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Abstract.  Bedform evolution remains dynamic even in the special case of steady, uniform 

flow.  Data from the sandy, braided North Loup River, Nebraska, USA, show that 

roughness features on the channel bottom display a statistical steady-state and robust 

scaling that are maintained through the collective interactions of transient (short-lived) 

bedforms.  Motivated by such field data, and laboratory observations of bedform growth, 

we develop a nonlinear stochastic surface evolution model for the topography of bedload-

dominated sandy rivers in which instantaneous sediment flux explicitly depends on local 

elevation and slope.  This model quantitatively reproduces laboratory observations of 

initial growth and saturation of bedforms from a flat surface, and also generates long-term 

dynamical behavior characteristic of natural systems.  We argue that the variability in 

geometry and kinematics of bedforms in steady flow, and the existence of roughness at all 

wavelengths up to the largest dunes, are a consequence of the nonlinear relationship 

between sediment flux and topography, subject to noise. 

 

1.  INTRODUCTION 

The nonlinear dependence of sediment transport on surface topography produces a 

bewildering array of patterns, from ripples at the centimeter scale to river networks and 

depositional fans at a basin scale.  A natural way to characterize such patterns involves 

measuring static geometrical properties, spatial correlations, and scaling laws that may be 

exhibited between physical parameters of the system [e.g., Rubin, 1992; Dodds and 

Rothman, 2000].  Landscapes are dynamic (i.e. variable in time), however the study of 

their transient behavior is hindered by the slow rate of evolution of most geological 

systems.  Although surface evolution equations are naturally time-dependent, the 
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dynamical predictions of erosional landscape models [see, e.g., Willgoose et al., 1991; 

Howard, 1994] are difficult to test.  A geomorphological transport system that exhibits 

both transient behavior on observable time scales and statistically-robust geometrical 

properties allows strong tests of models, and provides a window into fundamental pattern 

formation mechanisms in sedimentary systems.  Trains of bedforms in sand-bedded rivers 

are one example of such a system. 

 While bedform classification schemes, such as distinguishing ripples from dunes 

[e.g., Ashley, 1990], may be useful in describing some aspects of bedform behavior, they 

belie the continuum of scales of topography that make up a sand-bedded channel.  

Indeed, there is theoretical [Hino, 1968], laboratory [Hino, 1968; Nordin, 1971] and field 

evidence [Levey et al., 1980; Nikora et al., 1997] that roughness of all wavelengths exists 

below the scale of the largest dunes.  Further, bedforms in natural systems change 

dimensions continuously as they migrate downstream.  The internal dynamics of a train 

of bedforms manifests itself as variability in bedform height, length and migration rate 

(celerity), and in bedform deformation, even when the topography is developing under 

steady and uniform macroscopic flow conditions [van den Berg, 1987; Gabel, 1993; 

Mohrig, 1994; Leclair, 2002].  Although great progress has been made in the 

understanding of instability and bedform growth from a flat surface [e.g., Smith, 1970; 

McLean, 1990], current models cannot describe the long-time behavior of a train of 

finite-amplitude bedforms. 

 Increasingly sophisticated measurements of the flow field over rigid topography 

[e.g., Nelson et al., 1993; McLean et al., 1994; Maddux et al., 2003a,b] have 

demonstrated the influence of topography on turbulence production and bed stress.  There 
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is now little doubt that the most accurate model of bedform evolution will eventually 

come from detailed numerical solution of the Navier-Stokes equations [e.g., Shimizu et 

al., 2000], coupled to some force balance on sand grains and sediment continuity.  

Currently, however, the modeling of fluid flow over arbitrary (and rapidly deforming) 

topography is a formidable challenge.  Moreover, a fully-coupled fluid-sediment-

topography model would be sufficiently complex that it could not easily serve as an 

exploratory tool for understanding fundamental aspects of sand bed evolution. 

At present, an incomplete understanding of how irregular bed topography controls 

turbulence production and how this turbulence affects local sediment transport precludes 

development of a bedform evolution model from first principles.  Several models have 

been proposed that are fundamentally discrete and stochastic, with sediment transport 

represented by simple rules [e.g., Tufillaro, 1993; Werner, 1995; Niño et al., 2002].  Self-

organization of bedforms in such models is robust, and in some cases many different 

bedform shapes may be reproduced by variation of coefficients or transport rules [Werner, 

1995].  While these models have been effective in illustrating how microscopic disorder 

can create macroscopic order [see Tufillaro, 1993], their abstract nature prevents 

quantitative comparison to natural systems.  Sediment transport in such models is 

essentially represented as stochastically-driven directed diffusion.  A family of 

deterministic continuum models for eolian ripple formation has been proposed by 

physicists based on phenomenological descriptions [e.g., Terzidis et al., 1998; Prigozhin, 

1999; Valance and Rioual, 1999] or conservation and symmetry principles [e.g., Csahók et 

al., 2000], but these approaches do not allow the interpretation of coefficients in terms of 

measurable physical quantities [see Csahók et al., 1999].  Many more models for eolian 
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ripples have been proposed in the literature, with similar behavior, limitations and caveats 

to those described above.  

In bedload-dominated systems, it is well established that topography exerts a first-

order control on sediment flux.  In particular, Gomez et al. [1989] have linked 

instantaneous sediment flux, qs, directly to the passage of bedforms, showing that the 

majority of variance in qs may be explained by topography.  Gomez and Phillips [1999] 

found that the highest frequency variations in qs, however, cannot be related directly to the 

passage of bedforms, and interpreted them as representing high-dimensional chaos 

(deterministic uncertainty) in the transport system.  Motivated by these findings, and by 

documented time evolution of bedforms in the North Loup River, Nebraska, USA, we 

develop a model including both a deterministic surface evolution equation based on 

parameterization of bed stress in terms of local topography and stochastic fluctuations in 

sediment flux.  In this paper we focus on qualitative behavior not captured in the 

previously mentioned models for bedform evolution, and perform a preliminary analysis of 

temporal and spatial scaling with comparisons to empirical data.  In a future work we will 

report more quantitative comparisons to field data.   

 

2. RIVER DATA 

 We present here topographic data capturing bedform evolution in time and in space 

that are derived from low altitude aerial photography of the braided North Loup River, 

Nebraska, USA [Mohrig, 1994; Mohrig and Smith, 1996], which has a bed consisting of 

well-sorted medium sand (Trask sorting coefficient = 1.32; median grain diameter, d50 = 

0.31 mm).  Time-lapse images taken with a camera suspended beneath a tethered helium-
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filled balloon were converted into topographic maps (Fig. 1a), where the grayscale pixel 

intensity was transformed into water depth using the Beer-Lambert Law [Soo, 1999] 

calibrated to numerous surveyed points within the channel.  The spatial (downstream and 

cross-stream, or x- and y-direction, respectively) resolution is known to be 0.02 m from 

image pixel size, while we estimate vertical resolution to be ~0.01 m from analysis of 

sequential bedform profiles.  Observations shown here were taken with an interval of one 

minute for a period of one hour, covering a section of the river of 30 m x 15 m.  

Approximately constant river stage ensured that flow was essentially steady over the 

observation period, so the observed variability and adjustments of bedform geometry and 

migration rate were caused by internal dynamics of the sediment-fluid interface.  A 

complete statistical description of channel-bottom topography, and the method developed 

to measure this topography, will be the focus of a later paper. Here we present salient 

properties of bed evolution in the North Loup River that we believe are representative of 

sand-bedded rivers in general, and these observations serve to motivate the development of 

a new mathematical description for the dynamics of bedforms in bedload-dominated sandy 

rivers. 

 It is convenient to examine elevation along one dimension (i.e. 1D profiles in the 

downstream direction) to observe changes in cross-sectional geometry, and our data show 

that all downstream profiles at a given snapshot in time are statistically identical (as 

determined by scaling methods presented below) and therefore justify a 1D analysis.   

Sequential profiles stacked in time (Fig. 1b) show that bedforms are not translation-

invariant.  While large-scale bed features remain recognizable over the duration of 

observation (40 minutes), individual bedforms are observed to split into smaller features, 
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merge to form larger features, spontaneously form on the stoss side of larger features, and 

disappear in the lee slope of larger features.  We see then that bedforms are inherently 

transient objects, such that the river bottom remains dynamic even in steady flow.  

Individual bedforms become unrecognizable after migrating one to two wavelengths, 

similar to observations of sand dunes in rivers in Eastern Europe by Nikora et al. [1997] 

and laboratory dunes observed by Leclair [2002]. 

 Rather than subjectively identify and define individual bedforms from a profile, the 

series of elevations in a profile is treated as a random function [see Nikora et al., 1997], 

and its variability is characterized as roughness.  A simple and common measure of 

roughness is the root mean square of elevation on the interface, sometimes referred to as 

the interface width, w [Barabási and Stanley, 1995]: 
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where N is the number of observations, η is bed elevation and the over-bar represents an 

average over the domain considered.  For reference, the average bedform height for a 

profile from the North Loup River is about two times the measured value of w for that 

profile. 

The scaling of w with observed length or “window size”, l, contains information 

about the size distribution of roughness elements, and is often found to exhibit a power law 

over some range for rough interfaces: 
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w ~ lα,           (2) 

 

where α is the roughness exponent, characterizing the scaling of elevation fluctuations [see 

Barabási and Stanley, 1995; Dodds and Rothman, 2000].  For North Loup River profiles, 

we determine w for every box of the smallest window size, which is twice the data 

resolution or 0.04 m.  We then take the average of all w values to obtain a characteristic 

roughness for that window size.  This procedure is repeated for sequentially larger window 

sizes, up to one-half the size of the observation domain (~15 m); a similar analysis was 

performed by Nikora and Hicks [1997].  An example result is shown in figure 2, which 

plots the characteristic interface width against window size for downstream profiles at a 

snapshot in time.  There are several features worthy of note.  First, there is a scale-

invariant regime in which a power-law relationship holds between w and l, where the slope 

of the line in the scaling regime is the roughness exponent.  Second, there is a gradual roll 

over of the interface width with window size at the transition between the lower scaling 

regime and the upper saturation regime.  This transition occurs at a length equal to the 

characteristic wavelength of the largest dunes; the associated transition length and 

interface width values are lx and wx, respectively (Fig. 2).  Repeating this analysis of w for 

profiles taken at different times but at the same location yields the same values for α, lx 

and wx, suggesting the scaling of roughness elements is stationary.  Taken together, these 

results show that despite the transience of individual topographic elements, the river-

bottom maintains a statistical steady-state in terms of roughness. 
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The river-bed displays a continuum of scales of topography up to the wavelength of 

the largest features, as represented by the power-law relationship between w and l, and no 

clear distinction can be made between ripples and dunes.  A similar conclusion is reached 

by computing the power spectra of bed profiles (not shown), which contains equivalent 

information about roughness scaling.  These results are not unique to the North Loup 

River; similar findings have been reported in the laboratory [Hino, 1968; Nordin, 1971] 

and field [Levey et al., 1980; Nikora et al., 1997], and may be the rule in sand-bedded 

systems, rather than the exception.  The two regimes present in figure 2, power-law 

roughness growth and saturation, may be indicative of different organizing physical 

processes.  In many interface problems such as crystal growth, the scale invariant regime is 

generated by internal dynamics of the interface itself, while saturation occurs due to ‘finite 

size effects’, where growth is limited by the size of the container [see Barabási and 

Stanley, 1995].  In the case of bedforms, scale invariance may be due to the local sediment 

transport physics, while maximum dune size is controlled by boundary conditions such as 

water depth or background shear stress.   

Qualitatively, the existence of many scales of topography may be understood from 

examining the temporal evolution of topography in successive profiles (Fig. 1c).  The 

largest dune features translate by the motion of smaller bedforms on their backs.  These 

smaller features spontaneously form on a dune back, then grow in amplitude as they 

migrate across the dune back before disappearing in the subsequent trough [as discussed 

by Jain and Kennedy, 1974; Nikora et al., 1997; Gomez and Phillips, 1999].  The 

appearance, growth and disappearance of bedforms maintains a constant distribution of 
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channel roughness, and this process is a fundamental organizing principle that should be 

reproduced by a model of sand-bed evolution. 

 

3. MODEL DEVELOPMENT 

We seek an intuitive, physically realistic, continuum model capable of 

reproducing both the instability of a flat sand bed subjected to a shear flow, and the long-

time evolution of dynamic topography.  We focus on bedforms built from a uni-modal 

distribution of particle sizes moving primarily as bedload because this sediment flux can 

be treated as responding instantaneously to changes in the flow field without accruing 

significant error.  We hypothesize that the detailed structure of the fluid flow field is not 

important for determining temporal and spatial scaling, and hence we can write a “local 

growth model” [Barabási and Stanley, 1995; Dodds and Rothman, 2000] for the 

evolution of the sediment-fluid interface – this hypothesis is tested below.  This said, the 

three main ingredients to our model are (i) a relationship between sediment flux and local 

bed elevation; (ii) the dependence of sediment flux on local flow strength (here 

characterized by bed shear stress, τ); and (iii) the dependence of flow strength on local 

topography.  The first model condition is simply a statement of mass conservation: 
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where t is time, p is porosity and qs is sediment flux with dimensions L2/T.  The second 

condition takes the form of a power-law relationship between sediment flux and boundary 

shear stress:  

 

qs = mτ n,          (4) 

 

where n is generally 1.5 [Meyer-Peter and Müller, 1948] but may vary up to 2.5 

[Fernandez-Luque and van Beek, 1976] and m can vary between 5.7 and 12 depending on 

the rate of sediment transport (Wiberg and Smith, 1989).  Equation 4 could also be written 

in terms of an excess stress above that value required for initiation of grain motion; our 

intent here, however, is simply to write down the most generic representation of the 

governing equations. 

 Our third model condition relates the local boundary shear stress to the local bed 

topography.  Specifically it relates shear stress to bed elevation and bed slope as 
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where ‹h› is the spatially-averaged depth of flow at the beginning of a run, τb is the 

background boundary shear stress associated with ‹h›, η is vertical distance of a point on 

the local sediment-fluid interface from the mean elevation, and A and B are coefficients 

(Fig. 3).  This equation for stress in terms of local topography may be considered a Taylor 

expansion, where higher-order spatial derivatives have been neglected.  Relating local bed 

stress to local bed elevation was first proposed by Exner [1925] who noted that 

conservation of fluid mass required an increase in the vertically-averaged velocity over the 

top of an arbitrary two-dimensional bump and derived an explicit relationship between bed 
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stress and topography by relating bed stress to the square of vertically-averaged fluid 

velocity.  Neglecting higher order terms (i.e., η/‹h› << 1) Exner [1925] found that: 
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Smith [1970] and Engelund [1970] were the first to propose that the magnitude of 

local shear stress is also a function of the local bed slope.  Smith [1970] argued that the 

relationship between local bed slope and local bed stress is a consequence of the fluid 

inertia.  Moving water is not easily deflected and as a result, steep adverse slopes put 

relatively high velocity fluid closer to the bed, producing larger values of bed stress [see 

also Nelson et al., 1993].  Equation 5 simply sums the contributions of relative bed 

elevation (6) and slope to arrive at a value for bed stress at every site on the bed.  The 

predicted variation of bed stress over topography using (5) is consistent with measured bed 

stress over static dunes in the laboratory [Nelson et al., 1993; McLean et al., 1994]. 

 

3.1. One-dimensional surface evolution equation 

 3.1.1. Exner’s equation 

Combining equations 3, 4 and 6 gives the result: 
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a nonlinear wave equation describing surface evolution.  The explicit dependence of 

advection on bed elevation means that points of higher elevation move faster.  Exner 

[1925] used (7) to explain why bedforms become skewed with downstream transport [see 

Smith, 1970].  An angle-of-repose condition must be added to this equation to stop the lee 

surfaces of bedforms from oversteepening unrealistically.  The nonlinear wave equation 

(7) is neutrally stable, i.e. perturbations neither grow nor decay in amplitude with time.  

While this lack of instability renders (7) inadequate as a general bedform-evolution model, 

(7) serves as a useful point of departure for our elaboration described next. 

 

3.1.2. New surface evolution equation  

Equations 3, 4 and 5 represent our complete model system in one dimension.  Combining 

them, we arrive at a new surface evolution equation for sand-bedded channels: 
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The simple addition of a slope-dependent contribution to bed stress produces a surface 

evolution equation that is quite different from Exner’s equation (7).  Equation 8 contains 

not only a nonlinear advection term, but also a nonlinear diffusion term.  The diffusion 

term may change sign in this formulation, and negative diffusion leads to the growth of 

perturbations on the surface. 

A formal stability analysis of (8) is beyond the scope of this paper and here we 

only provide a qualitative discussion of the bed instability following Smith [1970] and 

McLean [1990].  From (3) we may write: 
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Since ∂qs/∂τ is always positive it is the shear stress gradient that determines the sign of 

∂η/∂t, and hence whether the bed undergoes erosion or deposition.  Because sediment 

deposition occurs downstream of the stress maximum a perturbation on the stream bed 

may cause another bump to grow downstream of it, ultimately leading to a train of finite-

amplitude bedforms.  When elevation is small the stress maximum is upstream from the 

crest of a bump, causing the bump to continue growing.  As elevation becomes large, the 

stress maximum shifts to the elevation maximum and deposition no longer occurs on the 

crest – growth ceases.   

 

3.1.3. Stochastic form 

High-frequency fluctuations in sediment flux are a direct consequence of 

turbulence-aided sediment transport [Nelson et al., 1995; Gomez and Phillips, 1999; 

Schmeeckle and Nelson, 2003; Sumer et al., 2003].  While fluctuations in instantaneous 

bed stress may be modeled deterministically in a fluid-mechanical model, we treat this 

variability as stochastic and explore its morphodynamic importance by addition of a noise 

term.  The stochastic surface evolution equation then reads: 
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where ζ(x, t) is Gaussian-distributed low-amplitude white noise, although the time 

evolution of (10) turns out to be insensitive to the details of ζ (x, t).  A stochastic partial 

differential equation like (10) can produce long-range spatial correlations on the interface 

even when the term describing interface growth or transport is entirely local in origin 

[Rubin, 1992; Barabási and Stanley, 1995]. 

 

3.2. Two-dimensional surface evolution equation 

Our surface-evolution equation can be made two-dimensional through inclusion of 

a lateral diffusion term.  The principle transport direction is still downstream, while lateral 

sediment transport has a magnitude dependent on the cross-stream (y-direction) slope 

[Murray and Paola, 1997; Hersen, 2004].  In essence, sediment flux is calculated as one-

dimensional downstream slices which are coupled to neighboring slices via the lateral 

diffusion of sediment.   A deterministic form of the two-dimensional model then consists 

of (8) plus a lateral diffusion term  
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where D is the lateral diffusivity constant (units L2/T).  Note that this treatment of lateral 

sediment transport is identical to equation 10 in Hersen [2004] and similar to the explicit 

slope-dependent transport used in Murray and Paola [1997].  This approach makes the 

assumption that the fundamental transport mechanisms occur in the downstream direction, 

and that cross-stream sediment flux depends linearly on slope; it is the simplest 

formulation consistent with observation [e.g., Parker, 1984].  A stochastic form of the two-

dimensional model simply consists of (11) plus a noise term, 
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Equation 12 is our new anisotropic “local growth equation” for depositional systems.  We 

expect the applicability of (12) to be general, but it may be made specific by calibration of 

coefficients to a particular situation.  In order to realistically simulate the morphodynamics 

of a train of subaqueous bedforms, several additional ingredients are required for 

numerical implementation and are discussed next. 

 

3.3. Numerical method 

We explore the dynamical behavior of our model system by solving discrete 

versions of eqs. (3), (4) and (5) at every location on the 2D grid, where i and j represent the 

x and y grid positions, respectively.  Boundary conditions used are periodic in the 

downstream direction and zero flux in the cross-stream direction.  Grid size is 100 x 50 

cells.  Larger domain sizes were explored, but did not have any significant effect on model 

results.  The initial condition for model runs is a flat, horizontal surface seeded with 

elevation perturbations of very low amplitude produced as white noise.  Values for grid 

spacing ∆x (equal in x and y directions), time step ∆t, water depth ‹h›, all coefficients and 

background shear stress, τb, are specified at the beginning of a model run; the exponent n = 

1.5 for all simulations. At a given time step, the following sequence of operations is 

performed:  

 












∆

−
++= −

x
B

h
A jijiji

bji
,1,,

, 1
ηηη

ττ ,       (13) 

 16







<

≥
=

0;0

0;,
,

ji
ji

τ
τ ,         (14) 

( )














≤







∆

−

>







∆

−








∆

−












−








∆

−

=
+

+++

c
jiji

c
jijijiji

c
jiji

a

x

xxx
E

q
ji

θ
ηη

θ
ηηηη

θ
ηη

tan;0

tan;tan

,1,

,1,,1,2
2

,1,

,
,  (15) 

jia
n

jis jiji
qmq ,, ,,

ζτ ++= ,        (16) 

( )
( )

( )jijijijijissji x
tDqq

xp
t

jiji ,1,1,,1,12, 4
)1( ,1,

ηηηηηη −+++
∆
∆

+−
∆−

∆
−=∆ −+−+−

. (17) 

 

Equation 13 computes bed stress using an upwind scheme for slope, and (14) makes all 

negative bed stresses zero, crudely mimicking the shadow zone of low transport occurring 

immediately downstream from a bedform lee face.  In order to prevent oversteepening of 

lee surfaces we employ a version of the grain-avalanching proxy as presented by Hersen 

[2004].  If the downwind-calculated slope exceeds the critical angle, θc, then an additional 

‘avalanche flux’ is computed using (15).  If the chosen value for coefficient E is 

sufficiently large, any slope that builds to an angle > θc relaxes instantaneously at the next 

time step.  Equation 16 determines the sediment flux at each grid point by summing the 

contributions from local bed stress, avalanching and noise; the noise term is zero for 

deterministic model runs.  Finally, (17) finds elevation change using a 1D, upwind version 

of the sediment continuity equation.  The second term on the right hand side of (17) is a 

diffusion term, solved by calculating the discrete 2D laplacian of the elevation field, and 

scaled using a diffusivity D which represents the importance of lateral coupling of 

sediment transport.  Although the explicit diffusion term in (12) is for the y-direction only, 

in our numerical implementation (17) we add an explicit 2D diffusive term which serves 
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the additional purpose of numerical dissipation [Press et al., 1988], helping to smooth the 

elevation field to enhance numerical stability. 

 The choice of coefficients for bed stress and sediment transport relations is 

presently unconstrained.  In practice, A and B could be estimated empirically from 

laboratory observations of bed stress over topography, while cross-stream sediment 

transport could be treated in a more rigorous manner using an explicit method such as 

Parker [1984].  Values for m may be selected from the literature.  Varying coefficients 

affects the growth rate and amplitude of bed features, but does not greatly affect temporal 

or spatial scaling.  Here we are interested in whether the general equations 13-17 can 

produce a variety of dynamical behavior observed in laboratory and field settings, so 

coefficients were selected such that the contributions of elevation and slope to the total bed 

stress are approximately equal, and cross-stream sediment transport is a small fraction of 

the downstream flux – see table 1.  We will perform future experiments to estimate these 

coefficients.  Grid spacing and time step values were selected from considerations of 

numerical stability and computation time. 

 

4. RESULTS 

4.1. Deterministic model (ζ = 0) 

Numerically solving (13)-(17) with appropriately chosen coefficients (table 1) 

reproduces growth and saturation of bedforms from a perturbed flat surface, and evolving 

bedforms display nonuniform geometries characteristic of natural topography (Fig. 4).  

Additionally, celerity is roughly inversely related to bedform height, and merging of 
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bedforms occurs due to varying migration speeds [as in experiments by Coleman and 

Melville, 1994] in a manner similar to models of eolian ripple development [Caps and 

Vandewalle, 2001; Prigozhin, 1999; Schwämmle and Herrmann, 2004].  In contrast to 

these previous eolian models where the coarsening of bedforms continues until there is 

only one bedform in the model domain, the steady-state solution of our model consists of a 

train of bedforms.  Steady state for model output is verified by computing α, wx and lx at 

several different times to ensure there is no systematic drift. 

Cross-stream diffusion provides sufficient coupling to generate sinuous-crested 

bedforms whose width occupies the entire model domain (Fig. 4a).  Crestline terminations, 

or defects, are observed to migrate through the system faster than the bedforms, as 

postulated by Werner and Kocurek [1997], and seen in previous numerical simulations 

[Caps and Vandewalle, 2001; Yizhaq et al., 2004].  In contrast to Werner and Kocurek 

[1999; see also Werner, 1999] who treat bedform crestlines and defects as independent 

dynamical variables, crestlines and defects in our model arise naturally from the local 

coupling of sediment transport to topography, and so are a consequence rather than a cause 

of the dynamics.  In the deterministic scenario, ζ = 0 for t > 0, nonuniform transient 

evolution occurs because of the spatial noise inherited from initial conditions.  At long 

time, the bedforms evolve toward uniform, straight-crested features.  In other words, the 

final state of the deterministic model is a static state (in a lagrangian frame), with only one 

scale of topography.   

The growth of bed roughness with time can be quantified by calculating the 

interface width of downstream profiles over the entire model domain for each time step 

using (1).  To facilitate comparison to previous data, interface width and model time are 
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scaled by their respective equilibrium values, or the values corresponding to saturation of 

roughness growth.  Several authors [e.g., Baas, 1994; Niño et al., 2002] have found 

experimentally that bedform growth is fit well by an exponential function of the form 

 

eqt
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e
w
w γ−

−=1 ,         (18) 

 

where γ = 6 provides a good fit to most data [see also Nikora and Hicks, 1997] and the 

subscript eq denotes equilibrium values.  Equation 18 with γ = 6 provides an excellent fit 

to the growth of bed roughness for the deterministic model (Fig. 5a), implying the essential 

dynamics of bedform development are captured in the model.  In another set of 

experiments reported by Nikora and Hicks [1997], a power law relationship was observed: 
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where β, the growth exponent [as in Barabási and Stanley, 1995], was found to be 0.28 

under the laboratory conditions examined.  This power law relation does not fit the 

deterministic model data, a topic we return to below. 

 The general model behavior is not very sensitive to changes in values of the 

coefficients.  The bedform instability is present if B is positive, and sinuous-crested 
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bedforms develop as long as there is a weak lateral coupling via diffusion.  We verified 

numerically that spatial and temporal scaling are unaffected by varying coefficients – 

only growth rate and amplitude of bed features change.   

 

4.2. Stochastic model 

Addition of noise has a profound influence on bedform dynamics and spatial 

scaling.  Low amplitude noise (run S – see table 1) produces growth of bed roughness 

from a flat surface that is well-fit by Nikora and Hicks’ [1997] power-law relation (19), 

as seen in figure 5b.  In other words, the presence of noise shifts the development of 

roughness from an exponential to a power law trajectory, and ultimately increases the 

saturation amplitude of bed features. 

From a cursory glance it is apparent that bedforms of many scales co-exist on the 

fully developed model interface (Fig. 6) with 2D morphology that compares well to 

bedforms measured in the North Loup River (Fig. 1a).  Stacked sequential profiles from 

the model at steady state show bedforms that are continuously varying in shape (Fig. 6b), 

with the emergence and disappearance of bedforms being an ongoing process.  Perhaps 

the most notable aspect of the stochastic model results is their qualitative similarity to 

steady-state dynamics observed in the river data.  Sequential profiles generated by the 

model clearly show larger dune-like topography mantled with smaller ripple-like 

topography that spontaneously emerges in the troughs of the larger forms and rapidly 

moves over their stoss sides (Fig. 6c).  The ripple-like forms grow in amplitude as they 

migrate across the stoss sides of the larger bedforms, only to be absorbed by the lee faces 

of the larger forms.  This disappearance of the smaller bedforms provides the mass that 
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causes the larger forms to migrate downstream.  As observed for river dunes, modeled 

bedforms become unrecognizable after migrating one to two wavelengths downstream. 

We compare the spatial roughness scaling of our noisy model to data from the North 

Loup River using eqs. (1) and (2), where w and l are normalized by their transition values 

wx and lx, respectively (Fig. 7).  The roughness exponent for the model, computed over 

the scaling regime, is 0.56, in reasonable agreement with the North Loup River.  More 

importantly, the form of the roughness scaling curve from the North Loup River is 

reproduced by our noisy model results (Fig. 7).  In particular, the existence of a large 

dominant wavelength, and a continuum of scales below that wavelength, along with the 

long cross-over to saturation, are captured by the model. 

 

5. DISCUSSION 

The striking difference in dynamical behavior between deterministic and noisy 

simulations provides insight into the importance of transport fluctuations in determining 

bed roughness properties.  To gain an understanding of the physical processes controlling 

temporal growth of roughness we compare sediment transport conditions of two 

experimental studies.  Transport stage is defined as T = ψ/ψc, where 

])/[( 50 gdfsb ρρτψ −=  is the dimensionless shear stress,  ψc is the critical value for 

initiation of motion of grains, sρ  and fρ  are the sediment and fluid density, respectively, 

and g is acceleration due to gravity .  The exponential growth of bed roughness 

corresponds to low transport stage, while power law growth occurs at high transport 

stage.  Niño et al. [2002] conducted all experiments in the range 2 < T < 3.3, and their 

bedform growth curves (see their figure 10) are close to the exponential relation (18).  
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Flume runs reported by Nikora and Hicks [1997] span the range 9 < T < 30 and display 

the power-law growth described by (19).  Larger T certainly corresponds to larger 

fluctuations in sediment flux from direct influences of turbulence on bedload transport, 

and from suspended sediment transport where fluctuations in fluid stress have a greater 

influence.   

The match of deterministic and stochastic model runs to the empirical exponential 

and power law growth relations, respectively, implies that in some sense the equations 

are capturing the features of sediment transport relevant to bedform evolution.  

Exponential growth of roughness in time is generally predicted for linear instabilities, 

while power law growth is a generic process of noisy interfaces [Barabási and Stanley, 

1995].  The effect of noise in our model is to induce more rapid bedform growth early on, 

such that large roughness amplitude is achieved rapidly and hence the nonlinearity 

governs growth.  Coleman et al. [2005] fit power-law growth relations to data over a 

range 3.4 < T < 32.9.  In reality, there is likely a gradual transition between exponential 

and power-law growth such that the respective relations are two end members in a 

spectrum.  Indeed, numerical experiments with very low amplitude noise (not shown 

here) exhibit roughness growth intermediate between exponential and power law. 

 At long time, deterministic simulations evolve toward a steady state of uniform, 

periodic, straight-crested bedforms, i.e. a static steady state.  Once the sediment flux field 

is exactly in phase with topography, evolution stops and the cross-stream diffusion 

ensures that all lateral variability disappears.  This final state is not representative of 

trains of dunes in natural rivers.  The long-time evolution of stochastic model runs 

consists of a bed that is continuously varying, but in statistical steady state.  The 
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mechanistic explanation for this phenomenon is that noise creates small perturbations on 

the stream-bed that allow the growth of instabilities from the governing equations.  The 

growth of new bedforms is balanced by the disappearance of bedforms in the troughs of 

larger features.  The bed remains continuously dynamic because the sediment flux can 

never be exactly in phase with topography, and hence nonuniform divergences in 

sediment flux force continuous adjustments of bedforms.   

 

6. CONCLUSIONS 

 The model results obtained here are for a uniform sediment size on a freely 

deformable surface (i.e. no nonerodible areas exist on the bed).  Pattern formation in this 

model is robust, as evidenced by the lack of sensitivity to model coefficients.  Robustness 

of pattern formation implies that the details of fluid flow may not be important for a first-

order description of the bed dynamics.  In other words, the sediment-fluid interface has 

an internal dynamic that is independent of the details of the system, and allows for a 

geometric description of its evolution. 

There is much to explore in the dynamics of our model system (13)-(17), and the 

analyses presented here are meant only to demonstrate the promise of this approach.  A 

great advantage of the model is its flexibility, which will allow examination of unsteady 

flow and complex boundary conditions in order to address issues relevant to river 

management.  The fluid enters into the problem only through a small, interpretable set of 

coefficients that may be related to measured quantities.  Equations 13-17 represent a 

unified model for subaqueous bedform dynamics because they provide a description of 

bedform initiation, development and steady-state behavior.  Further, bedforms of 
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different scales arise from the same fundamental transport processes.  Variability in the 

geometry and kinematics of bedforms is a consequence of the deterministic relationship 

between sediment flux and topography, and noise. 

 Modeled bedforms are self-organized in the sense that large-scale features arise 

from a completely local description of bed evolution, i.e. bedforms are produced from 

interactions between adjacent grid points in the model.  Measurements of fluid flow 

around static bedforms show that topography can generate long-range disturbances in the 

flow field, in the form of turbulence production and coherent flow structures [Nelson et 

al., 1993; McLean et al., 1994; Best et al., 1997; Maddux et al., 2004a,b].  While the flow 

structure undoubtedly influences sediment transport, nonlocal effects introduced by 

turbulent fluid flow may be of second-order importance in determining the large-scale 

structure of the stream-bed.  At the very least, this modeling approach shows that a 

completely local, geometric description of topographic evolution can generate realistic 

bedform dynamics, and even quantitatively model bedform growth (Fig. 5) and spatial 

scaling (Fig. 7).  The presence of uncorrelated noise is sufficient to induce a dynamic 

steady state comparable to natural rivers.  These results suggest that the presence of 

turbulence is important in terms of a perturbation source, but the structure of turbulence 

may be less important in terms of transport [Sumer et al., 2003] and bedform dynamics.  

A systematic numerical exploration of the structure (distribution) of noise and its 

influence on model behavior is necessary to address this issue, but is beyond the scope of 

this paper.  We have observed no effect on scaling when the stochastic term is changed 

from gaussian to uniformly-distributed white noise. 
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An improved understanding of bedform evolution is required to predict the stage-

discharge relationship in sand-bedded rivers [e.g., Allen, 1973; Levey at al., 1980], and 

also to interpret bedform geometry from preserved cross-beds in the stratigraphic record 

[Jerolmack and Mohrig, 2005].  Dunes and ripples determine the flow resistance in sandy 

channels because they are the principle roughness elements on the bed.  The manner in 

which bedforms adjust in space and in time determines, to a large extent, the cross-

sectional geometry of a channel, because bottom roughness adjusts much more rapidly 

than channel width.  The model presented here can be used to explore the response of a 

channel bottom to changes in sediment transport conditions.  In future work we will 

calibrate the model to field and laboratory data.    
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Figure Captions 
 
Figure 1. North Loup River topography extracted from images. Flow is from left to right 
for this and all figures. (a) Plan view snapshot in time of channel bottom, where 
brighness corresponds to water depth.  Dashed line represents location of profiles in (b) 
and (c). (b) Sequential stream-bed profiles, shown every 120 s with vertical offset to 
allow visualization. (c) Space-time plot of sequential stream-bed profiles shown every 60 
s, with elevation represented by brightness. Bedform crests and troughs are light and 
dark, respectively. Color scale same as (a). 
 
Figure 2. Example of North Loup River spatial scaling of roughness for 20 downstream 
profiles, averaged at a snapshot in time. Interface width grows as a power law in the 
scaling regime, with the slope equal to the roughness exponent, α; equation is a best-fit 
linear regression to log-log data. Growth rolls over at the transition length, lx, with 
corresponding roughess value, wx . Error bars represent one standard deviation. 
 
Figure 3. Definition sketch of the model shown in oblique perspective, with coordinate 
axes displayed. The mean elevation of the sediment-fluid interface (channel bottom) is 
shown by the dashed line, which is defined as η = 0 and used as the datum for mean water 
depth, ‹h›. Elevations above and below this line are positive and negative, respectively. 
 
Figure 4. Deterministic model (run D, table 1) evolution. (a) Oblique view snapshot of 
transient evolution of bed surface, at time = 1500∆t. (b) Profile down the centerline of the 
2D model domain, showing growth of bedforms from a flat surface. Compare to figure 4 
of Coleman and Melville [1996]. Profiles are plotted every 20∆t from zero up to time 
=1500∆t. 
 
Figure 5. Growth of roughness in time from a flat surface, calculated from averaging all 
downstream profiles at each time step, for (a) deterministic, and (b) noisy simulations. 
Dotted line is the exponential growth relation (18) in the text with γ = 6, while dashed 
line is the power law growth relation (19) with β = 0.28. Interface width and time are 
scaled by their respective equilibrium values; see text for details. Relations (18) and (19) 
were derived from flume studies, and were not fit to model data. 
 
Figure 6. Stochastic model topography (run S, table 1) where roughness is in statistical 
steady state – compare to Fig. 1. (a) Plan view snapshot. (b) sequential profiles shown 
every 1500∆t. (c) Space-time plot of sequential profiles shown every time step. 
 
Figure 7. Example of spatial scaling of roughness for stochastic model (run S) and North 
Loup River at statistical steady state using a downstream profile at a snapshot in time; w 
and l are normalized by their transition values. See caption of Fig. 2 for explanation – 
note linear scale. Inset is the same data plotted on a log-log scale.  No calibration was 
performed to match model with river data. 
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Table 1. Model parameters used for all runs – see equations 13-17.  
Parameter D S 
∆x 0.1 0.2 
∆t 0.005 0.002 
A 4.3 4.3 
B 4.3 4.3 
D 0.025 0.025 
E 1 1 
ζ 0 0.1(randn)
τb 0.07 0.07 
‹h› 1 1 
m 1 1 
n 1.5 1.5 
θc [°] 34 34 
p 0.4 0.4 
Boundary conditions are periodic in the downstream (x) direction and zero flux in the 
cross-stream (y) direction; the noise term ζ = 0.1(randn), where randn represents a 
random variable having a normal distribution with zero mean and variance of one. D and 
S refer to model runs where D means deterministic and S means stochastic. Units are 
arbitrary unless specified. 
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Figure 6
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Figure 7
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