 
dashed-dotted line shows Goring's [1978] linear 
nondispersive results. Data from Goring [1978]. 
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agreement with the results obtained by Goring 
[1978] using linear nondispersive theory. 

In Figure 2, the reflection coefficient HR/H I 
is plotted as a function of the length ratio 
for a solitary wave of Hi/h 1 = 0.1 and a depth 
ratio hl/h 2 = 4. The reflection coefficients are 
compared with Goring's nonlinear dispersive and 
linear nondispersive theories and with his 
experimental results for various slopes and 
relative incident wave heights. The numbers next 
to the points indicate the values of the relative 
incident wave height Hi/h 1. Since the coupled 
evolution equations are valid only for mildly 

Fig. 3. Comparison of numerical reflected wave 
profiles with experimental results of Goring 
[1978] for (a) L/• = 1, and (b) L/• = 2. 
Numerical results are shown for Hi/h 1 = 0.05 
(solid line), Hi/h 1 = 0.10 (long-dashed line), 
and .... Hi/h 1 = 0.15 (short-dashed line), and 
experimental results are shown for Hi/h 1 = 0.0522 
(pluses). 

In Figure 3 the predicted wave profile of the 
reflected wave is compared with experimental 
results of Goring. The amplitude of the reflected 
wave is normalized with respect to the incident 

varying topographies, slopes with length ratio L/• wave height so that reflected waves corresponding 
< 0.25 are not considered. In all cases the to different incident wave heights can be compared 
present theory underpredicts the reflection directly. The experimental results are for a wave 
coefficient when compared with Goring's nonlinear of Hi/h 1 = 0.0522 and numerical results are 
dispersive theory, but it is in reasonable presented for three cases of Hi/h 1 = 0.05, 0.10, 
agreement with results of Goring's linear nondis- and 0.15. In Figure 3a the reflected waves from a 
persive theory. The effect of the relative slope (L/• = 1.0 and hl/h2 = 3.0) are compared with 
incident wave height on wave reflection is seen to the experimental data and the agreement is fairly 
be almost negligible from the results presented in good, except at the crest. This discrepancy may 
Table 1, where reflections computed by the present be due to the neglect of friction in the numerical 
method are compared with Goring's results obtained modelo The results for a slope L/• = 2.0 and 
using linear nondispersive theory. hl/h 2 = 3.0, presented in Figure 3b, are not in 

TABLE 1. Reflection Coefficients HR/H I for 
Various Length Ratios L/• and Relative 

Incident Wave Heights Hi/h 1 for the 
Depth Ratio hl/h 2 = 3.0 

L/• 0.05 0.10 0.15 

0.53 0.214 (0.218) 0.212 0.212 
1.03 0.151 (0.152) 0.155 0.155 
1.56 0.108 (0.110) 0.106 0.111 
2.00 0.088 (0.089) 0.087 0.095 

agreement with the data, but the overall shape of 
the predicted wave is similar to the experimental 
data. Accuracy of measurement of the reflected 
waves, which are very small compared with the 
incident wave, may influence the shape of the wave 
considerably. In view of the close agreement in 
the profiles of waves of different relative wave 
amplitudes, it may be postulated that reflection 
may be considered to be a linear process dependent 
on the parameters L/• and hl/h 2 characterizing the 
slope, a view which was also put forward by 
Goring. These results support the use of the 
simple coupling mechanism assumed here. 

5.2. Transmitted Waves 

Goring's [1978] linear results are given in 
parentheses. 

Results for evolution of the transmitted wave 

in the constant depth region beyond the slope 
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Fig. 4. Plan view of wave channel in experiments of Chang et al. [1979]. 

exhibit the usual features of disintegration into 
a train of several solitary waves and are not 
reproduced here. Numerical results for surface 
displacement were found to agree well with the 
experimental results presented by Goring. We 
remark here that the integrable property of the 
KdV equation in the transmitted-wave region would 
allow for a prediction of the number of solitons 
which evolve out of the wave computed at the top 

6.1. CMM Experiments 

CMM measured the evolution of wave height of an 
initial solitary wave in both a diverging and a 
converging laboratory flume. A schematic of the 
channel geometries is given in Figure 4, which is 
adapted from Figure 1 of CMM. CMM measured waves 
for a range of initial wave heights and still 
water depths. The most detailed sets of results 

of the slope. No data are available to confirm or are for the cases of 20 cm depth in a diverging 
deny these predictions, so we have not pursued 
this question further. 

6. Solitary Waves in Diverging 
and Converging Channels 

We now consider a case of waves in a much more 

gradual transition, consisting of a linear varia- 
tion in channel width. A comprehensive set of 
data is provided by Chang et al. [1979] (herein- 
after referred to as CMM). Because of the slow 
variation of the channel width used here, reflec- 
tion is of only minor importance in determining 
the height of the transmitted wave; however, the 
mass balance correction discussed in section 4 
becomes quite important. 

ø.5 F 

0.05 

• o 

0.01 I I I • J , , •, • 
10 20 40 60 100 

channel (three initial amplitudes [CMM, Figure 2]) 
and 30 cm depth in a converging channel (four 
initial amplitudes [CMM Figure 4]). Data consist 
of measured maximum q(t)/h versus position along 
the channel. Reflections were not reliably 
measured. The data given by CMM are reproduced in 
Figures 5 and 6. CMM provided numerical computa- 
tions based on the nonconservative form (equation 
(22)) further transformed to a coordinate system 
moving at the linear long-wave speed. For the 
case of the diverging channel, numerical results 
indicated asymptotic agreement with results for 
the adiabatic evolution of a solitary wave, which 
gives [Miles, 1979] 

a(x) = ao •'b(x)) -2/3 • b 0 
(39) 

H(x) 
h 
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0.05 

20 40 60 100 

-x/h 

Fig. 5. Normalized amplitude of solitary waves 
in diverging channel with h = 20 cm and initial 
amplitudes H0/h = 0.088, 0.185, and 0.259. 
Circles show data from CMM, solid lines show the 
total wave train, and dashed lines show the 
incident wave alone. 

Fig. 6. Normalized amplitude of solitary waves 
in converging channel with h = 30 cm and initial 
amplitudes Ho/h = 0.043, 0.093, 0.140, and 
0.174. Circles show data from CMM, solid curves 
show the total wave train, and dashed curves show 
the incident wave alone. 
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Fig. 7. Total mass in wave train components. 
Diverging channel. Circles, triangles, and 
squares show total, incident wave, and reflected 
wave mass, respectively; solid and dashed curves 
show mass-conserving and nonconserving equations, 
respectively. 

where b 0 is the initial channel width and H 0 and 

the combined transmitted-reflected wave system (• 
= •++ •-), while the dashed curves correspond to a 
transmitted wave alone (• = •+) when reflection is 
neglected. 

In both the cases of channel divergence and 
convergence, the wave heights computed from mass- 
conserving equations evolve largely according to 
the - 2/3 slope, adiabatic relation. For the 
diverging channel (Figure 5), these results are in 
close agreement with CMM's results, with the only 
deviation between experiment and numerical results 
being presumably due to the slow accumulation of 
frictional effects. For the converging channel 
case, the results here differ markedly from CMM's 
numerical results and from data, which essentially 
evolves at a different (- 1/2) slope right from 
the initial measurement point. These results are 
initially discouraging, since it is not apparent 
that the deviation is due to a similar slow 

accumulation of frictional damping (however, see 
section 6.3). 

Corresponding results were computed using non- 
conservative RLW equations obtained from (30). 
The evolution obtained from the nonconservative 

equations differs markedly from the conservative 
evolution, with wave heights evolving approxi- 
mately along a (- 1/2) slope. This leads to 
(again fortuitous) agreement between data and 

H(x) are the initial and evolved maximum wave computations for the converging channel (again 
heights. The numerical results reproduce the data with slight underprediction of data at large 
well up to 40 water depths beyond the initial distances), but significant overprediction of data 
measurement station, beyond which the data drop 
progressively further below the asymptotic - 2/3 
slope. This drop in experimental wave height is 
presumably due to frictional damping. 

For the case of a converging channel, the 
experimental wave height evolves according to a 
much flatter, - 1/2 slope which mimics a Green's 
law evolution. The numerical results of CMM 
reproduce this behavior. CMM offered, as 
explanation of the - 2/3 and - 1/2 slope discrep- 
ancies, an argument based on nonlinear distortion 
of the linear characteristics in the converging 

for the diverging channel case. 
The fact that CMM obtained agreement, in the 

diverging channel, with the - 2/3 slope evolution 
in the data rather than with the present, non- 
conservative estimate of a - 1/2 slope, is due in 
part to their idealization of the channel geometry 
as a uniform wedge with no uniform entrance 
channel. Wave height in the idealized channel was 
initialized according to data from the first 
measurement point in the model channel, which is 
located approximately 38 cm back in the uniform 
5-cm channel before the junction with the 

channel case. CMM's results are questioned below, expanding channel, or 225 cm from the virtual 
however. It is noted that the numerical results origin of the idealized wedge (judging from Figure 
of CMM for the converging channel actually tend to 2 of CMM). The measured wave is thus placed in a 
underpredict wave height at large distances from numerical channel ~ 15% narrower than the physical 
the initial measuring station and thus do not show channel and consequently has 15% less total mass 
any accumulating effect of frictional damping. than the experimental wave. Using the present 
(CMM provide a discussion of the asymptotic wave 
height resulting from additional damping in the 
diverging channel case, but do not apply the 
results to converging channels or provide any 
explicit computations). 

The results of the following two sections 
indicate that the agreement between data and 

nonconservative model with the idealized geometry 
and the initial measured wave heights at the first 
measurement point, we obtained numerical results 
which are in agreement with those presented by 
CMM. We believe these to be in error because of 

the idealization of the channel geometry. 
We finish here with a discussion of mass 

computations found by CMM in the converging balance in the conserving and nonconserving 
channel case may have been fortuitous, and we thus equations. Since the differences between 
will concentrate on this point where appropriate. conserving and nonconserving equations lie in 

terms which are small compared to the orders of 

6.2. Numerical Computations magnitude considered in obtaining the original KdV 
equations, it would be expected that local errors 

The mass-conserving RLW equations (37) were in the nonconserving equations should be small 
used first to compute wave evolution in the con- over several wavelengths. This argument does not 
verging and diverging channels. Results are shown hold up for the propagation distances considered 
in Figures 5 and 6. The numerical channels were in the experiments. 
taken to correspond to the experimental channels In Figures 7 and 8, we show the evolution of 
as closely as possible; the small tails of con- total, incident wave, and reflected wave mass with 
stant amplitude on each curve correspond to the time in the computations described above. Results 
constant width entrance channels. In each figure, are for the largest-amplitude cases in each of 
solid curves correspond to maximum wave height in Figures 5 and 6; since the reflection mechanism is 
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Fig. 8. Total mass in wave train components. 
(converging channel). Symbols are as in 
Figure 7. 

linear, little variation occurs for different 
initial amplitudes in each case. For all the 
computations above, the implicit schemes were run 
at a Courant number of 1, as suggested by Elibeck 
and McGuire [1975]. No attempt was made to 
optimize accuracy of results by varying grid 
spacing and Courant number. For the mass- 
conserving results (indicated by solid lines), 
total mass was maintained to an accuracy of three 
significant figures in double precision computa- 
tions, which is sufficient for the comparisons 

The sink term then represents a loss of mass from 
organized wave motion due to frictional damping of 
the fluid velocity. This loss of mass would 
necessarily be absorbed by the stationary (non- 
wave) water column, leading (at t+•) to a dis- 
tributed increase in depth commensurate with the 
total initial mass of the organized wave form. 

We proceed by examining the largest-amplitude 
diverging channel case. The value of 8 is 
adjusted to obtain reasonable agreement between 
data and numerical wave height over the entire 
range of evolution. (This agreement is evaluated 
purely qualitatively; small changes in 8 do not 
significantly alter the results.) On the basis of 
this procedure, a value of • = 0.004 is chosen and 
then is held fixed for the remainder of the compu- 
tations. Calculations for the three initial 

amplitudes of the diverging channel case are shown 
in Figure 9. The linear damping mechanism is 
successful in representing the gradual accumu- 
lation of damping in the diverging channel case. 

Turning to the converging channel case, we keep 
• = 0.004 and compute the results presented in 
Figure 10. In this case, linear damping effects 
accumulate immediately and are seen to account for 
the general lower slope evolution of the wave 
height. It is thus apparent that the discrepancy 
between data and the preferred mass-conserving 
computations is explainable by simple laminar 
damping in both the diverging and converging 
channels, even though the discrepancies accumulate 

given here. Deviations in transmitted, reflected, differently. We feel that these results support 
and total mass for the nonconserving results the validity of the present computations over 
(indicated by dashed lines) are significant for those given by CMM. There is some indication from 
the propagation distances considered. In each the low-amplitude converging channel case that the 
case, the majority of deviation from the mass- tuned value of • is somewhat too high. This would 
conserving results is contained in the transmitted be expected, since the converging channel water 
wave. These results indicate that the modifica- depth is 50% greater than the diverging channel 
tions to the basic forms of the equations employed depth, and thus laminar damping effects would be 
by Miles [1979] to construct mass balance argu- somewhat reduced. 
ments should be incorporated in the governing We remark that a somewhat more standard means 
equations themselves in any practical calculation of adding a damping term would be to add Burgher's 
involving waves in a slowly varying channel. type (second derivative) terms to the equations. 

6.3. Linear Damping Effects 

We now consider the effect of a simple linear 
damping as a possible explanation of the discrep- 
ancy between data and numerical results in the 
previous section. Rather than attempting to 
obtain a damping coefficient analytically, we 
posit a simple coefficient 8 with initially 
unknown value, and modify the KdV-RLW model 
equations into the revised forms 

ñ + ... + B(b + 2h)n --0 (40) bn ß bcn x 

The factor (b + 2h) is retained to include the 
varying effect of channel width and depth (i.e., 
the relative importance of sidewall and bottom 
friction) as channel geometry changes. The 
quantity (b + 2h) is the wetted perimeter of the 
channel in the linear approximation. The 
inclusion of the damping term modifies the 
conclusions on total mass balance. Adding the 

0.5 

0.1 

h 

0.05 

0.01 
20 40 60 100 

x/h 

component equations of (40) and integrating out to Fig. 9. Linear damping of solitary wave in 
ñ • yields the expression diverging channel. Conditions are as in 

• • Figure 5. Circles show data from CMM, dashed 
d 

d-• • b•dx = - • • (b + 2h)•dx (41) curves show the undamped wave, and solid curves _• _• show the damped wave. 
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Fig. 10. Linear damping of solitary wave in 
converging channel. Conditions as in Figure 6. 
Circles show data from CMM, dashed curves show 
the undamped wave, and solid curves shown the 
damped wave. 

However, the factors which make this type of 
damping term appropriate in studying shock 
dynamics are inappropriate for the application 
here. In the case of a dissipative shock forming 
in a nondispersive environment, numerical results 
become contaminated by high-frequency noise which 
is essentially a parasitic addition to a low- 
frequency (infinitely long wavelength) process. 
The second-derivative damping term concentrates 
damping in the high-frequency components. In the 
present case, where well-organized wave motions 
are present at a range of frequencies in evolved 
wave fields, experience would indicate that bottom 
boundary layer damping of high-frequency compo- 
nents should be lower than for low-frequency 
components, because of increasing relative water 
depth. The present model distributes damping 
uniformly over all frequencies; this is not a 
completely desirable result but is certainly more 
appropriate than the Burgher's form. 

7. Reflection of Time-Periodic Wave Trains 

by Undular Beds 

We now turn to a case where strong reflections 
arise due to a resonant reflection mechanism. In 

particular, we study the reflection of a cnoidal 
wave by a field of sinusoidal bars placed on the 
bottom of an otherwise uniform channel. This 

problem has been studied in the linear wave limit 
by Davies and Heathershaw [1984] and Mei [1985]. 
Recently, Yoon and Liu [1987] have considered the 
problem studied here from the point of view of 
resonant interaction theory, where attention is 
restricted solely to the interaction of the funda- 
mental Fourier component of the cnoidal wave and 
the bottom undulation, and all simple shoaling 
effects are neglected. A more complete set of 
calculations is provided here which exhibit 
several physical features which do not arise in 
the results of Yoon and Liu. 

7.1. Evolution Equations for 
Time-Periodic Waves 

Neglecting transverse (y direction) variations, 
the surface displacements of time-periodic inci- 
dent and reflected waves governed by (19) may be 
expressed as a sum of Fourier modes with variable 
amplitudes: 

N A (x) 

• y. [ n 2 in(fkdx- rot) = e + c.c.] 
n=l 

(42a) 

N B (x) in(-fkdx - mt) l:; = y. [ .n 2 . . ' e +eel 
n=l 

(42b) 

where • = •+ and • = •- for convenience and c.c. 
denotes the complex conjugate. Substituting the 
forms of • and • in the coupled KdV equations (19) 
yields the lowest order coupled evolution equa- 
tions for the incident wave amplitude 

h in3k3h 2 
A + x -2infkdx n •-•[m -Be ] - m n n 6 n 

x 

n-1 N-n 
3ink 

8h [ Y. A•An_ • + 2 Y. A•An+•] = 0 
•=1 6=1 

(43) 

and a corresponding equation for the reflected 
wave amplitude. These equations represent a more 
complete model of the wave propagation problem 
than the final equations employed by Yoon and Liu 
[1987] to study resonant reflection. Equations 
similar to theirs are derived in Appendix B, and 
the effect of using the more complete form (43) is 
discussed below. 

Energy conservation in the reflection process 
may be analyzed using the coupled evolution equa- 
tions and is used below as a test of accuracy for 
the numerical scheme. The conservation law 

derived from (43) and its counterpart is given by 

N N 

[c I IAnl2]x - [c Y. IBn12]x = 0 
n=l n=l 

or 

N 

c { Y• (IA I •- 
n 

n=l 
- lB nl2)} = constant (44) 

In the case of a rippled bed in constant mean 
depth (Figure 11), the conservation equation (44) 
becomes 

N 

I (•2 _ •2 _ •2) = 0 n n 
n=l 

(45) 

• h(x) 

x=O 

Fig. 11. Geometry of the sinusoidal bed form. 
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where 

T = R = n 
n IAz(0) I n IAz(O) I 

In(0)l 
I = 

n I(0)1 
(46) 

Here, I n represents a measure of each harmonic 
amplitude to the fundamental amplitude in the 
steady incident wave, and g n and T n are reflection 
and transmission coefficients for each mode, 
normalized by the fundamental incident amplitude. 

7.2. Numerical Scheme 

m m m 

IA•] k'+• - IAI k - I k 
<p <p 

mk 

(48) 

where k+l and k represent the current and the 
previous iterations. For p=10 -4, only three 
iterations are required to obtain solutions of A n 
and B n. The phase • = •kdx is calculated using 
the trapezoidal rule. 

7.3. Reflection From a Ri?pied Bed 

For the present numerical calculations, a 
rippled bed is defined by 

Reflections from a rippled bed with periodic 
sinusoidal depth variations are studied using the 
evolution equations (43) developed in numerical 
form. A finite difference scheme centered on x 

= (m + 1/2)Ax is used for the equations, giving 

Ca + A:) Am+l _ A TM [ hm+ 1 _ h TM) . n n n + 
Ax 4Ax {hm+l + h TM] 

3 m+l k3h2An)m in (k3h2A) in3( 
n 

12 12 

n-1 

3in k n-1 
+ '• [•' g•l mgmn-g}m+l + {• g•l mgmn-g}m 

N-n N-n 

•1 m•An+g)m+l + {h2--•k g•l A•mn+g)m] 

{h m+l_ h TM) [B m+l -2in• m+l B•e-2in• TM) - n e + 

4Ax {hm+l+ h TM) 

and a similar form for the reflected wave 

component. 
The reflected and transmitted waves are 

h = h - •(x) 0 < x < L (49) 

where L is length of the ripple patch, h is the 
constant depth and • is a small but rapid 
variation to the depth. Choosing sinusoidal bed 
variations as in previous works, • is given by 

6 = Dsinkx 0 < x n L (50) 

where D is the ripple amplitude and • is the 
ripple wave number. 

We first consider the propagation of linear 
waves over the ripple patch. Linear wave reflec- 
tion from the ripple patch is a function of the 
number of ripples in the patch, the ripple 
amplitude and the ripple length. To examine the 
effects of the ripple length on reflection, 
calculations are carried out for a wide range of 
values of the parameter 2K1/k, where K 1 is the 
wave number of the fundamental component of the 
incident wave, correct to 0(kh) 2. The parameter 
2K1/k is varied by changing the ripple length for 
a fixed wave number. This approach is preferred 
to varying wave period for a fixed rippled length 
because in the latter approach the waves in the 
short-wave regime (K 1 large) may not satisfy the 
shallow water scaling. In all the cases analyzed 
here, waves of period T = 1.8 s in water depth h = 
0.1 m are used, corresponding to a value of p2 = 

(47) m2h/g = 0.124. To study the effect of the number 
of ripples in the patch, two patches, one con- 
sisting of two ripples and another of four 
ripples, are modeled. 

In Figure 12, results for propagation of a 

obtained by an iterative procedure. First for linear wave over rippled beds are presented for a 
k=0, using initial values for An(m--O) as specified ripple amplitude D/h = 0.4. All calculations were 
by the permanent cnoidal wave solution, the carried out using a Ax = •/20• to obtain accurate 
incident wave (obtained using equation (47)) is 
marched in x (without considering the reflected 
wave) using an iterative scheme to linearize the 
quadratic terms. Then using the present value of 
the incident wave field along the disturbance, the 
equations for the B n are solved by starting at a 
point downstream of the disturbance where reflec- 

results at large 2K1/k. Resonant Bragg scattering 
is observed at 2K1/k = 1. The conservation law 
(equation (45)) reduces to 

• + x2__ • (5•) 

tion is absent and marching backwards to solve for for linear waves. For small ripple amplitudes, 
the reflected wave field. The incident wave and the conservation law is satisfied for the entire 
reflected wave are then successively updated until range •f 2K1/% values with errors less than 10 -3 ß 
the relative error between two successive solu- For D/h = 0.4 in the region 0.95 < 2K1/% < 1.05 
tions (k and k+l) of the reflected and incident the scheme is not convergent owing to overpredic- 
wave field is less than a predetermined value 0, tion of the reflection on the first pass. To 
i.e., rectify this problem, the numerical scheme is 
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Fig. 12. Variation of reflection and trans- 
mission coefficients with 2K1/% for linear waves 
normally incident on a sinusoidal patch, for (a) -- 

n = 2, D/h = 0.4 and (b) n = 4, D/h = 0.4. 

solved by an iterative procedure. First, the 
incident and reflected wave field for ripple -- 

amplitude D/h = 0.2 is calculated. Using the 
calculated wave field as the initial value for the 

incident and reflected wave fields, the numerical 
scheme is solved for increasing ripple •mplitude -- 

with an increment AD/h = 0.05, until D/h = 0.4 is 
reached. This approach reduced the errors in the 
conservation law to less than 10 -2 for the range 
0.95 < 2K1/% < 1.05. 

Reflection and transmission coefficients R, T 
are presented as a function of 2K1/% in Figure 
12. Figures 12a and b show results for ripple 
patches containing two and four ripples, respec- 
tively. The major effect of increasing the number 
of ripples, while holding ripple amplitude and 
water depth constant, is to tune the resonant 
response of the ripple bed and increase the 
magnitude of the resonant reflection. These 
effects are similar to the general trend of 
results in intermediate depth, as studied by 
Davies and Heathershaw [1984] and Kirby [1986]. 

Reflection of nonlinear waves from a rippled 
bed is next studied. The propagation of a cnoidal 
wave of period 1.8 s and wave height 0.02 m is 
considered. In Figure 13a, the reflection and 
transmission coefficients of the fundamental 

component (R1, T 1) as defined in (4•) are 

coefficient from the linear case, but there is a 
small shift in the peaks and zeros of R 1 which is 
presumably due to nonlinear distortion of the 
incident wave length. In the near-resonance 
region there is no appreciable change in the 
transmission coefficient T 1 with respect to the 
linear result. The total energy transmitted (E T) 
and reflected (ER) , normalized with respect to 
initial energy, are shown as dotted lines. Energy 
conservation defined by (45) is satisfied with an 
error < 10 -3 . 

We note that in the region of 2K1/% > 1, the 
transmission coefficient of the fundamental com- 

ponent, T1, experiences a significant drop even 
though the value E T indicates that no significant 
reflection is occurring. In this region the 
sinusoidal ripples are becoming comparable in 
length to or longer than the surface wave length, 
and the surface waves are able to evolve by 
nontrivial amounts as they shoal over the ripple 
crests. The reduction of T 1 represents a 
destabilization of the incident wave, after which 
energy is transferred to higher harmonics. This 
effect would not appear in the results of the 
model developed by Yoon and Liu [1987] where 
nonresonant shoaling effects are neglected. 

We also note a rise in E R and a drop in E T as 
2K1/I + 0.5. This represents the resonant inter- 
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Fig. 13. Variation of reflection and trans- 
mission coefficients of fundamental harmonic 

with 2K1/I for nonlinear wave propagation over a 
presented. The ripple amplitude D/h = 0.4 and the sinusoidal patch for (a) n = 2, D/h = 0.4 and (b) -- 

number of ripples is 2 for this case. There is no n = 4, D/h = 0.4. The normalized reflected and 
appreciable change in the values of reflection transmitted energy E R and E T are shown. 
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•ig. •4. •ariation of component amplitudes of 
transmitted and reflected waves with x, at Bragg 
resonance for nonlinear wave propagation over a 
sinusoidal patch of 4 ripples and D/h = 0.4 
(first three harmonics). 

transmitted wave away from the ripple patch. This 
effect presents serious difficulties in the prac- 
tical measurement of reflection and transmission, 
since these quantities are essentially functions 
of space. (The only spatially uniform quantity 
would be the energy flux of the reflected and 
transmitted wave trains.) 

8. Conclusions 

The present study has developed a scheme for 
obtaining the linear coupling between opposite 
going, weakly dispersive long waves due to channel 
variations in the direction of propagation. The 
model is shown to predict the generation of a 
reflected wave quite well in one case where com- 
prehensive data are available. 

Computational results have indicated that 
errors in mass conservation embedded in standard 

forms of the KdV-RLW evolution equations, which 
are locally of smaller order than the approxima- 
tion employed in the equations, nevertheless 
interfere in numerical integrations over length 

action between the first superharmonic of the wave scales appropriate to existing physical experi- 
field and the ripple patch. The modification to 
the-total transmitted energy is then due to the 
decreasing energy content in the harmonic ampli- 
tude. 

Figure 13b presents nonlinear results for the 
patch with four ripples. Differences between 
linear and nonlinear results are more accentuated 

than in the two bar case. In the region of 
resonant reflection, T 1 is greater in the 
nonlinear case than in the linear case. This 

result is due to the fact that the transmitted 

component continually gains energy from its 

ments. By extension, these effects would be 
expected to have serious impacts in field 
applications. Appropriate mass-conserving forms 
of the equations have been provided which are 
accurate to the same degree of approximation as 
the original equations. 

It is noted that the neglect of nonlinear 
interaction between opposite going waves in this 
study renders the model inapplicable to the study 
of details of the head-on collision of solitary 
waves of comparable amplitude. Derivation of the 
appropriate coupling terms would represent a 

harmonics as it is lost to reflection over the bar valuable addition to the present model. Further, 
field, and thus ends up with a surplus in application of the weakly two-dimensional model 
comparison to the linear case. In contrast, the obtained in sections 2 and 3 would be of value; 
reflection coefficient R 1 is again little changed cases employing only the forward-propagating 
from the linear case. The maintenance of a higher component will be reported on shortly. 
value of the incident amplitude Al(x) over the bar 
field should lead to greater energy transfer to 
the reflected wave component Bl(x). This effect 
is balanced by the fact that the B 1 component 
loses energy through harmonic generation as the 
reflected wave height increases, and in the 
present case, the two effects nearly cancel each 
other. 

After the incident and reflected waves move 

into the region of constant depth, the waves 
evolve as they propagate owing to nonequilibrium 
between the Fourier components of the surface 
displacement. To illustrate this evolution, the 
transformation of the component amplitudes of the 
incident and reflected wave are analyzed for the 
case of resonant Bragg scattering. In Figure 14, 
the evolution of the component amplitudes of the 
incident and reflected wave is presented, for 
waves propagating over a_patch of four ripples, 
with ripple amplitude D/h = 0.4. Results were 
calculated for an initial permanent form wave 
consisting of 20 harmonics, although only the 
evolution of the first three harmonics are 

Appendix A: Approximate Angular Relations 
in K-P Dispersion 

The restriction to small angles of propagation 
implied in the K-P equation may be analyzed by 
looking at the propagation of a plane wave given 
by 

• = aei(kcosex + ksiney- mr) (A1) 

The expression y2• in (4) is then given by 
2 

2 m k 2 y . = (•- k2sin28) • = (1 - sin28)n (A2) 
An expression for y• based on the binomial 
expansion employed in section 2 is then 

_ 1 y• = k(1 - sin2•) 1/2• • k{1 • sin2•)• (A3) 
which is only valid if sin • • e << 1. The 

presented. The loss of energy in harmonics of the direction of wave propagation is thus only allowed 
incident wave and the gain of energy in the to deviate slightly from the preferred x 
reflected wave harmonics are both apparent. Also direction. 
apparent is the disequilibrium of the transmitted This scaling distinction may be further under- 
waves and reflected waves as they leave the area stood by comparing the model K-P equations 
of the ripple patch. This disequilibrium leads to obtained here with the usual parabolic approxima- 
a continuous evolution of the reflected wave and tion for time-harmonic linear waves. The set of 
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coupled equations (15) in differential form may be 
compared with the coupled parabolic equations 
given by Liu and Tsay [1983] by making the 
substitution 

+ 
• -- A(x,y) e 

i(k0x-mt) 

i ( -k0x-mt ) 
• = B(x,y) e (A4) 

to yield 

2ikb• x + 2kh(k-k0)A + i(kh)xA + (hAy)y 

-- i(kh) x Be -2ikx (A5a) 

2ikhB x - 2kh(k-k0)B + i(kh)xB- (hBy)y 

= i(kh) x Ae 2ikx (A5b) 

which are essentially similar to the shallow water 
limits of the coupled parabolic equations of Liu 
and Tsay [1983, equations (2.12-2.13)]. 

Appendix B: Simplified Equations for 
Near-Resonant Reflection 

The set of equations (43) represents a general 
model for reflection of periodic waves from bottom 
topography h(x) and covers the special case of 
reflection of waves from a bed of sinusoidal rip- 
ples of small amplitude. Yoon and Liu [1986] have 
provided a more restricted theory for near- 
resonant interaction (small detuning with respect 
to the Bragg condition) which neglects contribu- 
tions to reflection which are far from resonance 

and which also neglects shoaling effects in each 
wave component alone. Here, we obtain an 
analogous dimensional form of the governing 
equations as a reduction of the general theory 
(equation (43)). 

We consider the dept• h(x) to be split into a 
slowly varying portion h(x) and a rapidly varying, 
small-amplitude portion 6(x), with •/h = 0(m). 
The coupling coefficient hx/4h is then given by 
(to 0<•)) 

h h - 4 
x x x 

4h 
4h 

(B1) 

Since simple shoaling effects do not lead to 
resonant reflection, (43) may be rewritten as 

- n-1 

A in3•3•2 3ink n- 6 m + { • AzAn_ Z n - 
x 8h Z=I 

N-n 4 2 + 2 Y. A•mn+• } = _ __x B e -2inf[dx + 0(• ) •=1 4h n 

(B2a) 

- n-1 in3•3• 2 3ink 
n 6 n - 

x 8h Z=l 
BzBn_ Z 

N-n 4 

+ 2 y. B•Bn_z} -- ---•x m •=1 4h n 
e2inf•dx 2 

=o(• ) 

(B2b) 

We note here that the wave phase may be written 
with respect to k to 0(1). The dispersion term 
may be eliminated by the transformation 

in/•dx _ A' A e - e 
n n 

i fKndX 

-i/KndX -infix B e -- B' e 
n n 

(B3) 

where 

K = n[ (1 + n212•2 n --6 • (B4) 

to give 

- n-1 iAC•nzX A' + 3ink { • A'A' e n - x 8h Z=I Z n-Z 

N-n iAc•+nzx 
+2 • '* ' e } AZ An+Z 

Z=I 

m v 

6 -2ifKndX x 
B' e 

4• n 

- n-1 -iAC•nZX 
-- •B ! 3ink { I B• n-Z e 

8h 

(B5a) 

+ 

N-n iAC•nZX 
+ 2 • Ai*A•+ Z e } 

Z=I 

4 2ilk dx 
=--XA' e n 

4• n 
(B5b) 

where the A•g are detuning parameters given by 

•xx nZ (Z•n)f •2dx (B6) 

Finally, we take the bottom displacement to be 
given by 

• D ipfkdx • = I (2 --j! e + C.C.) 
p=l 

(B7) 
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where % is the characteristic wave number of the Engquist, B. and A. Majda, Absorbing boundary 
bottom undulation. We assume that % adjusts conditions for the numerical simulation of 
according to the shoaling effect of the mean waves, Math. Comput., 31, 629-651, 1977. 
slope, i.e., %/k = constant. Differentiating (B7) Goring, D. G., Tsunamis - the propagation of long 
and substituting in (B5) then gives waves onto a shelf, Rep, KH-R-38, W. M. Keck 

- n-1 iA•n6X m' + 3ink { •. m'm' e n - x 8h 6--1 6 

N-n iA•+n6X 
+ •. mim•+6 e } = 

iplD i/(pl-2Xn)dX PB' e 
8• n 

(B8a) 

n-1 -iA•n6X 
' B' e B' 3ink [ y. B6 n - 

x 8h 6=1 

+ 

N-n -iAan6X 
+2 •. B'*R' e } = -6 -n+6 

6--1 

iplD -i• (pl-2K)dx 
- n PA' e 

8• n 
(BSb) 

where the near-resonant component p is chosen as 
being that one which minimizes the quantity (p%- 
2K n) and thus minimizes the rate of oscillation of 
the coupling coefficient. Identifying the factor 

Lab. of Hydraul. and Water Resour., Calif. 
Inst. of Technol., Pasadena, 1978. 

Kadomtsev, B. B., and V. I. Petviashvili, On the 
stability of solitary waves in weakly 
dispersive media, Soy. Phys. Dokl., Engl. 
Transl,, 15, 539-541, 1970. 

Katsis, C., and T. R. Akylas, On the excitation 
of long nonlinear water waves by a moving 
pressure distribution, 2, Three-dimensional 
effects, J. Fluid Mech., !77, 49-65, 1987. 

Kirby, J. T., A general wave equation for waves 
over rippled beds, J. Fluid Mech., 162, 
171-186, 1986. 

Knickerbocker, C. J., and A. C. Newell, Reflec- 
tions from solitary waves in channels of 
decreasing depth, J. Fluid Mech., 153, 1-16, 
1985. 

Liu, P. L.-F., and T.-K. Tsay, On weak reflection 
of water waves, J. Fluid Mech., 131, 59-71, 
1983. 

Liu, P. L.-F., S. B. Yoon, and J. T. Kirby, Non- 
linear refraction-diffraction of waves in 

shallow water, J. Fluid Mech., 153, 185-201,1985. 
Maxworthy, T., Experiments on collisions between 

solitary waves, J. Fluid Mech., 76, 177-185,1976. 
Mei, C. C., Resonant reflection of surface water 

waves by periodic sand bars, J. Fluid Mech., 
152, 315-335, 1985. 

Miles, J. W., On the Korteweg-deVries equation for 
a gradually varying channel, J. Fluid Mech., 
91, 181-190, 1979. 

Peregrine, D. H., Calculations of the development 
of an undular bore, J. Fluid Mech., 25, 
321-331, 1966. 

Peregrine, D. H., Long waves on a beach, J. Fluid 
Mech., 27, 815-827, 1967. 

• 1 f(2K -pl)dx (B9) Shuto, N , N•nlinear long waves in a channel of ABn • n ß 
P variable section, Coastal Eng. in Jpn., 17, 

1-12, 1974. 
completes the comparisons to Yoon and Liu's model, Su, C. H., and R. M. Mirie, On head-on collisions 
which is essentially similar to (B8). We further between two solitary waves, J. Fluid Mech., 98, 
note that the coefficient XD/8h is the appropriate 
shallow water limit of the coefficient derived 

from Kirby's [1986] intermediate depth theory. 
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