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ABSTRACT

The airflow above ocean waves is calculated using a quasi-linear model—one in which the effect of the waves
on the mean flow is taken into account. The model uses curvilinear coordinates, in which one coordinate surface
coincides with the instantaneous sea surface, and is consequently able to attain fine vertical resolution in the
boundary layer just above the sea surface; the model equations are formulated in conservation-law form. The
rates of energy and momentum input to the wave field are calculated from the oscillatory pressure and shear-
stress components at the water surface. The equations are solved iteratively using a logarithmically spaced finite-
difference mesh.

The effect of air turbulence is modeled using a vertically varying shear-stress-dependent eddy viscosity, which
acts on the wave-correlated oscillatory motions as well as on the mean flow field. For infinitesimal waves the
model agrees with the results of Conte and Miles as the Newtonian viscosity and eddy viscosity that act on the
oscillatory motions are reduced toward zero, and it converges slowly toward the results of Jacobs’ analytical
eddy viscosity model as the drag coefficient is reduced.

In agreement with results from Janssen’s simpler quasi-linear model, there is increased wave-induced drag
for young wind seas with unidirectional JONSWAP spectra and Phillips constant proportional to the (—3/2)
power of wave age. The present model gives similar values for wave drag and wave energy input to Janssen’s,
for the same values of roughness length and Phillips constant, and the spectral distribution of the rate of energy
input to the waves is also in reasonable agreement. The variation of drag coefficient with wave age is quite close

to the results obtained by Maat, Kraan, and Oost from analysis of HEXMAX field data.

1. Introduction

The air-sea flux of momentum and mechanical en-
ergy has considerable relevance to weather conditions
and climate, as well as to the local evolution of ocean
waves and currents. Surface gravity waves are a very
energetic component of the processes that occur at the
atmosphere-ocean interface and, as such, have a strong
influence on fluxes across the interface, as well as being
of major practical importance to navigation, coastal
protection, and offshore engineering operations.

Waves, being irregularities on the sea surface, ob-
viously influence the air-sea momentum flux. Since
waves have momentum, the growth of waves by wind
action will lead to part of the air-sea momentum flux
going into waves (Stewart 1961, 1974), where it can
be transported horizontally relatively rapidly (at the
wave group velocity ) before being transferred to ocean
currents as the waves dissipate. The effect of waves on
the air-sea flux of momentum is a major focus of at-
tention in this paper, and leads us to consider the effect
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of wind, that is, the airflow over waves, in making waves
grow.

Probably the most important mechanism for wave
growth and atmosphere-to-wave energy flux is the
“sheltering” mechanism of Jeffreys (1925), developed
further by Miles (1957, 1959, 1960). It is certainly
very widely used in wave forecasting models (e.g., The
SWAMP Group 1985). The airflow over a wavy sea
surface induces a pressure fluctuation, proportional to
the wave amplitude, which is partly in phase with the
sea surface slope and which tends to feed energy into
the waves. Miles (1957) predicted that this pressure
fluctuation should be approximately proportional to
the “curvature” of the wind velocity profile, (d?U/
dz?)/[(dU/dz)?], evaluated at the critical height z
= z.where the wind speed U is equal to the wave phase
speed. Jeffreys also considered an alternative skin-fric-
tion mechanism, in which energy is transferred to
the waves by shear-stress fluctuations in phase with
the surface elevation (cf. Lamb 1932, Art. 242 and
Art. 350).

The Jeffreys—Miles theory is essentially linear with
respect to the wave amplitude. Other linear models
include those of Townsend (1972), Brooke Benjamin
(1959), Knight (1977), Al-Zanaidi and Hui (1984),



844

Jacobs (1987), Sajjadi (1988), and Croft and Sajjadi
(1990). Numerous laboratory experiments and field
studies have been conducted in order to quantify the
wave-induced pressure fluctuations, airflows, and wind-
to-wave energy flux.

Returning to the Jeffreys—Miles theory, let us con-
sider a single sinusoidal wave component with real
amplitude {, angular frequency w, and wavenumber
k, propagating along the positive x direction, so that
the sea surface displacement { is approximated by the
real part of {, exp[i(kx — wt)], where ¢ is time. The
theory predicts that an oscillatory stress field given by
Red;,(0) exp[i(kx — wt)], applied just above the sur-
face, will transfer energy into the wave field at the rate
of approximately

wfo[—Im&33(0) + Reds,(0)]  (1.1)

1
Pw8Sin = 3
per unit area and time. The approximation is valid to
O(€?), where € = k¢, is the wave slope. The water den-
sity is g,,, and g is the acceleration due to gravity. The
“Re” and “Im” give real and imaginary parts, respec-
tively, of complex expressions. The indices j and [ of
the stress tensor are labeled 1, 2, and 3 for the x, y,
and z directions, respectively. The total stress o;, = oy,
shear stress 7;;, and pressure p are related by the fol-
lowing equations:

1

D= —zo0oy

3 (1.2)

(1.3)

where repeated indices are summed from 1 to 3 and
6, = 1if j = I, 0 otherwise. The tilde are used to rep-
resent complex amplitudes of wave-correlated fluctu-
ations and the argument (0) represents the value at
the sea surface.

The total wave energy per unit area is, to O(e?),
1p,g¢%. From (1.1)-(1.3) we have

gy = —pdy+ 7j,

_ o[Imp(0) — Im733(0) + ReT3,(0)]

Sin
w80

F, (1.4)

where F = 75% is the wave “energy”’—Dby convention
equal to the total wave energy per unit area divided by
pwg, and Sj, is the rate at which this energy is supplied
to the waves.

The waves can be thought of as having a certain
amount of momentum per unit area [ for a discussion
of the concept of wave momentum, see Mclntyre
(1981)]. It is, to O(€?), equal to IT = p,gF/c,, where
¢, = w/k is the phase speed of the waves. Thus, the
rate at which momentum is supplied to the waves from
the atmosphere is

IL, = %kfo“mﬁ(()) — Im733(0) + Re73(0)]. (1.5)

For the case of a random sea state, we can represent
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the sea surface approximately by a discrete Fourier sum
(e.g., Hasselmann 1974),

[ §(x, v, 1) ]
‘le(x’ Y, g‘: t)

_ Exo
“%hmm

Here, k = (k,, k;) is the wavenumber vector and x
= (x, y) is the horizontal position. The dependence of
w upon k is given by the appropriate dispersion relation,
and the ¢y, are complex. Equations (1.4) and (1.5)
become

} expli(k:x — wt)]. (1.6)

Sink = L w(k)[lm 5 (0) — 7334(0)

Pw8 $ko
4 Re 731.x(0)ky ‘1‘ 732x(0) k> Fo, (1.7)
kéxo
k
Hin = pw& z - Sin,ka (18)
™

where Fy, = 1| ol ? is the wave “energy” contribution
at wavenumber k, Si, ) is the rate at which energy is
supplied to this wavenumber component, gy and 7;;x
are the Fourier components of the pressure and shear-
stress fluctuations at wavenumber k, k = | k|, and II;,
is the momentum input vector.

If the wave field is specified using a directional energy
spectrum F(/, 8), where f= w/(27) and 6 is the wave
direction, we have

) 27
F= ZFk=f af doF(f, 0), (1.9)
X 0 0

and

k(f, 9)
2xf
where S;,(f, #) bears the same relation to S, as F(/,

#) does to Fy.

Several simple forms for S;,(f, #) have some exper-
imental support. Snyder et al. (1981) found that
[ U(5m)

p

Sin(f; 6), (1.10)

L = pug [ [ ae

Sin(f, 0) = ars —
P

w

cos(f — 0,,) — 1}

X 2nfF(f, ),

for 1 < U (5 m)/c, < 3, where U (5 m) is the wind
speed at 5 m above the sea surface, 8, is the wind di-
rection, and p is the air density. Other forms include

8)U(10m)_

02 < as<0.3, (1.11)

2
@ﬁﬁ)

14

(Hsiao and Shemdin 1983) and Si,(f) oc (Us/
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¢)2fF(J), where U, is the wind friction velocity
(Plant 1982; Mitsuyasu and Honda 1982).

The above expressions lead to results that are ob-
viously invalid if they are used with certain wave spec-
tra. In particular, for high-frequency deep-water gravity
waves, with w? = gk, the Snyder et al. relation gives
Sin(f) oc f2F(f), and the other relations give S;n(f)
oc f3F(f). From (1.10) we see that if the high-fre-
quency tail of the wave spectrum is of the form F(f)
oc f7P, the total rate of momentum transfer from the
atmosphere to the waves becomes unbounded if 8 < 4
for the Snyder et al. relation, and if 8 < 5 for the other
relations. This unboundedness should not happen,
since the total momentum flux from the atmosphere
to the ocean should be equal to the (finite) wind stress,
7+ = pU2%, no matter how “pathological” the shape of
the sea surface is.

Although II;;, = |II;;| can be made finite, for ex-
ample, by setting F(f) = 0 above some cutoff fre-
quency, it is more satisfactory on physical grounds to
formulate S;,(f, ) in such a way that the whole of II;,
can come from the wind stress; that is, IT;, < max[0,
7w €0S(0m,, — 0,,)] where 8y, is the direction of 1I;,,
irrespective of the form of the wave spectrum. Unlike
(1.11) and the other simple forms, such a formulation
cannot be linear in F(f, 8), since we can just multiply
a given functional form of F(f, #) by a constant factor
to make II;, exceed the above limit. It is possible to
eliminate this problem by using a nonlinear theory or
numerical model, which was done by Miles (1965),
Lee (1972), Gent and Taylor (1976), Taylor and Gent
(1978), Caponi et al. (1982), Chalikov (1978,
1986a,b), Makin (1980, 1982, 1987), and Makin and
Panchenko (1986). Chalikov, Makin and Panchenko
employed a turbulence closure scheme over a time-
varying sea surface that was generated from a large
number of Fourier components and is thus compu-
tationally expensive.

An approach that in principle requires much less
computation is the use of the quasi-linear approxi-
mation, in which the mean O(e?) properties of the
airflow above the waves are taken into account and
are allowed to influence the ratios pi(0)/{x0 and
7i1x(0)/ ko in (1.7), but where we ignore higher-order
perturbations and any O(e?) quantities that fluctuate
on time scales of order ! or horizontal spatial scales
of order k™', This neglect of fluctuating O(€?) quan-
tities can be justified by observing that there is no res-
onant interaction at this order between different free-
surface gravity wave Fourier components (Phillips
1960; Hasselmann 1962).

The quasi-linear approximation was implemented
by Fabrikant (1976) and Janssen (1982, 1989) using
the Eulerian hydrodynamic equations in a Cartesian
coordinate system for the airflow above the waves.
Janssen et al. (1989) applied the technique to deter-
mine the effect of waves on the atmospheric boundary
layer, using a spectral wave model to calculate the wave
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field. The use of a Cartesian coordinate system has the
disadvantage that one has to deal with conditions at
an irregular moving boundary, and the interpretation
of calculated mean velocity fields, etc., is difficult at
levels below the wave crests. Since we may expect a
boundary layer to form near the sea surface, in which
the velocity field can have large vertical gradients, this
may be a significant problem. Miles, Fabrikant, and
Janssen also assumed that the oscillatory part of the
flow field induced by the waves could be regarded as
unaffected by viscosity or turbulence.

In this paper the quasi-linear approximation is im-
plemented using a time-dependent curvilinear coor-
dinate system, in which one of the coordinate surfaces
is made to coincide with the water surface. Curvilinear
coordinates have been used for airflow over waves by
many authors (e.g., Miles 1959, 1962; Brooke Benja-
min 1959; Lee 1972; Gent and Taylor 1976; Knight
1977; Makin 1980, 1982, 1987; Hsu et al. 1981; Caponi
et al. 1982; Al-Zanaidi and Hui 1984; Sajjadi 1988;
Croft and Sajjadi 1990). To the author’s knowledge,
however, the curvilinear coordinate approach has not
been applied previously in combination with the quasi-
linear approximation for airflow over water waves.
Turbulent stresses are parameterized by using an eddy
viscosity that acts upon the oscillatory part as well as
the mean part of the flow field.

2. Mathematical formulation

a. Introduction

In a Cartesian coordinate system, (x, y, z) = (x|,
X2, X3) = X, we assume that the air velocity field, u
= (u,, Uy, u3) = (u, v, w) obeys the following equations
of incompressible fluid flow:

6u,- 6u,— 0o (90'}‘[
By 2oy (21
P ( o Yox Tag) o & (3D
ap a duy
Pr L ouy=pZ=0. (22
o T ox (ous) = p o, | (2.2)

The indices in the Roman alphabet (j and /) range
from 1 to 3, and the usual summation convention ap-
plies for repeated indices. Internal forces (including
the Reynolds stresses of turbulent motion) are repre-
sented by the stress components ¢;; = —pé;; + 7;;. The
force of gravity is determined by the gravitational po-
tential, & = gx;, and ¢ is time. The air density p is
constant.

The equations can be written in conservation-law
form (e.g., Anderson et al. 1968; Eiseman and Stone
1980; Navon 1983; Majda 1984):

d¢p OF,
_ + —_—
ot ax;

Here, ¢dx, dx,dx, is the amount of a conserved quan-
tity (mass or one of the Cartesian components of mo-

0. (2.3)
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mentum) contained in an infinitesimal rectangular
parallelepiped with sides dx,, dx,, and dx; parallel to
the corresponding coordinate axes, and Fdx;dx,,(/, j,
and m being different from each other) is the amount
of the conserved quantity flowing per unit time interval
in the positive Xx; direction through an infinitesimal
rectangle with sides dx; and dx,,. (This flux F; should
not be confused with the wave energy spectrum Fy.)
In (2.1), ¢ = pU;j, and F[ = p(uju; + q)éﬂ) - gj (]
=1,2,3).In(2.2), ¢ = p = const, and F; = pu,.

b. Transformation to a curvilinear coordinate system

An equation of the form (2.3) in Cartesian coordi-
nates has a direct equivalent in a curvilinear coordinate
system, (yy, V2, ¥3) = (a, b, ¢) =y, provided that the
coordinate transformation mapping, x(y, ?), is in-
vertible and sufficiently differentiable:

N 4G,
—_ 4 L =
ot 6y1

The quantity ¥dy, dy,dy; now represents the amount
of the same conserved quantity as in (2.3) contained
in an infinitesimal parallelepiped with sides dy;, dy»,
and dy; parallel to the /ocal y-coordinate directions.
In this case, the parallelepiped will, in general, not be
rectangular and will be moving with respect to the
Cartesian coordinate system x. The amount of the
conserved quantity that flows—with respect to the y-
coordinate system—in the direction of increasing y,
through the infinitesimal moving parallelogram with
sides dy; and dyy, parallel to the local y; and y,, coor-
dinate directions (/, j, and m all being unequal), is
given by G,dy;dy,,.

Equation (2.4) was derived from (2.3) by Anderson
et al. (1968), Vinokur (1974), and Eiseman and Stone
(1980), using general tensor analysis. A version of the
derivation is repeated below, using a somewhat differ-
ent notation than is used by the above authors—the
notation resembles that of Andrews and Mclntyre
(1978).

We use four-dimensional coordinate systems, iden-
tifying time with the fourth coordinate direction in both
the x and y systems. If we adopt the convention that
Greek indices range from 1 to 4, and repeated Greek
indices are summed correspondingly, (2.3) becomes

o,
0x,

0. (2.4)

=0, (2.5)

where F; = ¢. Transforming to the y-coordinate system,
we have

OF, 9
ay)\ ax“

OB KD _
= o T =0,

where J is the determinant of the 4 X 4 Jacobian
matrix [dx,/8),], and the K{} are its cofactors.
If we make the substitution G, = K{F) and use

(2.6)
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the relation dK {2/ 3y, = 0 [obtained by extending the
corresponding result in Appendix A of Andrews and
Mclntyre (1978) to four dimensions], we end up with
4G,/dy, = 0, so that in three dimensions, (2.4) is sat-
isfied with ¥ = G,.

In terms of the determinant J and cofactors Kj, of
the 3 X 3 Jacobian matrix [dx;/dy;], J® and K{} can
be expressed as follows:

JH =g,
K = Kj,
K9 =0,
ox,
(4) m
= —’Km T, 2
K4 Y
K& =J. (2.7)
Hence,
ax,
Gj = K,F,— K/j¢0 —a;—
v =Gs= Jo. (2.8)

We can now write the momentum equation (2.1)
as

b 0Ty _
ot 3

where P; = pJu; and

0, (2.9)

0x,,
Tj/ = (puj? = pUjUy + Ujm)Kml - p@[fj(. (2.10)
The continuity equation (2.2) becomes

i) ] 0x,,
= (p) + — | Kip| thy — =2 | | = 0Ky —= = 0.
at(pJ) Y [K m(u a )] K 0

(2.11)

Note that, while the partial derivatives are now with
respect to the curvilinear coordinates, y;, the compo-
nents of the forces, velocities, and momenta are still
in the directions of the Cartesian coordinate axes, X;
(cf. Shyy and Vu 1991).

The quantities P; can be thought of as representing
the concentration of x; momentum in y space, and
— T represents the flux in the positive y; direction of
Xx; momentum across surfaces of constant y,.

¢. Mean and fluctuating parts

We now express all dependent variables, including
the Cartesian coordinates x(y, ¢), as sums of mean
and fluctuating parts: g(y, ¢) = g + q’, where (¢) = ¢,
q’ =0, 0q/dy; = 0q/dy; and dq(y, t)/0t = 64(y, t)/
dt. The averaging operator can, for example, be an
ensemble average, or an average over some suitably
long time (keeping y constant) or some suitably large
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region in y space. Such an average corresponds to an
Eulerian mean if x = y, and it corresponds to a La-
grangian mean if dx/9d¢ = u. The generalized Lagran-
gian mean of Andrews and McIntyre (1978) is repro-
duced if x = y and dx/df + w;x/dy; = u.

From (2.9) we obtain aP/at aT,,/ay, = 0 and
dP;/dt — 8T}/ 3y, = 0, where the mean and fluctuating
parts of P; and Tj; can be evaluated in a relatively
straightforward manner. The continuity equation
(2.11) can also be decomposed into mean and fluc-
tuating parts. ’

d. Coordinate system and wave field

We choose the curvilinear coordinate system such
thatx =y + &, E= (&), &, &) = (£ 0, {), with

£ icosf |
7| =Re X | isinf |{i(c) expli(k:y — wt)],
§ k 1

(2.12)

where k = (k cosd, ksinb, 0), w = (gk)"/*[1 + O(e?)],
and {(c) = o€ . The sea surface, ¢ = 0, can be
regarded as a Founer sum of deep-water gravity waves
of a form similar to those described by Gerstner (1804),
and we have X = y, £ = 0. As is the case with real
ocean waves, the crests of the waves are sharper than
the troughs. If waves of finite amplitude are generated
from an initial state with &€ = 0, mass conservation
requires a nONZzero O( €?) mean vertical displacement
Co = (1/2)Z4k| £xo|? (Pierson 1961; Chang 1969). We
can remove this displacement by a vertical translation
of the coordinates. If more than one Fourier compo-
nent is present, the true O(€?) form of the surface will
contain “bound waves” with k # (w?/g)[1 + O(€?)]
# 0, created by second-order interactions; but we shall
neglect those, consistent with the assumption of the
quasilinear approximation,

We now just consider disturbances in the xz plane,
for which J =1 + ga + g‘c + Eag‘c - chaa Kll =1+ g-c:
K3 =—§, Ky = —¢, and K33 = 1 + &,, where we
use the notation (-), for d(-)/dy,, etc. We assume
that yy = u=U(c) +u'(a, ¢, t), u, =0, u3 = w
=“_)(C) + W’(a, ¢, t): D= I.)-(C) + p’(a’ c, t)’ Ti1
=—713=7n(c)+7{i(a,c,t) = —T3(c) — 733(a, c,
t), and 7,3 = 73, = 713(¢) + 7i3(a, ¢, t) = T3(c)
+ 73,(a, ¢, t). The mean quantities (including mean
products of any two fluctuating quantities ) are assumed
to depend only upon the vertical coordinate, and the
shear-stress tensor is assumed to be symmetric.

In reality, the mean quantities and the wave Fourier
components o will vary with the horizontal coordi-
nates and time (necessarily so if we have wave growth
due to wind-induced stress fluctuations at the sea sur-
face). I assume, however, that such variations are so
slow that the changes that they induce in the following
equations are negligible.
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We regard the mean quantities U, p, and 73
= 73 as bemg O(1), the other mean quantities, w and
Ti1 = —T33, as being O(¢€?), and the fluctuating quan-
tities as O(¢). The mean momentum and continuity
equations take the form 9dGs3/dy; = 0, so that G
= const, independent of ¢. Thus, to O(e?),

Ta—pUW+ p' — 718 + 7136
+olelfa +u'l —u'w + Ukl — &8a
+2u', — wE)] =71, (2.13)
p—73=—pgc+ pgils— D'k + 733,
— 758 T oW &+ oUW — pw'w, (2.14)
W=ul, —wt + 86— 8. (2.15)

The value of the integration constant in (2.13) is de-
termined by the condition 7,3 = 7, as ¢ = o0, in
(2.14) it is chosen arbitrarily, and in (2.15) it is deter-
mined by (W = 0, ¢ = o). Combining (2.13) and
(2.15), we obtain

- Tl'l [ 71’3£a + p(ﬂ: —u'w
+ Uu's, + 858,) = 1. (2.16)

The last term on the left-hand side of (2.16), pg{{,, is
equal to zero if the coordinate displacement £ is of the
form Re 2y Ex(c) exp[i(k+ y — wt)]; that is, if it has
traveling-wave behavior.

We obtain a set of O(¢) equations for the Fourier
components gy of the fluctuating quantities ¢’, from
(2.9)-(2.12). We neglect the O(e?) quantities w
and 7,,, and the O(¢?) difference between p
and — pgc. Using nondimensional qu_antities, ¢ = ke,
@ =w/(ghk)'?, U = U/(g/k)'*, 7 = k713/(pg),
G =060, U = uk/l(gk)l/szol Wi = W/
[(gk)llszol Dk = D/ (pg8x0)s Tiix = Tn k/(ngko)
and 73x = T13x/(pg{ko), we obtain:

;13 + plg-a

(U - w) g i —i —da/a¢
[ 0 i(U—w) 8/8¢ 98/d¢ —i ]
i a4/d¢é 0 0 0
Ty
Wi i(OU: — &U; — 1) — 7¢
X ﬁk = [ 1 - l;',_‘ fk.

‘;ll.k IUL‘
Ti3k

(2.17)
The mean product terms in (2.13)—(2.16) can be ob-

tained from the Fourier components by the following
relation, for two variables ¢ and r:

(2.18)

where (+)* denotes the complex conjugate.
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e. Turbulence closure

A complete set of equations can now be obtained
from (2.16) and (2.17) if we specify how to determine
713 and 7. I do this by making use of a simple “tur-
bulence closure’ hypothesis.

The velocity components u; are assumed to consist
only of mean values and wave-associated fluctuations.
Those fluctuations due to turbulent motions are av-
eraged out, and their effect on the mean and wave-
associated flow is incorporated in the stress o;;, using
a simple “eddy viscosity” concept. I assume that the
mean shear stress is proportional to the O(1) part of
the symmetric velocity gradient

au _ 1

=~ K,
ax; J( ;

9 9

WV

o

+ K
" 8Y m

), (2.19)

6x;

which is traceless by (2.2), and that the fluctuating
shear stress is proportional to the O(¢) part. The con-
stant of proportionality is called the ‘“total viscosity”
v, which I assume to be a function of ¢ alone. It includes
the Newtonian molecular viscosity as well as the tur-
bulent eddy viscosity.

We then have

713 = pu(Q) U, (2.20)
7 = 2pu(c)(ug — Ucla) (2.21)
and
713 = pr(c)(ue + wo — Ucle), (2.22)
from which
25 0 0 1 0} s
—vd/d¢ —iv 0 0 1] ]|7nx
T13k
—2ivU,] .
=[ 50, ]5‘,(, (2.23)

with » = (wk/g)v. Note that if  is constant and 7; = 0,
(2.17, 2.20, 2.23) can be reduced to the Orr-Som-
merfeld equation (dropping the k subscripts):

(U — &)W — [(U— @) + Uglw
= _iﬂ(WEEéé - 2"{)5@ + W). (224)

If » = 0, the right-hand side of (2.24) vanishes, and we
obtain the Rayleigh equation, on which the linear
computations of Miles (1957) and Conte and Miles
(1959) and the quasi-linear computations of Janssen
(1989) are based. In this paper the full set of primitive
equations [(2.17), (2.23)] will be used, so that we do
not have to resort to numerical differentiation when
computing the mean quadratic terms in (2.16).

With a nonzero total viscosity, the singularity that
appears in the solution to the Rayleigh equation at the
critical height, where U = c,, disappears, being effec-
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tively spread out over a finite layer thickness. Were we
to use the generalized Lagrangian mean formulation
of Andrews and Mclntyre (1978), there would be a
singularity in the coordinate system at the critical
height, which would not disappear (Craik 1982).

In the following sections, the following formulation
for the total viscosity is used:

v = v, + k(c+ 20)(T13/p) "3, (2.25)

where v,, is the Newtonian molecular viscosity, taken
to be 0.14 X 10~ m?s™!; k = 0.4 is von K4rman’s
constant; and z, is the roughness length. If we ignore
v, and combine (2.25) with (2.20), in the absence of
waves we obtain Prandtl’s (1925) mixing length for-
mula 7,3 = pl?18U/3z|(8U/dz), with [ = k(z + zp).
For the roughness length I use the Charnock (1955)
relation

20 = aty,/(pg) (2.26)

with o = 0.0144 (cf. Janssen 1989).

f. Boundary conditions

At the air-water interface ¢ = 0, the velocity u and
all the stress components ¢, are continuous. We can
use these interfacial conditions to match the airflow
with the water flow in the waves.

To O(e), the surface velocity in deep-water gravity
waves without friction is given by u’ = 9¢/9t; that is,

u’ wcosh |
v'[=Re X | wsind [{yoexpli(k-y — wi)],
w’ k jw |

~iw
c=0. (2.27)

In the nondimensional notation of (2.17), we thus have
U=, Wy=—iw, c¢=0. (2.28)

There is a correction to the O(¢) surface velocity if
the water viscosity »,, is nonzero (Longuet-Higgins
1953), of order (2v,k%/w)'/?|u’|; but this can nor-
mally be neglected, even if we substitute an eddy vis-
cosity for »,, to take account of turbulent motions.

Since to O(¢) the coordinate points at ¢ = 0 follow
the movement of the water particles, to O(e?) the mean
velocity u is equal to the mass transport velocity or
Lagrangian mean current—the mean velocity obtained
when we follow the water particle paths (Pollard 1973;
Andrews and Mclntyre 1978). This surface current will
have a complicated nonstationary dependence on the
stress conditions at the surface, the rotation of the earth,
and wavelike and dissipative processes within the water
column (e.g., Stokes 1847; Longuet-Higgins 1953; Liu
and Davis 1977; Weber 1983, 1990; Jenkins 1987).
For simplicity, we use the value chosen by Janssen
[1989, Eq. (19)],

u=0, ¢=0, (2.29)
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together with the dispersion relation

2=gk;, ie. a=1. (2.30)

These conditions are satisfied by finite-amplitude
Gerstner waves ( Gerstner 1804). (We assume that the
dispersion relation is unaffected by the airflow over the
waves.)

At the top of the domain we specify a fixed applied
wind stress

T3> Ty, €—> 0 (2.31)

and zero fluctuating shear stress

fux—=>0, Tax—>0, (2.32)

C > .

g. Energy and momentum flux

A conservation-law equation for energy can be de-
rived from (2.1) by multiplying by u;, summing over
J, and using (2.2) where necessary. We obtain

aE 0P,
+— =8, 2.33
3[ ax; E ( )
where
E= pu}u, + pgxs (2.34)

is the mechanical energy per unit volume,
1
q>EI = (5 PU;U; + ng3)u1 + by — 14 (235)
is the flux of energy per unit area in the positive x;

direction, and

du;
ax;

is minus the rate of energy dissipation per unit volume.
In curvilinear coordinates we thus have

(2.36)

SE = =T

0®"
-(JE)+ —E = S, (2.37)
ay
where
9
by = mz(%m E%"—') (2.38)

can be considered to be the flux of energy in the positive
y direction.

Considering motions in the x—z plane only, the mean
upward energy flux across constant ¢ surfaces is

6xEl 6x3

‘1’53 K13<I’E1 — Ki3E K33E—

+ K33‘I>53

(2.39)

Applying the quasi-linear approximation, noting that
K3 = 0, we have to O(¢?) at the sea surface:
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B%y = T13(~U — WE, + W) + pg(WT —T5)
c=0. (2.40)

Applymg the sea surface boundary conditions u” = £,
w’ = ¢, with |£x| = | {| for all Fourier components,
we obtain

@Yy = +73U~ D' + 7335 + 113k, €=0,
= 713(0)U(0) + ppg 2 Sk, (2.41)
k

+p'W —Trw — U,

The above expression is the quasi-linear approximation
to the total flux of mechanical energy from the at-
mosphere to the ocean. The first term (on the right-
hand side of the first line) is the energy flux due to the
mean flow and the purely turbulent motions. The other
three terms correspond to the contributions of the three
terms in (1.4) to the rate of wave energy input from
the pressure and shear-stress fluctuations at the sea
surface.

If we apply the same surface boundary conditions
to the mean horizontal momentum equation (2.16),
we obtain to O(e?),

Tw=Ti3+ D' — 71l T 736, ¢=0. (2.42)

The momentum flux to the waves cannot, however,
be calculated by adding up the last three terms in this
equation—it is necessary to use the three last terms in
the first line of (2.41) and the relation between wave
momentum and energy input (1.8).

If we compare (2.41) with (2.42), we see that the
second term (the pressure fluctuation term) gives a flux
of horizontal momentum in the same direction as the
energy flux. The third and fourth terms, however, give
momentum fluxes in the opposite direction (e.g., up-
ward if the energy flux is downward). In the case of
the diagonal components 7/, and 733 of the shear stress,
the flux reversal is a consequence of their sum being
zero. In the case of the off-diagonal shear-stress com-
ponent {3, it is because the a-coordinate surfaces are
closer together near the wave crests than in the wave
troughs, so that if 7|3 is positive when ¢ is a maximum,
the mean horizontal force exerted by 7,3 on the sea
surface will be in the —x direction. (See also section
4d of Jenkins 1987.)

h. Numerical solution

The system of equations [(2.16)~(2.18), (2.20),
(2.23),(2.25),(2.28)~(2.32)] is solved iteratively: first,
solve the mean-flow equations (2.16), (2.20), (2.25),
(2.29), (2.31) with the mean product terms set to zero;
then substitute the solutions for U and 7,3 into the
oscillatory-flow equations (2.17), (2.23), (2.28),
(2.30), (2.32) to obtain a first estimate of the fluc-
tuating variables for each wavenumber; then evaluate
the mean product terms in (2.16), (2.20) using (2.18)
and solve the mean-flow equations again for U and
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713, and so on. If this iterative procedure becomes un-
stable, convergence may be attained by underrelaxa-
tion, where if Q,, is the solution for U and 7,5 obtained
after n iterations, and Q5" is obtained by applying the
original iterative procedure to Q,, the next iterative
solution, Q.+, is calculated using the formula

One1 = (1 = N)@u + A (2.43)
with A < 1. Convergence is also assisted by letting the
wave amplitude increase gradually from zero during
the computation instead of applying the full wave field
during the first iteration. The equations are solved by
finite differences, using a logarithmically transformed
vertical coordinate, C = log[(c + z)/2o].

A two-dimensional wave spectrum can be allowed
for by rotating the x direction in (2.17), (2.23) to co-
incide with the direction of k, and resolving the mean
quantities (now vectors) U, 7, etc., along the same
direction so that they become, for example, k- U,
where Kk is the unit vector in the k direction. The prod-
ucts of Fourier coefficients in (2.18) can then be re-
solved appropriately along the original x and y direc-
tions before summing to obtain the mean products for
(2.16) and (2.20).

3. Results

The model was first run in a linear mode and com-
pared with Conte and Miles’ (1959 ) numerical solution
of the Rayleigh equation and with Jacobs’ (1987) per-
turbation approximation for turbulent airflow over
waves. For these two comparisons, the molecular vis-
cosity v, was set to zero.
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The full quasilinear model was then run with »,,
=0.14 X 107* m? s~! and the results were compared
with the quasilinear model results of Janssen (1989),
the turbulence closure model results of Makin and
Chalikov (Chalikov 1986b), and the field observations
of Maat et al. (1991), Donelan (1982, 1990), and
Geernaert et al. (1987).

a. Linear model

For the linear version of the present model, we per-
form only the first two steps of the iterative procedure:
the solution of the mean-flow equations with the qua-
dratic terms set to zero (so that d7,3/dc = 0) and the
subsequent solution of the equations for oscillatory
flow.

Conte and Miles (1959) solved the Rayleigh equa-
tion numerically with U = (U,/«) log[(z + z3)/ z0],
and calculated py(0) by using (in effect) the first and
third rows of (2.17), with 7,; x = 713x = 0. They tab-
ulated the real and imaginary parts of p(0)/[ U/
(xc,)]1? as a function of «¢,/ U, and gzox?/Us. For
the comparison, I ran the linear model with a wave
frequency f = 0.2 Hz (so k = 0.1610 m™' and k™!
= 6.210 m), a domain of vertical extent Cp,x = 500 m,
and three finite-difference meshes with 100, 1000, and
10 000 points, equally spaced in terms of C = log[(c
+ z9)/z0]. The mean-flow total viscosity vyean [the v
used in (2.20)] was set equal to kU, (c + z), and the
“wave” total viscosity [used in (2.23)] was reduced to
a value of vy, = 107 vyean in order to approximate
the nonviscous behavior. The results from the 10 000-
point runs were little different from those obtained with
1000 mesh points. Table 1 shows the 100-point and
1000-point results.

TABLE 1. Comparison of rates of wave energy input produced by the linear model with those produced by the model of Conte and Miles
(1959). The columns headed “Pressure” show the imaginary part of the dimensionless pressure fluctuation py(0) divided by
[U,/(xc,)}. Those headed “Total” include ‘the contribution from shear-stress fluctuations and are, thus, equal to {Im[p,(0) — 733x(0)]

+ Re#154(0) } /U, /(xcp) ).

Linear model

- —4
Vwav/ Vmean = 10

”wav/”mean = 1

Conte and Miles 1000 pts 1000 pts

100 pts 100 pts

kep/ U, Pressure Pressure Total Total Pressure Total Total
gz /UL = 3 X 1073

I 3.53 3.526 3.524 3.492 2.714 3.483 3.480

4 343 3.431 3.430 3.372 3.111 3.657 3.599

7 2.44 2.441 2.441 2419 3.759 4.038 3.918

10 0.405 0.404 0.404 0.306 0.433 0.610 0.597
gzox2 UL = 2 X 1072

1 2.75 2.753 2.753 2.749 1.764 2.453 2.454

4 2.43 2.427 2.427 2.416 3.178 3.545 3.522

7 0.677 0.677 0.676 0.671 1.015 1.150 1.143

10 2% 107 1x 107 —0.001 0.004 —0.727 -0.720 -0.711
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The linear model results for [Imp, (0)1/[ U, /xc,)]1?
with 1000 points and »yay/¥mean = 10 ~* show little dif-
ference from those calculated by Conte and Miles. This
is encouraging since we are performing a singular per-
turbation: in effect, we use a fourth-order differential
equation to approximate one of second order, with “no-
slip” rather than “zero flow across the interface”
boundary conditions at ¢ = 0. I have also tabulated the
total dimensionless wave energy input {Im[p(0)
— 7334(0)] + Re7134(0)}/[Uy/(c,)]? for grids of
1000 and 100 points as well as the corresponding results
for veay = Vmean- The differences between the 1000-
point and 100-point results for vy,, = vmean are relatively
small, and to save computer time a mesh of 100 points
was used for the subsequent quasi-linear computations.

Jacobs (1987) determined an analytical approxi-
mation to the O(¢) pressure fluctuations at the sea sur-
face for the same logarithmic mean velocity profile,
With yay = Vmean[l + O(€)]. The O(e) variations in
Vway are because its gradient is assumed to be propor-
tional to the square root of the instantaneous shear
stress rather than the square root of the mean shear
stress. His approximation is valid for small ¢;, where,
neglecting z, in comparison with k',

&s = x/[log(k™/20)] = Uy U(K™")
= [Co(k™)]"2 (3.1)

1s the square root of the drag coefficient referred to a
height of k'. His expression for the component of the
pressure fluctuation in phase with the surface slope is

Uk™) ~ UK
U(k™) [ G ]

= 2kU,[U(k™") — ¢}/ .

Imﬁk = 2Kéjl:

(3.2)

A plot of the ratio of the linear model result for Imp,
(with 1000 mesh points and f = 0.2 Hz) to that ob-
tained from (3.2), for 11 values of ¢, and three values
of U(k™")/c,, is shown in Fig. 1. The linear model
gives generally higher values than Jacobs’ expression,
but the ratio tends to unity as ¢, is reduced. The dis-
crepancies that arise for ¢; = 0.01 are due to rounding
or truncation errors in the numerical scheme: z, is then
less than 1076 m.

b. Quasi-linear model

Including the nonlinear terms in the mean-flow
equations and running the model iteratively for a single
wave component of frequency 0.2 Hz, using 100 mesh
points in a domain of height 500 m, we obtain rates
of wave-energy input S;, from pressure and shear-stress
fluctuations that are shown in Fig. 2 for an applied
stress given by 7,,/p = 0.49 m* s 72 (s0 ¢,/ U, = 11.15)
and a roughness length z, = 0.7195 mm (corresponding
to a Charnock coefficient « = 0.0144). The air/water
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FI1G. 1. Ratio of the pressure fluctuation contribution to wave-
energy input for the linear model to that obtained by Jacobs (1987),
as a function of ¢, = U, /U(k™"). Solid line with crosses: U(k™")/c,
= 2. Dotted line with circles: U(k™')/c, = 5. Dash-dotted line with
triangles: U(k™")/¢, = 10.

density ratio is assumed to be p/p, = 1.25 X 1073,
The results for the linear model are shown for com-
parison. The iterative method converged rather slowly:
I used 1000 iterations with a relaxation parameter A
= 0.05, letting the wave amplitude increase gradually
from zero during the first 500 iterations.

The graph of the rate of wave energy input as a func-
tion of wave slope or wave amplitude follows the linear
model curve for small slopes, and then diverges below
it, reaching a plateau at k{, ~ 0.3. This reduction in
Sin relative to the linear model is probably due to the
reduction in mean velocity (shown in Fig. 4), the in-
crease in the critical height ¢ = z, at which U(¢) = ¢,,
and the corresponding decrease in magnitude of the
“curvature” of the mean velocity profile, U..(z.)/
[U.(z.)}. The semilogarithmic plot shown in Fig. 4
indicates that the effect of increasing wave slope is to
reduce the wind speed by a constant amount for heights
greater than z. and to reduce the curvature of the ve-
locity profile below that height. The decrease in mean
velocity for constant 7, means that the drag coefficient
increases, as is shown in Fig. 3 for Cp(10 m). The
momentum flux II;, from the atmosphere to these
monochromatic waves is proportional to the energy
input shown in Fig. 2 and is 0.67 times the total air-
sea momentum flux for k{; = 0.4.

The model was then run for the continuous unidi-
rectional wave spectra of the JONSWAP type (Has-
selmann et al. 1973). The spectra have the following
form:

F(f) = apg?(2m) ™ f 4" eXp[— % (%)— ] » (3.3)

with T' = exp[—(f— fa)?/(20%f %)]. Following Jans-
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Si, / m®s
2x10™4 4x1074 6x1074

0 0.1 0.3 0.4

0.2
Wave slope k¢

FIG. 2. Rate of energy input as a function of slope for a mono-
chromatic wave. Solid line: quasi-linear model. Dashed line: linear
model. (U, = 0.7 ms™', Charnock coefficient & = 0.0144, ¢,/ U,
=11.15))

sen (1989), we take v = 3.3, ¢ = 0.10, and the Phillips
constant ap = 0.57[c,(fm)/ Us] %%, where c,(fm) = g/
(2=nf,) is the wave phase speed at the spectral peak
frequency f;,, and we choose U, = 0.7 m s™!, as in the
case of the monochromatic wave. The spectrum was
discretized at equal intervals of logf, the lowest fre-
quency being 0.047 Hz, the highest 9.416 Hz, and the
ratio between adjacent frequencies being %' = 1.1052,
with a total of 54 wave components. Five different
spectra were used, with the wave age ¢,(fi)/ U, ranging
from 5 (“young” sea state) to 25 (““old” sea state).

The computational domain was again 100 mesh
points with a total vertical extent of 500 m; and 900
iterations were performed with A = 0.06, the amplitude
{xo of each wave component being increased gradually
from zero during the first 450 iterations.

0.002 0.003 0.004

Cp(10m)

0.001

0.1 0.2 0.3
Wave slope k{

F1G. 3. Drag coefficient as a function of monochromatic
wave slope. Conditions as for Fig. 2.
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FIG. 4. Velocity profile for different monochromatic wave slopes
(dotted line marks the wave phase speed). Conditions as for Fig. 2.
The profiles in order of decreasing velocity are: (i) no waves (open
dashed line), (ii) k$o = 0.10, (iii) kfp = 0.16, (iv) k{p = 0.25 (solid
line), (v) k$o = 0.35, and (vi) k{o = 0.40.

The resulting rate of wave energy input is shown in
scaled form in Fig. 5 for ¢,(fn) = 5 and ¢,(fm) = 25,
with the corresponding results of Janssen (1989) for
comparison. The growth rates are generally of the same
order of magnitude as those of Janssen.

The drag coefhicient calculated for 10 m above the
sea surface is shown in Fig. 6, together with the cor-
responding results for U, = 0.3 ms™! and for an
alternative  Phillips constant formulation, «p
= 0.054][c,(fm)/ Uy 173, This latter formulation for
the Phillips constant gives a rather slowly varying drag
coefficient, when compared with the systematic in-
crease with decreasing wave age for the (—3/2)-power
dependence of ap on the wave age. The Janssen (1989)
model shows a similar but more marked increase in
Cp(10 m) for young sea states. The curve fitted to the
North Sea experimental results of Geernaert et al.
(1987) shows a very strong wave-age dependence, but
this is to be expected since their results are for a wide
range of U, values, rather than a single value. In field
experiments we would expect that high values of U,
would be associated with young sea states and low val-
ues with older, more fully developed seas. The present
model gives drag coefficients for U, = 0.7 m s™! very
close to those calculated by Maat et al. (1991) from
analysis of the HEXMAX field data and rather higher
values though still fairly close, for U, = 0.3 m s™'. The
corresponding drag coefficients calculated from Do-
nelan’s (1982, 1990) Lake Ontario field experimental
results are based on his fitted formula

U 2.53
2l _ 84| —2|
F o (fm)

(3.4)
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FIG. 5. Rate of wave energy input divided by spectral density and angular frequency for the
quasi-linear model (lines with no symbols) and the model of Janssen ( 1989) (lines with symbols).
JONSWAP spectra used, with Phillips constant ap = 0.57[¢,(fn)/Us] > and U, = 0.7 ms™".
Solid lines: ¢,(fm)/ Usx = 5 (“‘young” sea: “1/s™ marks the spectral peak frequency fu); the plain
line is the quasi-linear model; crosses mark Janssen’s results; Dashed lines: ¢,(fm)/ Us = 25 (*“0ld”
sea: “If25” marks the spectral peak frequency fy,); the plain line is a quasi-linear model, plus signs

mark Janssen’s results.

where F is the mean-square surface displacement due
to the waves, and z.q is the “effective roughness length”
given by the wind velocity profile, so that Cp(10 m)
= [«/1og(10 m/ zee)]?. The present model, Janssen’s
(1989), and the Maat et al. (1991) analysis give drag
coeflicients somewhat greater than these results from
Donelan.

Figure 7 shows the momentum flux from the at-
mosphere to the wave field, determined by (1.8), di-
vided by the total momentum flux pU% . For the present
quasi-linear model, the waves account for between
0.26 and 0.89 of the total momentum flux when 5
< (fm)/ Ux <25, Uy = 0.7 m s}, and ap o< [¢p(fm)/
U,] %%, the range of variation being considerably
smaller for the (—2/3)-power dependence. In Janssen’s
quasi-linear model, when U, = 0.7 ms™! and ap o
[co(fm)/ Us]73/%, the waves account for between 0.36
and 0.94 of the total momentum flux, the difference
from the present model being rather large for ¢,(fm)/
U, in the middle of the range (between about 10
and 20).

I have also plotted the ratio of wave to total mo-
mentum flux which was calculated from the published
values of S;,, obtained by Makin and Chalikov (Chal-
ikov 1986b, Fig. 11c) using a turbulence closure model
in curvilinear coordinates for the airflow over sea sur-

faces with simulated JONSWAP wave spectra. These
values are considerably smaller than the other results,
perhaps because the authors used a more limited spec-
tral range for the wave Fourier components. Their
model had a ratio of maximum to minimum frequency
of about 6 and a maximum frequency of about three
times the spectral peak frequency, whereas the present
model has corresponding frequency ratios of 200 and
at least 20.

Makin (1987) also calculated various contributions
to the momentum flux over a sea surface with a “de-
veloped” Pierson-Moskowitz spectrum and obtained
a momentum flux associated with the wave-induced
air motions of ~0.154 times the total momentum flux.
The drag coefficient at the top of his computational
domain was specified as 1 X 1073, considerably smaller
than the values calculated by this paper’s quasi-linear
model.

The contributions to air-sea momentum flux from
the individual terms in (2.16) are shown as a function
of the vertical coordinate cin Fig. 8 for Uy =0.7ms™",
cp(fm)/ Ux = 5,and ap oc [6p(fm)/ Uy]"*'%. At the sea
surface, the nonzero terms are 7,3, p' ¢z, —711 {z and
713£,. The last two terms are relatively small and of
opposite sign at the surface, so the pressure-slope cor-
relation does provide the major contribution to the
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FIG. 6. Drag coefficient as a function of wave age. Solid lines: quasi-linear model for JONSWAP
spectra. (Solid lines with plus signs: ap = 0.57[¢,(fm)/ U«]~*%. Upper curve, U, = 0.7 ms™'.
Lower curve, U, = 0.3 m s™'.) (Solid line with crosses: ap = 0.054[c,(fm)/ Us17*3, Uy = 0.7
m s~'.) Close dashed lines with circles: Janssen’s (1989) model for JONSWAP spectra and ap
=0.57[cy(fm)/ Us 1732, (Upper curve, U, = 0.7 ms™', lower curve, U, = 0.3 m s™'.) Dash~
dotted lines: drag coefficients obtained from the analysis of HEXMAX field data by Maat et al.
(1991). (Upper curve, U, = 0.7 m s™!, lower curve, U, = 0.3 m s~'.) Open dashed lines: drag
coefficients obtained from the analysis of Lake Ontario data by Donelan (1990). (Upper curve,
U, = 0.7 ms™", lower curve, U, = 0.3 m s™'.) Dotted line: the curve fitted by Geernaert et al.
(1987) to North Sea experimental results with a range of values of U,.

wind-to-wave momentum and energy flux. The mean
shear stress 7,3, averaged with respect to the curvilinear
coordinate system, is equal to 7, at the top of the do-
main and decreases to 0.177,, at the sea surface, the
wave-correlated terms carrying the rest of the momen-
tum flux. The corresponding profile of mean wind ve-
locity U is shown in Figs. 9 (logarithmic vertical scale)
and 10 (linear vertical scale). The logarithmic-scale
graph shows the transition from a logarithmic velocity
profile to one that has a reduced curvature as the sea
surface is approached; and the linear-scale graph shows
that the second derivative of the velocity profile is ev-
erywhere negative.

The fluctuating shear-stress contribution to wave
energy input, via the term 73§, in (2.41), gives rise to
a wind-to-wave momentum flux of —7{3£,. For ¢,(fm)/
U, =5, ap o [¢p(fm)/ Ug]™/%, this is ~0.087,,. In a
laboratory wave-tank study, Okuda et al. (1977) de-
termined the variation of the shear stress over wind-
wave profiles by measuring the velocity shear in the
water just below the surface. Their results indicate that
—113&, is greater than 0.27,, much greater than the

value calculated here. However, in their experiment
the wave age was ¢,/ U, =~ 0.75, a very small value,
and their waves were very steep. Thus, we can expect
their experiment to show very vigorous flow separation
and consequently a large shear-stress fluctuation.

4. Discussion

The model described in this report calculates the
flow field in the boundary layer above the sea surface
using the quasi-linear approximation in conjunction
with a curvilinear coordinate system where one of the
coordinate surfaces coincides with the instantaneous
sea surface. From the flow field parameters, the rate of
energy input to the waves can be calculated. Although
a more complete description of the airflow above the
waves can in principle be obtained by a direct Monte
Carlo simulation of the movements of the water surface
(e.g., Makin 1980, 1987), the quasi-linear approxi-
mation does include the O(¢?) effects of the wave mo-
tions on the mean flow-field properties, and should be
less expensive computationally. It ensures momentum



AUGUST 1992

JENKINS
el
B“
s
=
~N
w
2
o
3
ol
o
0
o 1 . 1 | 1 I 1 | i 1
0 5 10 15 20 25

FI1G. 7. Ratio of wind-to-wave momentum flux to total momentum flux, as a function of wave
age for JONSWAP spectra. Solid lines: quasi-linear model, ap oc [¢5(fn)/ Us]™>'%. (Solid line
with plus signs: U, = 0.7 m s~'. Solid line with asterisks: U, = 0.3 m s™'.) Dashed line with
circles: Janssen’s (1989) model with U, = 0.7 m s~ and ap ¢ [c,(fn)/ Uy} >/2. Dash—dotted
line with crosses: quasi-linear model, U, = 0.7 m s™* and ap oc [¢,(fm)/ Us]™*/?. Rectangles:
turbulence closure model of Chalikov and Makin (Chalikov 1986b Fig. 11c).
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FiG. 8. Vertical profile of the various contributions to the downward momentum flux, calculated
by the quasi-linear model [see (2.16).] Friction velocity U, = 0.7 m s~!, JONSWAP wave spectrum
with ap o [6,(fm)/Us]1™*? and ¢,(f)/ Us = 5. The sea surface is at the bottom of the plot,
where ¢ + zo = 2o; here, zp = 0.720 mm from (2.26). The numbers on the graphs refer to the
different terms of (2.19), as follows: 1, 713/p; 2, p"8a/p3 3, ~7118a/ 03 4, Ti3ka/ 03 5, 4755 6,
—u'w 7, Uu’s,.
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F1G. 9. Profile of the mean wind velocity (logarithmic
scale of height). Same conditions as for Fig. 8.

' conservation, in the sense that the wind-to-wave mo-
mentum flux associated with the energy input to the
waves from the wind never exceeds the amount avail-
able from the applied wind stress.

The curvilinear coordinate system enables rapid
vertical variations of mean-flow parameters to be re-
solved in the region just above the sea surface. It does,
however, require one to solve rather complicated
equations, particularly when the effect of viscosity (or
turbulent Reynolds stress) is incorporated. Conse-
quently, a simplified form is adopted for the parame-
terization of the stresses due to turbulent motions and
viscosity. Since the effect of turbulent motions on mean
momentum transport is imperfectly known, particu-
larly in the presence of a moving boundary, such a
simplified parameterization may be justified.

The model equations are solved iteratively on a ver-
tical one-dimensional logarithmically spaced finite-dif-
ference mesh. A linear version of the model gave results
in agreement with those produced by Conte and Miles’
(1959) numerical solution of the Rayleigh equation if
a very small “wave” total viscosity (Newtonian vis-
cosity plus eddy viscosity) was used, in spite of the fact
that no-slip boundary conditions were used at the sea
surface. Rates of wave energy input for the linear model
are generally greater than those of the analytical eddy-
viscosity model of Jacobs (1987) but converge to them
if the roughness length becomes very small. These
comparisons indicate that the linear numerical model
has correct mathematical behavior.

When the model was then run in nonlinear (quasi-
linear) mode with a constant applied wind stress over
a monochromatic wave, as the wave amplitude was
increased, the mean air velocity decreased. The effective
drag coefficient thus increased with wave amplitude.
The ratio of the rate of energy input calculated by the
quasilinear model to the rate calculated by an equiv-
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alent linear model decreased—the energy input rate
reaching a plateau for a wave slope k¢, =~ 0.3. The
waves thus increase the effective surface roughness, re-
ducing the mean airspeed, momentum being trans-
ferred to the ocean by means of increased pressure on
the upwind slopes of the waves.

Wind-wave sea states with JONSWAP spectra were
simulated using 54 logarithmically spaced unidirec-
tional wave Fourier components. Generally speaking,
a large number of iterations was required for conver-
gence (around 900 for a 100-point mesh). There is
thus obvious room for improvement in the numerical
techniques used. Fixed values of 0.7 and 0.3 ms™!
were used for the friction velocity U,, and the wave
age ¢p(fm)/ Uy was varied from 5 to 25. Rates of wave
energy input were in general agreement with those cal-
culated by Janssen’s (1989) simpler quasi-linear model.
The wave energy input is primarily due to the com-
ponent of the pressure fluctuation in phase with the
surface slope. The contributions of the fluctuating vis-
cous and Reynolds stresses (71, 733 and 713) are con-
siderably smaller. If the Phillips constant ap of the wave
spectrum is made proportional to the (—3/) power of
the wave age, the waves affect the mean air velocity in
such a way that the drag coefficient Cp(10 m) is a de-
creasing function of wave age. This is in agreement
with Janssen’s model, though the present model gives
a somewhat slower rate of decrease than Janssen’s. It
disagrees with calculations performed by Nordeng
(1991), based on the moving-roughness-element the-
ory of Kitaigorodskii (1973) and empirical expressions
for Sin(f), which predict a maximum in Cp, for ¢,(fm)/
U, =~ 10.

In comparison with analyses of field experimental
results for the dependence of drag coefficient on wave
age, the present model’s results are in rather good
agreement with those of Maat et al. (1991), and greater
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FIG. 10. Profile of the mean wind velocity (linear scale
of height). Same conditions as for Fig. 8.
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than, though parallel to, those of Donelan (1990). The
drag coeflicients calculated by Geernaert et al. (1987)
vary much more rapidly with wave age, but they give
a single curve for a whole range of values of Uy, and
their observed U, values can be expected in general to
decrease with increasing wave age. The model disagrees
with the analysis of field and laboratory data by Toba
et al. (1990), in which the effective roughness length
and drag coefficient increase with wave age, instead of
decreasing.

When the quasilinear model was run with the Phil-
lips constant ap proportional to the (—2/3) power of
wave age, the drag coefficient became a much more
slowly varying function of wave age, with a maximum
at cp(fm)/ Uy = 17.5.

The ratio of the wind-to-wave momentum flux to
the total wind stress varies from about 0.9 to about
0.25 as c¢p(fm)/ U, varies from 5 to 25, for ap
o [¢p(fm)/Us]™¥? and U, = 0.7 m s™*. The corre-
sponding figures for the Janssen ( 1989) model are 0.95
and 0.35. For ¢,(fm)/ U, between 10 and 20, the present
model gives a significantly lower ratio than Janssen’s
model. The ratios are higher than those calculated by
the turbulence closure model of Chalikov and Makin
(Chalikov 1986b; Makin 1987), probably because of
the present model’s greater spectral range.

The dominant contribution to wave energy input is
the pressure—slope correlation. The contribution of the
fluctuating shear stress 7 is considerably smaller, even
for steep wind seas with U, = 0.7 ms™!, ap
= 0.57[cy(f)/ Us 172, and ¢,(fin)/ Uy = 5, when it
accounts for about 8% of the air-sea momentum flux.
The large values of fluctuating shear stress, accounting
for over 20% of the air-sea momentum flux, which
were obtained in the laboratory experiment of Okuda
etal. (1977), are probably a result of the very low wave
age (¢p,/ Uy =~ 0.75) in their experimental run.

The quasi-linear model described here should be ca-
pable of substantial improvement. It should be
straightforward to extend the analysis to three dimen-
stons in order to apply it to directionally spread wave
spectra. The behavior of the Reynolds stress compo-
nents is an obvious area for further investigation and
comparison with observations. The numerical tech-
niques need to be improved to attain more rapid con-
vergence: it should be possible to use a coarser mesh
near the surface and parameterize analytically the re-
gion between the lowest mesh point and the true sea
surface (Chalikov 1978, 1986b). The influence of wave
breaking—a strongly nonlinear process—on wave
generation, obviously cannot be included directly in
this O(e?) perturbation formulation, but it may be
possible to include its effect in an empirical manner,
using experimental results (Banner 1990) and other
types of theoretical analysis (Csanady 1990). The same
can probably be said for the influence of three-dimen-
sional airflow patterns above the waves ( Stewart 1974;
Csanady 1985).
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