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ABSTRACT 1 

A new approach has been proposed to derive the expressions for three-dimensional 2 

radiation stress using solutions of the pressure and velocity distributions and the coordinate 3 

transformation function that are derived from a Lagrangian description wherein the pressure is 4 

zero (relative to the atmospheric pressure) at the sea surface. Using this approach, analytical 5 

expressions of horizontal and vertical depth-dependent radiation stress are derived at a 6 

uniform depth and for a sloping bottom, respectively. The results of the depth integration of 7 

the expressions agree well with the theory of Longuet-Higgins and Stewart. In the case 8 

involving a sloping bottom, the radiation stress expressions from this study provide a better 9 

balance of the net momentum compared to those from previous studies. 10 
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1 Introduction 1 

Surface gravity waves play an important role in upper oceanic processes, which range 2 

from wave-induced upper-ocean mixing to wave setup and wave-induced currents (Bowen et 3 

al. 1968; Hasselmann 1971; Garrett 1976; Ting and Kirby 1994; Smith 2006; Liu et al., 2017). 4 

Two concepts have been utilized in the literature to represent the effects of waves on 5 

relatively long-term currents. The first is "radiation stress", which is included in the wave-6 

averaged equations for the total momentum (i.e., the sum of the mean current and wave 7 

momenta) and can be regarded as the sum of the horizontal Reynolds stress term and the 8 

negative of the form stress term (Mellor 2003; Aiki and Greatbatch 2012, 2013; Ardhuin et al. 9 

2017). The second is the so-called "vortex force", which is included in the wave-averaged 10 

equations only for the current momentum and is used to decompose wave-averaged effects 11 

into a Bernoulli head and a vortex force (Craik and Leibovich 1976; Andrews and McIntyre 12 

1978; McWilliams et al. 2004; Lane et al. 2007; Ardhuin et al. 2008b; Aiki and Greatbatch 13 

2014). Compared to the concept of radiation stress, the concept of the vortex force is 14 

relatively new. The advantage of the vortex force theory is that more of the mechanisms that 15 

govern wave-current interactions can be explained (Lane et al. 2007; Bennis et al. 2011; 16 

Ardhuin et al. 2017), while it is disadvantageously more complicated than the traditional 17 

radiation stress method (Mellor 2016). In this paper, we aim to improve the capability of the 18 

existing three-dimensional radiation stress (3DRS) formulations, e.g., those of Mellor (2003, 19 

2015), rather than compare radiation stress and vortex force.  20 

Since its concept was first introduced by Longuet-Higgins and Stewart (1962, 1964; 21 

hereinafter LHS), radiation stress has been widely used to render depth-integrated equations, 22 

which have clear physical significance, more suitable for 2D oceanic flows with surface 23 

waves (Phillips 1977). Dolata and Rosenthal (1984) extended the 2D radiation stress into 24 

three dimensions, including variations in the vertical direction, based on the LHS concept. 25 
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However, Dolata and Rosenthal (1984) neglected the impact of the wave pressure, and thus, 1 

their product was unable to return to an LHS form following vertical integration (Mellor 2 

2003). Zheng and Yan (2001) reported a 3D solution of radiation stress, and their results in the 3 

vertical direction were described as functions of three vertical layers from the bottom to the 4 

surface: below the wave trough, the wave trough to the mean, and above the mean water level. 5 

Nevertheless, their method made it difficult to describe the vertical profile of radiation stress, 6 

which is defined as an average variable within wave periods (Xia et al. 2004). To improve the 7 

vertical structures of radiation stress, a number of studies have been conducted involving a 8 

transformation of the vertical coordinate through expression derivations. For instance, Xia et 9 

al. (2004) employed a vertical coordinate transformation that Sheng and Liu (2011) 10 

subsequently revealed as having the potential to induce obvious errors in the definition of 11 

radiation stress. Using an alternative coordinate transformation considering the vertical wave-12 

induced motion of linear waves, Mellor (2003) derived a set of 3D expressions of radiation 13 

stress. However, those expressions were found to lack self-consistency for a simple case of 14 

waves that shoal over a slope without energy dissipation (Ardhuin et al. 2008a). Mellor (2008) 15 

reported an updated version of 3DRS using a hydrostatic pressure assumption for the surface 16 

layer and a pressure distribution derived from the vertical momentum equation for the 17 

subsurface layers. However, Bennis and Ardhuin (2011) disputed the revised technique since 18 

different averaging methods were used for both the pressure gradient term and for the other 19 

terms. The error in the hydrostatic pressure assumption for the top layer was subsequently 20 

investigated by Mellor (2013, 2015) by integrating the vertical momentum equation to derive 21 

the pressure distribution over the whole water column, and an expression for radiation stress 22 

was consequently obtained with a new pressure distribution. However, this pressure term 23 

could not precisely satisfy a zero pressure (relative to the atmospheric pressure) condition for 24 

the surface, and the derivation lacked a term that integrates over the vertical to a value of zero 25 
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(Ardhuin et al. 2017). 1 

Various uncertainties remain within 3DRS studies, including (1) the expression of the 2 

vertical pressure distribution in the water column, especially within the top layer, where the 3 

pressure is zero at the sea surface and (2) an explicit description of the complex vertical flux 4 

of the wave momentum. The former is a minor concern since a mismatch of higher-order 5 

terms will not alter the dynamics of the system (Ardhuin et al. 2017), while the latter is 6 

regarded as a fundamental issue within 3DRS problems (Bennis et al. 2011; Ardhuin et al. 7 

2008a, 2017). A relatively complete wave momentum flux requires an asymptotic expansion 8 

of the first order to account for the wave steepness, bottom slope, vertical current gradients 9 

and temporal scales of the amplitudes, and it is difficult to include such a variety of effects in 10 

the analytical 3DRS expressions at present. Ardhuin et al. (2008a, 2017) noted that finding a 11 

first-order analytical solution for the bottom slope is a fundamental step toward improving the 12 

3DRS formulation. Therefore, in the present study, we attempt to derive an expression of the 13 

vertical wave momentum flux over a sloping bottom as the first step toward improving the 14 

3DRS equations. 15 

The linear wave theory, in which the treatment of pressure at the surface is ambiguous 16 

(Mellor 2003, 2008, 2015), has commonly been used in the derivation of 3DRS. In fact, a 17 

zero pressure at the free surface at any instantaneous time can be accomplished with a 18 

Lagrangian description (Chen 1994, Chen and Hsu 2009a, 2009b, Chen et al. 2010, Chen et al. 19 

2012). Furthermore, first-order analytical solutions for wave motion in the bottom slope have 20 

been derived by Chen et al. (2012). Therefore, the wave solutions developed using a 21 

Lagrangian description are chosen to derive the 3DRS equations in this study. The velocity 22 

and pressure distributions and the coordinate transformation function, which are derived 23 

following their transformations into Eulerian descriptions, each utilize the Lagrangian 24 

solutions of progressive waves by Chen et al (2010, 2012).  25 
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Before addressing the vertically dependent radiation stress, we briefly introduce the 1 

Lagrangian solutions in Section 2. In Section 3, the derivation of 3DRS is presented. The 2 

formulations are evaluated using the test case proposed by Ardhuin et al. (2008a) in Section 4. 3 

The conclusions of this study and recommendations for future work are found in Section 5. 4 

 5 

2 Lagrangian solutions of progressive waves 6 

a. Lagrangian solutions at a uniform water depth 7 

Chen (1994) and Chen et al. (2010) reported a set of Lagrangian solutions for vertical 2D 8 

progressive waves at a uniform water depth with the coordinate origin at the still water level. 9 

The formation of the general solutions can be described as follows: 10 

  0

1

( , , ) ( , , )n

n L n
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where   is an ordering parameter that can be set to 1 in the final solutions; x  and z  are 15 

the horizontal and vertical particle positions, respectively; a  and b  are two characteristic 16 

parameters in the Lagrangian system; P  is the pressure (relative to the atmospheric 17 

pressure); 
L  is the angular frequency of the particle motion; and T  is the period of the 18 

motion of a particle reappearing at the same level. The first-order Lagrangian solutions are 19 

described as 20 
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 1 1 0f g     (2c) 1 
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where Lka t    is the phase function in the Lagrangian system; 2k L  is the wave 4 

number; 0a  represents the wave amplitude; and d  is the water depth. The second-order 5 

solutions are 6 
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 1 0    (3f) 12 

b. Lagrangian solutions for a sloping bottom 13 

Chen et al. (2012) also derived asymptotic solutions in a Lagrangian description for 14 

nonlinear water waves propagating over a sloping bottom. The first-order asymptotic 15 

solutions can be obtained as follows (Chen et al. 2012; Li et al. 2013): 16 

 1,0 2 1,1x a f f     (4a) 17 

 1,0 2 1,1z b g g     (4b) 18 

 1,0 2 1,1P gb P P       (4c) 19 



 

8 

 

where the ordering parameter 
2  represents the bottom slope. The solutions have the 1 

following forms:  2 

 1,0 1 1,0 1 1,0 1=  ,    =  ,    f f g g P P   (5a-c) 3 
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1
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c. Lagrange-Euler transformation 8 

To successfully transform a set of given Eulerian solutions into completely unknown 9 

Lagrangian solutions, Chen and Hsu (2009a) used a successive Taylor series expansion for the 10 

water particle path and the period of particle motion. These transformed Lagrangian mean 11 

level and wave period expressions, which account for all of the water particles at different 12 

elevations, represent generic expressions compared with those in Longuet-Higgins (1979, 13 

1986), which describe only particles at the free surface. Subsequently, Chen and Hsu (2009b) 14 

identified the corresponding reversible process (i.e., the transformation method from a 15 
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Lagrangian into an Eulerian description), and thus, the second-order transformation can be 1 

written as 2 

   2

1 1, ,

L

m m
m L m

a x
b y

F F
F a b t F f g

a b
 

  



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where 
mF  represents the general expression;   is an ordering parameter that can be set 4 

equal to 1; and   is the Eulerian angular frequency of the waves.  5 

It should be noted that only the formulations used in the present study are reviewed. 6 

Details regarding the derivation of higher-order Lagrangian solutions can be found in the 7 

abovementioned corresponding studies. 8 

 9 

3 Derivation of three-dimensional radiation stress (3DRS) 10 

a. Momentum equations 11 

Consider a classical problem involving 2D progressive waves in which the x-axis 12 

parallels the direction of wave propagation. Following Mellor (2003, 2015, 2016), the 13 

dependent variables   are divided into both current variables ̂  (whose temporal and 14 

spatial scales are large compared to those of the inverse wave frequency and wave number) 15 

and wave variables   as follows: 16 

 ˆ      (7a) 17 

 ˆu u u    (7b) 18 

 ˆw w w    (7c) 19 

 ˆp p p    (7d) 20 

where   is the free surface elevation; ̂  is the phase-averaged surface elevation; u  and 21 

w  are the horizontal and vertical velocity, respectively; and p  is the pressure. The vertical 22 

coordinate transformation proposed by Mellor is written as 23 
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   ˆ,  ,  z s x t D s        (8) 1 

in which s  is the coordinate transformation function, and s  is expressed as 2 
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
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where kx t    is the phase function; the coordinate   ranges from -1 ( z h  ) to 0 4 

( ˆz      ); and ˆD h   is the mean water column depth ( h  is the bottom depth).   5 

Throughout this paper, we denote phase average variables with an overbar, that is, 6 

     
21

0
2

n

n d


 


  , wherein n  is an integer equal or greater than 1. Thus, the phase 7 

average of z  can be expressed as ˆz D   . 8 

Neglecting buoyancy, Coriolis forces, and mixing and viscous effects, the horizontal 9 

mean momentum in Mellor (2003) [his Eq. (34a)] in which motion is restricted to the vertical 10 

plane is given as 11 

 
2

3
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    

   
   (10) 12 

where U  is the mean drift velocity (i.e., the Lagrangian mean current), which contains both 13 

the quasi-Eulerian current (Jenkins, 1989) and the Stokes drift, and   is the vertical mean 14 

velocity. On the right-hand side, the first term denotes the horizontal divergence of the 15 

horizontal flux of the wave momentum and is expressed as 16 

 2xx
xx

S s
F Du p

x x 

 
  
 

  
    

  
  (11) 17 

Meanwhile, the second term denotes the vertical divergence of the vertical flux of the wave 18 

momentum: 19 

 3
3

x
x
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 

  
  

  
  (12) 20 
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b. Derivation of the horizontal radiation stress xxS  1 

Throughout this paper, we assume that the timescales of the variations in the quantities 2 

are small compared to the timescales of the waves (i.e.,    0 0a t a  ,   2û t k    3 

and   1D t k   ). We also neglect the effects of vertical current shear (  ˆ 1u z   ). 4 

These hypotheses allow us to employ the Lagrangian solutions of Chen et al. that were 5 

discussed in Section 2. Furthermore, the wave slope 0ka  and bottom slope  D x   are 6 

stipulated to be small, and the respective fourth-order  
4

0ka  and second-order  
2

D x   7 

terms are consequently neglected during the derivation. 8 

The derivation consists of three steps. We first develop a modified transformation from a 9 

Lagrangian to an Eulerian description based on the method of Chen and Hsu (2009b). Then, 10 

we transform the wave solutions from a Lagrangian to an Eulerian description. In the third 11 

step, we derive the radiation stress expression in Eulerian form based on the transformed 12 

velocity and pressure distributions and the coordinate transformation function. 13 

Step 1: 14 

For the first-order Lagrangian approximation, Eq. (1b) can be written as1 15 

  0

sinh ( )
cos

sinh
L

k b h
z b kaa

kD
t


    (13) 16 

where the Lagrangian variable b  ranges from h  ( z h  ) to ̂  ( z  ). Chen and Hsu 17 

(2009b) developed a transformation from a Lagrangian to an Eulerian system, which is 18 

demonstrated in Eq. (6). The first-order approximate transformation for the phase part 19 

cos( )Lka t  is reproduced here: 20 

__________________ 

 
1 The mean surface elevation ˆ 0   in the investigations of Chen et al. (2010, 2012); however, ̂  is considered in 

the present paper for completeness and for consistency with the investigations of Mellor (2003, 2015). 
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The parameters a  and L  in Eq. (13) are transformed using Eq. (14), and the parameter 2 

b  remains unchanged here: 3 
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
    (15) 4 

Combining Eqs. (8), (9) and (15), the following algebraic relationship can be given: 5 

 ˆb D     (16) 6 

Following Chen et al. (2010) and Chen and Chen (2014), the Lagrangian variable b  is equal 7 

to the wavelength-averaged (or phase-averaged) z  of the vertical displacement z . Based 8 

upon this physical definition, Eq. (16) is evidently true and exact. Using Eqs. (14) and (16), 9 

we develop a modified transformation from a Lagrangian to an Eulerian system (Fig. 1a): 10 
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Step 2: 12 

The expressions of the wave velocity and pressure terms in a Lagrangian form are 13 

reproduced as follows: 14 
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Using Eq. (17), both Eqs. (18) and (19) can be converted into an Eulerian description 17 

as follows: 18 
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where the pressure 0p   at the free surface ( 0  ).  1 

Step 3: 2 

Inserting Eqs. (9), (20) and (21) into Eq. (11) yields 3 

  2

xx cs cc cs cc ss cs

s
S Du p kDE F F F F F F


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   (22) 4 

where a set of convenient definitions are as follows: 5 
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Eq. (22) is easily extended into 3DRS with the following transformation: 7 

  2

i j

ij cs cc ij cs cc ss cs

k k
S kDE F F F F F F

k


 
   

 
  (24) 8 

where the wave number k  k ,2 2

0 2E ga  is the wave energy, and the subscripts i  and 9 

j  denote the horizontal coordinates. Eq. (24) is identical to the expression of the horizontal 10 

radiation stress of Mellor (2003, 2015, 2016), but the pressure term at the surface is 11 

guaranteed to be equal to zero. When Eq. (24) is integrated from the bottom ( 1   ) to the 12 

free surface ( 0  ), we can obtain the classical 2D radiation stress of LHS. 13 

In the derivation based on the first-order Lagrangian solutions, the wave solutions are 14 

given in terms of the order 1 0ka  , and the expression of the pressure term is equivalent to 15 

that of Mellor (2003), which is incomplete (Mellor 2008, 2015). Following Steps 1–3, the 16 

subsequent derivation is based on a second-order Lagrangian approximation, and it includes 17 
__________________ 

 
2 The equation k  k  is available only for Eqs. (24), (31) and (39). 
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terms of the order 
2

1  in the wave solutions. 1 

The derivation process is similar, and thus, we directly derive the 3DRS equations here. 2 

The detailed second-order solutions can be found in Eqs. (3a)–(3f). Eq. (1b), which is a 3 

general Lagrangian solution, can be re-written as 4 

 
1 2

2 2

0 0 04 2

sinh ( ) 3 sinh 2 ( ) 1 sinh 2 ( )
  cos cos 2

sinh 8 sinh 4 sinh

z b g g

k b h k b h k b h
b a a k a k

kD kD kD
 

  

  
   

  (25) 5 

The algebraic relationship ˆb D    remains unchanged, and thus, the second-order 6 

transformation method of Chen and Hsu (2009b) is written as (Fig. 1b) 7 

   1
1ˆ

ˆ

( , , )
L

L

ma x f
m L m mb a x

b
D

D

F
F a b t F F f

a
  

 




  
  
  



 
   

 
  (26) 8 

By using Eq. (26), Eq. (25) can be converted into a coordinate transformation expression 9 

within an Eulerian system: 10 

 

2
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2 3 2

0 02 5

sinh (1 ) 3 sinh 2 (1 )
ˆ cos cos 2
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  
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  
 

 (27) 11 

and  12 

 

2 2
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      cos 2 sin 2 sin

4 sinh

kD kD kD
s a a k a k

kD kD kD

kD kD
a k

kD

  
 

 
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 
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 (28) 13 

The wave velocity and pressure terms in Eulerian form are taken to be 14 
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




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  (29) 15 
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4
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  (30) 1 

where the pressure term also satisfies 0p   at the free surface ( 0  ). Inserting Eqs. (28)–2 

(30) into Eq. (11) and neglecting the terms of the order and higher than 
4

1 , we obtain 3 

  2

i j

ij cs cc ij cs cc ss cs

k k
S kDE F F F F F F

k


 
   

 
  (31) 4 

We can determine that Eq. (31) is identical to Eq. (24). 5 

c. Derivation of the vertical radiation stress 3xS  6 

The vertical radiation stress 3xS  in Eq. (12) represents the pressure-induced flux 7 

through the sloping iso-surfaces in the vertical plane, and it is considered representative of the 8 

fundamental problem concerning the wave-averaged equations for the total momentum. 9 

Either utilizing an inappropriate approximation of the vertical radiation stress (Mellor 2003) 10 

or omitting the term entirely (Xia et al. 2004; Mellor 2008, 2015) will produce incorrect 11 

wave-induced forcing profiles for steady shoaling waves over a sloping bottom. This problem 12 

was first noted by Ardhuin et al. (2008a), who suggested that p  and s  must be estimated 13 

to the first order in the bottom slope 2 , for which the linear wave theory is insufficient. 14 

Furthermore, Ardhuin et al. (2008a, 2017) estimated 3xS  using a numerical method with a 15 

series of modes, but it required an enormous amount of computational power (Magne et al. 16 

2007). In this subsection, we focus on this particular issue. 17 

Since the vertical flux of the wave momentum must be estimated to the first order in the 18 

bottom slope, we derive the expression using the Lagrangian solutions for waves propagating 19 
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along a sloping bottom.3 Inserting Eqs. (5b) and (5e) into Eq. (4b), we obtain 1 

 
 

 
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     
     

  

  (32) 2 

Combining Eqs. (4c), (5c) and (5f), the expression of the wave pressure term can be written 3 

as 4 
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D R kD kD


   
   
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 (33) 5 

Eqs. (32) and (33) can be converted into an Eulerian description using Eq. (26): 6 
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 
    


 2 cos sin      

 (34) 7 

__________________ 

 
3 Upon using the Lagrangian solutions for waves propagating along a sloping bottom to derive the horizontal radiation 

stress 
xxS  in Eq. (11), we find that the final expression is identical to Eq. (22) because the bottom slope 

2  is included 

in the  
2

2O   terms, which are neglected. Thus, the wave solutions at a uniform depth are sufficient to estimate the 

horizontal radiation stress. This conclusion is consistent with Ardhuin et al. (2008a, 2017). 
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 (35) 1 

where 1S , 3S , 1C , and 3C  are terms of the order 1 ; 2S , 4S , 2C , and 4C  are terms of 2 

the order 1 2  ; and the bottom slope 2 D x    . Combining Eqs. (8) and (34) yields 3 

the following: 4 
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
     1 2 cos sinC    

  (36) 5 

Eq. (36) corresponds to the definition of s  in Ardhuin et al. (2008a) [their Eq. (11)]. The 6 

first and second lines correspond to 3  in their same equation. The first term in the third line 7 

corresponds to 1 s x   , while the other terms in the third line are of a higher order. 8 

Inserting Eqs. (35) and (36) into Eq. (12), we obtain 9 
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  (37) 10 

where the convenient definitions are as follows: 11 
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 (38d) 3 

 
2

1
sinh 2

kD
R

kD
    (38e) 4 

The terms of the orders 
4

1 2

q   and 
2

1 2

r  , in which q  and r  are arbitrary natural numbers, 5 

are neglected. The first term of Eq. (37) is from the expression of Mellor (2003). The vertical 6 

radiation stress term 3xS  has no flux across the surface or the bottom, and thus, it vertically 7 

integrates to zero; furthermore, the vertically integrated equations including this term conform 8 

to the conventional integrated equations of LHS and Smith (2006). Eq. (37) is easily 9 

extended into the 3DRS formulation: 10 
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  (39) 11 

d. Doppler effect  12 

The derivation above does not consider the Doppler effect of the current on a wave. The 13 

Doppler effect can be included for a given Doppler velocity ˆ
Au , which is a weighted average 14 

of the vertical current according to Kirby and Chen (1989) and Mellor (2003): 15 
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
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The Lagrangian solutions for waves propagating within a uniform current provided by 2 

Chen et al. (2013) and Chen and Chen (2014) can be written as Eqs. (1b)–(1d) with 3 

  0

1

ˆ ( , , ) ( , , )n

A n L n

n

x a u t f a b t f a b t  




      (41) 4 

The modified first-order approximate transformation from a Lagrangian to an Eulerian 5 

system [Eq. (17)] becomes 6 

 ˆ
ˆ+

( , , ) ( )
A

L

m L m a x u t
b D

F a b t F
 

 
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


   (42) 7 

and the phase function Lka t    in a Lagrangian system can be converted into an 8 

Eulerian description with the following formulation that is consistent with Mellor (2003, 9 

2015): 10 

 ˆ
Akx ku t t kx t         (43) 11 

The wave frequency can be expressed as ˆ
Aku   , where   is the intrinsic frequency. It 12 

is easily proven that Eq. (43) is unchanged for higher-order Lagrange-Euler transformations. 13 

Therefore, the phase function included in s  and in the wave variables (e.g., the velocity 14 

and pressure terms) in an Eulerian form can be expressed by Eq. (43) when considering the 15 

Doppler effect. However, the final forms of the 3DRS terms based on Eqs. (42) and (43) are 16 

identical to those derived within the present study because they are phase-averaged variables. 17 

 18 

4 Test case proposed by Ardhuin et al. (2008a) 19 

To evaluate the performances of the expressions of the wave-induced 3DRS developed 20 

by Mellor (2003), Ardhuin et al. (2008a) proposed a test case involving steady 21 

monochromatic waves shoaling over a sloping bottom without energy dissipation. In such a 22 

test case, the lowest-order momentum balance equation can be expressed as 23 
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3
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x x
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
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  
  (44) 1 

In the equation above, the hydrostatic pressure gradient F  is balanced with the sum of xxF  2 

and 3xF . The present paper follows Ardhuin et al. (2008a) and uses this test case to evaluate 3 

the performances of the analytical expressions derived herein.  4 

The bottom profile given by Roseau (1976) is used here (Fig. 2): 5 

  
     1 2 1 ln 1 x ih x i h h e

Z x





    
    (45) 6 

Following Ardhuin et al. (2008a), we use the following: 1 6 mh  , 2 4 mh  , offshore wave 7 

amplitude 0,0 0.12 ma  , wave frequency 0.2 Hzf  , and 15 180  . The change in the 8 

wave amplitude 0a  is calculated using the conservation of wave energy, and the phase 9 

function is regarded as the integral over x of the local wave number ( x k   ). The 10 

maximum surface wave slope 2

1 0,max 2.6 10ka    , which is equal to the maximum bottom 11 

slope 2  in this case. The length of the wave channel is 250 m, which varies by 4–6 m based 12 

on Eq. (45). The three terms in Eq. (44) are estimated using a second-order finite difference.  13 

The modeled results from this paper (Fig. 2a) show that the instantaneous wave-induced 14 

pressure field varies between negative values below the wave troughs and positive values 15 

below the crests. The magnitude of the wave pressure increases from zero at the surface to a 16 

maximum at the bottom. The results of Mellor (2015) show spatial features that are similar to 17 

those of our model except at the surface, wherein the pressure varies around zero with 18 

negligible magnitudes (Fig. 2b). To illustrate the terms in Eq. (44) more clearly, we 19 

normalize the terms by a factor of 
2

1 2gD  , the results of which are shown in Fig. 3. As we 20 

can see, the hydrostatic pressure gradient F  and the horizontal divergence of the horizontal 21 



 

21 

 

flux of the wave momentum xxF  from this paper are identical to those of Mellor (2003). 1 

However, the value of 3xF  significantly differs from that estimated using the theory from 2 

Mellor (2003). The analytical expression of 3xF  in the present paper reveals negative values 3 

in the surface layer and positive values in the bottom layer (Fig. 3c), which play an important 4 

role in the momentum balance. The sum of the three terms from the present model is zero 5 

overall (Fig. 3d), which is plainly different from the results of Mellor (2003), wherein an 6 

imbalance can be observed both in the surface layer and in the bottom layer (Fig. 3h). 7 

The vertical profiles of the net wave-induced forces from Eq. (44) that are based on the 8 

modeled results of our expressions and those from Mellor (2003) and Mellor (2015) are 9 

plotted in Fig. 4. The formulations in this study provide a net momentum balance close to 10 

zero from the surface to the bottom. In contrast, a significant imbalance can be observed in 11 

the results of Mellor (2003) and Mellor (2015) that comprise negative values in the bottom 12 

layer and positive values in the surface layer. The mean absolute error (MAE) of our result is 13 

1.2×10-4, which is only 0.025% and 0.021% of the MAEs of Mellor (2003) and Mellor (2015), 14 

respectively. This suggests that our formulations demonstrate better performances than those 15 

from the investigations of Mellor. We can easily determine that our results are also better than 16 

numerical results using the model of Athanassoulis and Belibassakis (1999), which is based 17 

on a local-mode series expansion (not shown, see Fig. 4 in Ardhuin et al. 2008a).  18 

 19 

5 Conclusions and recommendations 20 

A new approach has been proposed to derive the expressions for the wave-induced 3DRS 21 

using wave solutions transformed from a Lagrangian description where the pressure is zero 22 

(relative to the atmospheric pressure) at the sea surface. Using this approach, the horizontal 23 

depth-dependent radiation stress is first derived based on both first- and second-order 24 

Lagrangian approximate solutions at a uniform water depth. The analytical expression of the 25 



 

22 

 

vertical radiation stress is then derived using the Lagrangian solutions of waves propagating 1 

along a sloping bottom. The wave-induced change in the vertical coordinate s  is obtained 2 

using a modified second-order Lagrange-Euler transformation method, and it corresponds 3 

well to the definition of Ardhuin et al. (2008a). The vertical integration of the derived results 4 

agrees with the earlier 2D expression proposed by LHS. During a basic test of shoaling waves 5 

over a sloping bottom without energy dissipation, the present formulations generate a net 6 

momentum balance close to zero from the surface to the bottom. Specifically, the MAE of the 7 

net wave-induced forces in this study is 1.2×10-4, which is only 0.025% and 0.021% of the 8 

MAEs of Mellor (2003) and Mellor (2015), respectively.  9 

With the abovementioned advantages, the present study provides improved 3DRS 10 

expressions. Nevertheless, several limitations and approximations remain (e.g., 11 

   0 0a t a   and  ˆ 1u z   ). This paper uses wave solutions in a Lagrangian 12 

description provided by Chen et al. (2010, 2012, 2013); however, these solutions do not 13 

completely include the influences of wave-current interactions (e.g., the effects of vertical 14 

current shear). Further work must consider the additional effects of currents on waves. 15 
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Figure Captions 1 

FIG. 1. Illustration of the Lagrange-Euler transformation method. The first- and second-order 2 

Lagrangian solutions (for a wave amplitude of 3 m and a wavelength of 100 m at a 3 

water depth of 30 m) are converted into an Eulerian description using (a) the modified 4 

first-order transformation and (b) the modified second-order transformation method. 5 

The red bars are the connections between the fixed particles  ,a b  in the still water 6 

and the displaced particles  ,x z , which are situated along the blue lines that connect 7 

the positions of the particles with the same b  values at a fixed point in time. The 8 

black arrows are several transformation examples from  ,a b  to  ,x z . 9 

FIG. 2. Instantaneous wave-induced pressure fields in (a) the present study and (b) Mellor 10 

(2015) for the shoaling waves over the sloping bottom profile (thick black lines) given 11 

by Eq. (45). 12 

FIG. 3. (a)–(c) The forces in Eq. (44) normalized by 
2

1 2gD  , (d) their sum in the present 13 

study, and (e)–(h) the respective terms estimated from the theory of Mellor (2003).  14 

FIG. 4. Vertical profiles of the net forces for the shoaling waves over a sloping bottom. The 15 

net wave-induced forces are integrated over x  and normalized by a similar 16 

integration of F . 17 
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 1 

FIG. 1. Illustration of the Lagrange-Euler transformation method. The first- and second-order 2 

Lagrangian solutions (for a wave amplitude of 3 m and a wavelength of 100 m at a water 3 

depth of 30 m) are converted into an Eulerian description using (a) the modified first-order 4 

transformation and (b) the modified second-order transformation method. The red bars are the 5 

connections between the fixed particles  ,a b  in the still water and the displaced particles 6 

 ,x z , which are situated along the blue lines that connect the positions of the particles with 7 

the same b  values at a fixed point in time. The black arrows are several transformation 8 

examples from  ,a b  to  ,x z .9 
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 1 

FIG. 2. Instantaneous wave-induced pressure fields in (a) the present study and (b) Mellor 2 

(2015) for the shoaling waves over the sloping bottom profile (thick black lines) given by Eq. 3 

(45).4 
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 1 

FIG. 3. (a)–(c) The forces in Eq. (44) normalized by 
2

1 2gD  , (d) their sum in the present 2 

study, and (e)–(h) the respective terms estimated from the theory of Mellor (2003).3 
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 1 

FIG. 4. Vertical profiles of the net forces for the shoaling waves over a sloping bottom. The 2 

net wave-induced forces are integrated over x  and normalized by a similar integration of 3 

F . 4 


