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ABSTRACT

A model is considered of the turbulent bottom boundary layer beneath waves. Closure is effected at
the level of the turbulent energy equation and numerical solutions are obtained by a combination of finite-
difference methods and a pseudo-spectral technique. These solutions are used to evaluate the induced
streaming motion and the boundary shear stress. An expression is derived for the friction coefficient in
terms of the bottom roughness and this is found to agree with values reported in experimental studies.

1. Introduction

The mechanics of the bottom boundary layer beneath
waves is of importance in theories relating to sediment
movement (Carter ¢f al., 1973) and the generation of
longshore currents (Longuet-Higgins, 1970). In field
conditions, the flow in this layer may be turbulent even
over smooth beds, and Collins (1963) has determined
a parameter whose value indicates the type of flow
regime that exists. This parameter is 2 Reynolds number
defined by

U0
Ry=—o

14

2

where u,, is the amplitude of the orbital wave velocity
just beyond the layer, = (2v/c)}, v is the kinematic
viscosity of the fluid and ¢ the radian frequency of the
waves. Collins’ experimental results indicate that for
R;<160 the flow is laminar, while for R;> 160 the flow
in the boundary layer becomes intermittently turbu-
lent. For typical field data in which #,=30 cm s,
o=1 rad s!, »=14X10"2 cm? s! it follows that
R;=360 and the boundary layer flow may therefore
be expected to be fully turbulent. A determination of
induced streaming motions and the boundary shear
stress must then take account of this fact.

For laminar flow conditions it is well known (Longuet-
Higgins, 1953) that a progressive wave leads to a
maximum streaming velocity given by

()/1=0.750+0(?), a=ku/o, (1.1)

where k is the radian wavenumber of the driving
wave motion. For R;< 160, this result has received
experimental confirmation by Collins (1963). If, how-
ever, R;> 160, the trend in Collins’ results suggests a

qualitatively similar streaming phenomenon which
appears to have a reduced magnitude compared with
(1.1). A treatment of the induced streaming in a turbu-
lent shear wave boundary layer has been given by
Longuet-Higgins in a supplement to Russell and Osorio
(1958) and Johns (1970). In these studies, the kine-
matical viscosity » (appearing in the laminar formula-
tion) is replaced by a phase-independent coefficient of
eddy viscosity which is a function of the distance
above the solid boundary. The maximum induced
streaming velocity is then found to be independent of
the eddy viscosity and to be identical to (1.1). These
results appear to be contradicted by Collins’ experi-
mental study and doubt is therefore cast on the ade-
quacy of the proposed model.

As well as the relevance of induced streaming to
sediment movement by waves, a knowledge of the
boundary stress is important in estimating sediment
entrainment. Additionally, an adequate representation
of the boundary shear stress is required in theories
relating to the generation of longshore currents by
obliquely incident sea waves. In this connection, the
work of Longuet-Higgins (1970) may be mentioned
where the choice of a bottom friction coefficient plays
a crucial role in the application of the theory.

In the present work, a relatively refined model of a
fully turbulent wave boundary layer is used to deter-
mine the induced streaming effects and the boundary
shear stress. The induced streaming is found to be
compatible with the trend suggested by Collins’ experi-
mental results. The numerical evaluations of the
boundary shear stress are used to determine a friction
coefficient and its variation with bottom roughness.
The value of this coefficient is found to compare well
with that reported in experimental studies.
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2. Formulation of model

Coordinates are chosen in which ¥ measures the dis-
tance along a plane horizontal boundary and y the
distance above the boundary. The equations for the
balance of momentum and turbulent energy density in
the layer adjacent to y=0 then have the form

U o8U a9 __
+U—t (=), (2.1)
ot ox ay at dx dy

0E o _ 98 _ —_ On
—t—(aE)+—@E) = (—u'v')—
9 ox dy dy

—I—%I:—v'(%,-FE’)]—e- 22)

In these equations, the overbar denotes a Reynolds
average and the prime a turbulent departure from that
average. The velocity U in the turbulent-free main-
stream flow is given by

U=u, cos(kx— at).. (2.3)

The quantity e specifies the rate of dissipation of turbu-
lent energy in the system.

Closure hypotheses for Eqgs. (2.1) and (2.2) are based
upon those used by Launder and Spalding (1972):

. 01
—y = K—
dy

- . (2.4)
P/ 7 aE
—-u'<—+E'> =K—
P ay

The diffusion coefficient K is therefore assumed to be
the same for both momentum and energy fluxes. As a
first step in modeling the oscillatory turbulent boundary
layer, this frequently used assumption appears prefer-
able to the use of different coefficients for the two
processes. Using dimensional reasoning, K and e are
then expressed in the form

K=IF}

€=—

ll

(2.5)

where [ and !’ are appropriate length scales.

By considering the balance of the turbulent energy
density adjacent to y=0, where production tends to
equal the dissipation, it may be shown that the formula-
tion reduces to a mixing length hypothesis provided
that
y— 0. (2.6)

I~ciky, U~cky, as

The quantity ¢ is an experimentally determined con-
stant taken to be 0.08 while « is von K4rman’s constant
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0.4. Details of this reduction are given by Launder and
Spalding (1972). In the present work the asymptotic
values (2.6) are assumed to apply for all values of y
within the boundary layer. It may, perhaps, be more
realistic to suppose that ! and !’ approach constant
values toward the edge of the boundary or, alterna-
tively, the length scale may be made the object of a
similarity hypothesis of the type used by Weatherly
(1975) in an investigation into time-dependent flow in
a turbulent Ekman layer. However, it seems unlikely
that conditions near y=0 will be strongly influenced
by our assumption.

Introducing these results into (2.1) and (2.2), the
Reynolds-averaged flow conditions in the boundary
layer are determined from

a9 8 AU AU oy ou
——+———112+—’1277 = _"‘I‘ U__+_<K_>7 (27)
ot ox dy at dx dy\ 9dy
0B o _ 9 da\: 9, OF
—+——(aE')—|———(z7E)=K<——> +—<K—>~—e, (2.8)
a  dx dy dy/  dy\ 9y
where _
K =ciyE}
2B (2.9)
6:
Ky

Egs. (2.7)~(2.9) evidently have a singular behavior
at y=0 and the lower boundary conditions must
therefore be applied at some level y=1y,. Close to the
lower boundary (y<¥,) we follow Jonsson and Carlsen
(1976), who found evidence of a logarithmic profile
beneath waves, and prescribe a variation in the
Reynolds-averaged velocity given by

a=V(x,8) In(y/vy),

where ¥, is the roughness length of the underlying
elements. Accordingly,

(2.10)

da i
—— (2.11)
dy vy In(y/ys)
and we take
on
yoln(yo/y*)g—=ﬁ at  y=yo. (2.12)
y

The- corresponding value of & may be deduced by
consideration of the equation of continuity in the
boundary layer, namely

o Iv
—+—=0.
dx dy

(2.13)
Insertion of (2.10) into (2.13) is readily found to yield

01
o In (yo/v5) =y In (yo/y4) +y0— y*]a— at y=yp. (2.14)
X



SEPTEMBER 1977 B.

An appropriate boundary condition on E at y=1yo
may be derived by using the equation expressing a
balance between the production and dissipation of
averaged turbulent energy, i.e.,

o\ 2
K<—> =e. (2.15)
9y
Substituting in (2.15) from (2.9) we find that
_ 9\ 2
E= (xy)%‘*(—) as y—0, (2.16)
dy
and on application of (2.10) it follows that
E=k2c3V? for y,<y< 0 (2.17)

An appropriate condition to be satisfied by E is therefore

oE
——:0 at ¥=9q.
ay

(2.18)

Naturally, in the subsequent evaluations, it will be
necessary to determine a suitable value of ¥, to be used
in this specification.

Appropriate boundary conditions to be applied at
the outer edge of the boundary layer present no prob-
lem. Denoting this level by y=4y,, it is necessary for
the boundary layer flow to merge into the imposed
oscillatory mainstream flow and so we take

G=1u, cos(kx—at) at y=y. (2.19)

Additionally, it is prescribed that there is no flux of
turbulent energy across the outer edge of the layer
thus leading to

ok
—=0 at y=y.

(2.20)
dy

In order to obtain numerical results independent of
¥1, it will be necessary to select a value for y; which is
such that (2.19) and (2.20) are effectively satisfied for
y<9y1.

3. Nondimensionalization and numerical solution

For computational purposes, it is convenient to non-
dimensionalize the equations in Section (2) by writing

t=kx
g
I=—0—0) 3.1
o

f=qt
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Egs. (2.7), (2.8) and (2.13) then become
am 48 0 ) )
—7+a<——122+-—ﬁ13> =sin{(#—1{) —%asin2(—1)
ot \oz o9
8/ 01
(&) 69
a9\ a9
oE 9 . 0 W\
——+a(——(ﬁE)+——(z)E)> =K(———>
ot \ag 39 09
8/ oFE
+—<K—) —¢ (3.4)
o9\ a9
a4 9
T 2. 3.5)
ot 99
In these equations,
ki
a=— (3.6)
g
R h
K =cl(9+50) B}
AE}
é= L. 3.7
k(§+50)
Yo
=—
Uep J
The accompanying boundary conditions are
ad )
$o In (Fo/ 9*)"(3—5;:73
d
1n(9/9.0 =90 In @0/ )+ o= 941 =1 at 9=0,
(3.8)
oF
—=0
9 ]
A=cos(&—1)
aE 0 at 9:’917
9 (3.9
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4.0
Fic. 1. Boundary layer profile of induced streaming:
«=0.075, 0.1, 0.125; ag,=3X 10"
where
Pu= (O'/uw)y*; 1= (O'/Mco) (yl_yo)- (310)

A method of numerical solution of the foregoing
system of equations is applied in which a stretched
finite-difference grid is used in the § direction. This
permits a high resolution near §=0 relative to that
near § =7, and thus leads to an accurate representation
of the high shears encountered near the boundary. The
time variable is replaced by a discrete sequence of
time-instants. A novelty of-the method consists of
representing the variation with £ by a Fourier method
in which we write

2M
ﬂ@;f’;f)= Z Cp(ji,f)eipi’ ?=—1
p=—2M

(3.11)

The numerical solution is then obtained by a pseudo-
spectral technique in which Egs. (3.3)-(3.5) are treated
as an initial value problem, the initial state being
specified as one of no motion. The developing numerical
response satisfies the boundary conditions (3.8) and
(3.9) and, after a sufficient period of integration, be-
comes a purely oscillatory function of f, reproducing
itself from one cycle of integration to the next. A
similar initial value approach was used by Weatherly
(1975) in the Ekman layer problem, but without the
inclusion of the nonlinear advective terms. In our
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procedure, a fairly standard ‘‘Fourier chopping’’ method
is applied to avoid mid-representation of the nonlinear
terms through aliasing. Effectively, this means that
there will be a total of M significant Fourier components
in (3.11) since, prior to the evaluation of a nonlinear
product, the Fourier representation is halved in order
to suppress the development of nonresolvable compo-
nents in a quadratic interaction. The nonlinear products
are evaluated in grid-point space, the switching between
physical and wavenumber space being achieved by a
fast Fourier transform procedure.

4. Numerical evaluation

A series of numerical experiments has been performed
to determine the dependence of the solution of the
equations in Section 3 on the parameters « and ¢,. We
first consider 0.075<a<0.125, af,=3X10"*, afo=2
X107 and ag1=0.1. The selection of a smaller value
for o is, unfortunately, found to lead to .numerical
problems related to the increasing influence of the

* singularity in (3.3) and (3.4). With these values, and

field data given by A=1m, o=1rad s~ and ¢=10 cm,
we find that @=0.1, #,~=31 cm s7, 9,=0.9 mm, y,~ 31
cm and y,=~0.63 cm.

With M =3, the response (3.11) is found to become
effectively oscillatory after 30 cycles of integration
(when {=60r) at which time we can write the oscilla-
tory solution in the form '

4= @@+ [Ay cospxtBysingx],  (4.1)

p=l"

E=(E@)+ 23: [Gpcospx+H,sinpx], (4.2)
where

X=2£—1. (4.3)

Characteristic values of K at §=0 are found to be
of order 5X10~* and the condition for a fully turbulent
layer (K>»v) is found to lead to the requirement
K>2/Rg which, with R;=360, is clearly fulfilled.
Turbulent velocity fluctuations are of order E* and,
near §=0, have a characteristic value 0.1 %..

In Fig. 1 we give the variation of the streaming
velocity (u) through the boundary layer for a=0.075,
0.1 and 0.125. The streaming velocity reaches a maxi-
mum at a level within the boundary layer that is inde-
pendent of a. Its value then satisfies

(W) max=0.30a+0(a?), (4.4)

and reduces to zero through an outer layer that thickens
as a— 0. It will also be noted that an increase in the
value of @ tends to compress the induced streaming
into a jet immediately adjacent to §=0. Eq. (4.4)
should be contrasted with the corresponding result for
a laminar layer (Longuet-Higgins, 1953) where the
maximum streaming velocity is 0.75a+0(a®).
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Fic. 2. As in Fig. 1 except a=0.1; 5X1074 <9 < 6X 1072,

The second set of evaluations determines the effect
of variations in the roughness length. With a=0.1, we
consider 5X10#< 9, <6X 1072 and take 7,=0.02 and
#1=1.0. The resulting profiles of (%) are shown in Fig.
2. The maximum value of () is only weakly dependent
upon @, and again satisfies (4.4). However, the varia-
tion of (4) with 7, is important at the outer edge of the
logarithmic layer and a best fit to a linear law shows

-02
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that the streaming velocity is then well represented by
(@) =0.022—1.425¢),. (4.5)

The dependence of the bottom stress 73 on the
roughness length of the boundary elements may be
determined from

0%
Ty= (Kp—) , (4.6)
. . 6y Y=y%
which yields
b .
———2=c%‘Eo sgn (), 4.7

Pl

where Fo and o refer to the values of £ and % at 7=0.
The variation of 7, with the phase X is given for
various ¢ in Fig. 3. It is clear that the bottom stress
does not have a simple dependence on X. Although the
primary dependence of 75 is on a harmonic involving
cosX, there is an important contribution from sin3X and
it is not possible to represent 7, by a simple empirical
law. A frequently used representation of 75 in terms of
the orbital wave velocity just beyond the boundary
layer has the form

re=Cup|U|U, (4.8)
which, using (2.3), leads to
b
——=Cy| cosX|cosX, (4.9)
Plhes’

where C; is a friction coefficient. Eq. (4.9), however,
does not reproduce the important contribution from
sin3X and will not, therefore, accurately describe the
detailed variation of the bottom stress given in Fig. 3.
Nevertheless, a value for C; can be derived that leads

02 |

I l

0 m/2

3n/2 2

T X

F1c. 3. Variation of bottom stress 7, with phase x: a=0.1; 5X 1074 <%, 6X 1073,
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F16. 4. As in Fig. 3 except a=0.1, §,=1073. The solid line is the boundary layer calculation.
The dashed line from Eq. (4.9) with C;=35.52X1073,

to the best approximation to the bottom stress by
writing

2r
/ (75/pu?) | cosX | cosxdx
0
Cy= . (4.10)

27
/ cos*XdX
[}

Considering the case when a=0.1, §,=1073, we find
that C;=5.52X 1072, The reconstruction of the bottom
stress using this value of C; in (4.9) is compared with
the boundary layer evaluation in Fig. 4. Apart from
the failure of (4.9) to produce the variation in 7, re-
sulting from sin3X, it will also be observed that (4.9)
does not yield a nonzero component of mean bottom
stress. In the present case, this mean value is given by
(7s)
—=2.26X10"%
P’

(4.11)

and has the same sense as the induced streaming motion.

The evaludtion of the friction coefficient by Eq.
(4.10) has been carried out for «=0.1 and the range of
roughness lengths considered earlier. The resulting
values of C; have been fitted by a least-squares method
to a power law representation and we find that

C;~0.745,0 (4.12)

with 5X1074< 7, <6X1073. Taking account of a dif-
ferent definition of the friction coefficient, a study by
Kajiura (1968) suggests that C;=0.85 (,/cy,)t
which compares well with (4.12).

Again, considering the typical field data given in
Section 4 and taking g, =3X1073, the corresponding
roughness length is ~0.9 mm. Eq. (4.12) then yields
Cy~1.2X107% This agrees with typical values re-
ported by Bretschneider (1954) in a field investigation
of the energy loss of shallow water ocean waves.

In conclusion, it is appropriate to comment on the
value selected for 9, in the numerical evaluations. As

has been previously mentioned, the numerical process
described in this paper becomes unstable for §,50.016.
This is almost certainly the result of the increasing
strength of the singularity at §=0 in Egs. (3.3) and
(3.4) as 7o — 0. Nevertheless, it is important to know
to what extent the results of this paper depend upon
the nonzero numerical value used for #o. This point has
been considered by comparing evaluations of the
maximum steady streaming velocity and the bottom
stress for values of o between 0.02 and 0.05. This
comparison shows that the evaluations have only a
weak dependence upon ¢, at the lower end of the range
of values considered. The results of this paper are not,
therefore, thought to be significantly dependent upon
the prescribed thickness of the logarithmic layer.
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