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ABSTRACT

A theory is presented for time-dependent currents induced by a variable wind stress and wave ﬁe[d in deep
water away from coastal boundaries. It is based on a second-order perturbation expansion of a version of the
Navier-Stokes equations in Lagrangian coordinates. The Coriolis effect and the effect of a depth-dependent eddy
viscosity are included. (The eddy viscosity is taken to depend on the Lagrangian vertical coordinate ¢.) Partial
differential equations are derived for the vertical and time variation of the mass transport velocity, together
with boundary conditions at the sea surface. The vertical variation of the eddy viscosity causes an exira source
term to appear in the equation for the evolution of the current profile. This additional source of momentum
within the water column is exactly balanced by an extra term in the surface boundary condition, which in turn
represents the contribution to wave dissipation caused by the eddy viscosity within the water column being
different from its surface value,

The equations were solved numerically, using a constant wind stress and monochromatic wave field simul-
taneously applied in the same direction at time £ = 0. The eddy viscosity v was assumed to be proportional to
depth, using Madsen’s relation (v = ~xxu,¢, where «y is von Karman's constant, u, = (#/p)"? where 7 is the
wind stress and p is the water density), except for near the surface where it was medified to account empirically
for the direct effects of breaking waves. Results for the Lagrangian mean current were in general agreement
with observations: long-term average values ranged from 2.2% to 2.8% of the wind speed at the 10 m level, and
were directed between 12° and 17° to the right of the wind and wave direction (in the Northern Hemisphere).
The deviation of the current from the wind direction is closer to observed drift current abservations than the
corresponding results for a constant eddy viscosity. The Lagrangian mean current is surprisingly close to the
current obtained from Madsen’s theory, even though Madsen does not account explicitly for the effect of surface
waves. .

The theory can easily take account of random sea states. There are good prospects for coupling it with the
output of a numerical model for surface gravity waves, using the wave model’s input and dissipation source

terms.

1. Introduction

The theory of the response of the near-surface cur-
rent profile to pure wind forcing is quite well estab-
lished, the details of the response depending principally
upon the vertical variation of the eddy viscosity and
density structure (e.g., see Ekman, 1902, 1905; Dob-
roklonskiy, 1969; Gonella, 1971; Lai and Rao, 1976;
Madsen, 1977; Pollard, 1980). However, the effect of
the wind in producing currents in the ocean is com-
plicated considerably by the presence of wind-generated
surface waves. Stokes (1847) showed that, to second
order in the wave slope, in the absence of viscosity and
rotation, the waves induce a drift current along the
wave direction.

In the presence of the Earth’s rotation, Ursell (1950)
demonstrated that in an inviscid ocean a wave field
could not in fact induce a net steady mass transport.
The wave-induced horizontal motion then consists of
inertial oscillations with a zero Lagrangian mean (Has-
selmann, 1970; Pollard, 1970).

For wave-induced drift in the absence of rotation,
Longuet-Higgins (1953, 1960) showed that the presence
of even a small viscosity produces significant changes
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in the mass transport not only in thin boundary layers

near the surface and bottom, but also in the interior
of the fluid. His analysis involved soiving the equations
of motion in an Eulerian curvilinear coordinate system
which was attached to the moving surface boundary.
Chang (1969) and Unliiata and Mei (1973) calculated
the mass transport using Lagrangian coordinates, their
treatments being based on Pierson’s (1962) perturba-
tion expansion of the Navier-Stokes equations.
Weber (1983a,b) used the Lagrangian coordinate
perturbation expansion to derive (i) time-dependent
results for mass transport due to a spatially uniform
field of decaying swell in a deep rotating ocean with
viscosity, the decay rate being determined by the value
of the viscosity, and (ii) steady state results for mass
transport due to a spatially uniform wind and wave
field. Weber’s theory was extended by Jenkins (1986,
hereafter referred to as J1) to take account of more-or-
less arbitrary temporal variations in the wind stress
and wave field. This requires that the wave field be
allowed to vary spatially, and it was found that such
spatial and temporal variations could be handled in a
self-consistent manner. In the limit of time ¢ = oo,
Weber’s (1983b) equations, surface boundary condi-
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tion and vertical current profile were obtained. The
inviscid results of Pollard (1970) and Hasselmann
(1970), showing a zero net wave-induced mass trans-
port with inertial oscillations superimposed, were ap-
proached when the eddy viscosity was made very small.
The eddy viscosity was, however, still required to be
constant.

An approximation to a generally accepted value for
the surface wind-induced drift—roughly 3% of the wind
speed, 10° to the right of the wind direction (Kirwan
et al,, 1979; J. C. Huang, 1983)—was obtained by the
theory of Madsen (1977), which uses an eddy viscosity
increasing linearly with depth and does not include
wave effects. It should, however, be noted that widely
varying figures for observed surface wind-induced drift
have been reported in the literature (N. E. Huang,
1979). The effect of depth variation of the eddy viscosity
on the behavior of the near-surface wind-induced cur-
rent has also been investigated in numerical modelling
studies (Davies, 1985a,b).

A realistic theory for wave-induced currents which
makes use of the eddy viscosity concept should thus
also allow the eddy viscosity to vary with depth, whereas
the theory presented in Weber (1983a,b) and J1 re-
quires the eddy viscosity to be constant. Johns (1970)
considered the case of a spatially varying eddy viscosity
within the bottom boundary layer. Barstow (1981) used
the Lagrangian perturbation expansion technique to
derive some equations for near-surface wave-induced
drift in the presence of an eddy viscosity, which was
dependent on the Eulerian vertical coordinate (%)
within the main body of the fluid. It is, however, more
natural to assume that the eddy viscosity is a function
of the Lagrangian vertical coordinate (¢); this can be
illustrated by the following example.

In Fig. 1, both graphs show schematic time series of
the surface elevation, and of the vertical position of a
water particle at Z = Z, when the surface is at £ = 0.
In the upper graph, the eddy viscosity is a function of
the Eulerian vertical coordinate: it is equal to v, when
Z > Z, and is equal to v, when Z < Z,. In the lower
graph, » is a function of the Lagrangian vertical coor-
dinate & v = v, for water particles which are above
¢ = &, (those which are above Z = 2, when the surface
is at Z = 0), and » = v, for water particles which are
below é = &,.

In the case where the eddy viscosity depends on the
Lagrangian vertical coordinate, each water particle will
remain in a region with the same eddy viscosity
throughout the wave cycle. If the eddy viscosity depends
on the Eulerian vertical coordinate, a water particle
can be subject to different eddy viscosities in different
parts of the wave cycle For example, in Fig 1, a water
particle which is at Z, when the surface is at Z = 0 is
subject to an eddy viscosity »; when L <t<I,,butis
otherwise subject to an eddy viscosity »,. A water par-
ticle at the sea surface is subject to a change in eddy
viscosity at t,and ;.
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FIG. 1. Example illustrating the variation of eddy viscosity
with Eulerian depth (—7) and with Lagrangian depth (=¢).

The situation can, of course, be generalized to the
case of a continuous variation of » with either ¢ or Z.
Barstow (1981) treated the variation of Z-dependent »
through the wave cycle by performing a perturbation
expansion of v in powers of the wave slope. Such a
perturbation expansion will be valid if the variation of
v following a water particle during a wave cycle is not
too great, which means that » should not vary too much
with depth. This restriction on the vertical variation of
v does not apply if v is just dependent on ¢, since a
water particle is always subject to the same eddy vis-
cosity and a perturbation expansion for » is not re-
quired. We thus use a purely ¢-dependent eddy viscosity
in this paper.

2. Mathematical formulation

The sea is considered to be a homogeneous incom-
pressible viscous fluid of constant density p rotating
counterclockwise about a vertical axis with an angular
velocity f72. A right-handed Cartesian coordinate sys-
tem is chosen with the x;- and x;-axes along the un-
disturbed sea surface and the x;-axis pointing vertically
upwards. The sea is assumed to be so deep that surface
gravity waves do not feel the bottom, and of such great
horizontal extent that the boundaries do not affect the
water motion in the area of interest.
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We use the following form of the equations of mo-
tion:

D 199
D (FX ), — gdi3 S ax,
i} ot aﬁ, laﬁk
+ =t o) @
axj[”(ax,. ax; 36xk5’>] @1)
oil;
=0 2.2)
J

where the i; are the velocity components, f is the pres-
sure, ¥ is a spatially variable kinematic eddy viscosity,
f=(0,0,f), gis the acceleration due to gravity, the
subscripts Z, j and k range from 1 to 3 and terms with
repeated subscripts are summed over the range of the
subscript. (D/Dr) represents the convective time deriv-
ative. We assume that the eddy viscosity acts in the
same way as a hypothetical spatially varying Newtonian
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viscosity, so that the “viscous” shear stress is equal to
the eddy viscosity multiplied by the symmetric traceless
part of the rate-of-shear tensor.,

Using the continuity equation (2.2), the momentum
equation (2.1) becomes

Du,__ 1 op
D (fX ), —gdi D ax,
dv (01, O
+—=1+vV%;. (2.
8x,(6x, axj) Wik 23)

We now convert the equations of motion (2.2) and
(2.3) to equations in a Lagrangian coordinate system.
The fluid particles are labeled with the Lagrangian co-
ordinates (d, b, ¢), the undisturbed state being
};ExZ:'B’ 25x3=é9

ﬁ = ﬁo - pgés
where Py is the atmospheric pressure. We obtain

XAEX; =d,

24)

.f“ =fy“—la(ﬁ,?,z‘) 6(11,}:)‘,2/.) G(f;,f,z') a(x’:’ l:,f) a(ﬁisﬁaf) 6(-f,xAis£)
" paa,bo " "84 b0 84,b,0 T X4,b,0|44b,0 " 34,5,
A&, [AE5,0) , IR,
. 4, b, D)) 8(d, b, 44, b,0
5 =_f)e___10(f,{5,2') 3(v,Jf,Z') a(f,)?;,f) 3,7, 2) +23(f,v,2") 3(333?2,2”)
T pad, b0 84,6,0|86,0,0 " 4,6,0] "ad,b,0) 84,0
85[0 5D | 98 IIN], oo
84, b,0| 8(d, b, ~ &4, b,é)
f“=- _la(x,y, ) a(ll y:f) a(-x y’ ) a(ztaysf)
“ p 8d,b,0) &&,b,0) 4,b,6) &4, b,0)
X, v, D)X, 9, P1) , AKX, Z;, 2) X, y,v) KX, Y, 5;) 24
= =~ + = = —+V°Z;, (2.5
3G, b,a[ a0.50 T 9a5,0]| 2@ ho aabo T &Y
59,9
&4, 5,0 =5 (2.6) R=d+exV+EXP+.
- . . .. ; s—ha o) (2
where the ¢ subscript denotes differentiation with re- F=b+efV+ P+
spect to time and 8(-)/d(+) is the Jacobian operator, =¢+e8M+ 25 4.
ie. .
axY,z) |8X/a 9Y¥ioa 0Z/sa p=Po—pgl+epV+e P‘2)+- X (2.8)
WE g:gglc) 323? 3;7;? 2.7) The free surface is described by
§=3(@=0)=e2V+ 5P +.. . (£=0). (2.9)

for any variables X, Y, Z, a, b, c.

The V2 terms expressed in terms of Lagrangian co-
ordinates are complicated expressions involving Ja-
cobians of Jacobians, and are given explicitly by, for
example, Pierson (1962).

Following Pierson, we expand the solution to Egs.
(2.5) and (2.6) in terms of a small parameter ¢, which
we will later take to be approximately equal to the wave
slope neard =7 = O:

The perturbation quantities £V, £@, @ etc. are
assumed to vanish as ¢ = —oo. :

3. First-order equations

a. Derivation

To O(e), we assume we have surface gravity waves
with angular frequency o propagating in the X-direc-
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tion. To this order the Earth’s rotation (Coriolis effect)
can be ignored. It can be shown that if the Coriolis
effect is included, it gives rise just to a small periodic
particle displacement along the wave crests which is
O(f]o) times (roughly 107 times) the total periodic
particle displacement. This in turn gives rise to a con-
tribution to the Lagrangian mean O(¢?) current, which
is negligible in comparison to the contributions from
other mechanisms, including the Coriolis effect on the
Lagrangian mean O(¢?) current itself (Weber, 1987).

We thus assume that the O(e) velocity component
in the j~direction is negligible and that all derivatives
in the j-direction can be neglected. We introduce non-
dimensional coordinates and variables:

x=(?/)%, y=(%8)p, z=(d%9)s,
p=(5%/pg>Pp
a=(d*g)d, b=(d*g)h, c=(c¥g)é, t=ot, (3.1)

with corresponding definitions for {, x(V, x@, y) etc..
From (2.5) and (2.6) we obtain, assuming that » is
a function of ¢ alone,

xXiP=—pP—z+; Sdelz+x01+ S dolxiah+ x{2),

)= 1 1 1 1
2= —pP = 20+ d,zP + dol 8+ 22,

xP+2z0=0,
2va3/g? and d,(c) =

3.2)

with dy(c) = 2rz0/g.

b. Solution

Following Lamb (1932, Art. 349), we define func-
tions ¢ and ¥, such that

X gl) =—¢d,— ¥
Z$1)= _¢c+¢a- (33)
We obtain
V=0 3.4
1
3 AoV YAV +d VY + % AecWaa—VYee)
=dyPac, 3.5)
where
V. 2=8%0a>+8*3c* and d.=2vylo.

We now assume that we have (almost) monochro-
matic traveling wave solutions to (3.4) and (3.5), of the
form

¢ = 2()E(@)N(),

v = Y(0)E(a)N(), (3.6)
where
E(a) = exp(ixa) exp(—«d;a)

N(t) = exp(—it) ’exp(—d, ?).
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The parameter « is a positive nondimensional wave-
number [assumed to be O(1)] and the parameters d;
and d, are real decay coefficients. The parameters d
and d, can be either positive or negative, but their
moduli must be much less than 1.

From (3.4) and (3.6) we obtain

® = AK(c), 3.7

where K(c) = exp[«(1 + id;)c] (the solution is assumed
to decay to zero as ¢ = —oo) and A is an arbitrary
amplitude. Substituting (3.6) and (3.7) into (3.5), we
obtain the following equation for ¥, where we have
assumed that d;, d, and d,. are all small and have ig-
nored them in comparison with terms of order 1:

- % dO\I’cccc + dc\Ilccc +iv,.— szc‘I/c + ik ¥

=idd,.x*K(c). (3.8)

{Note that in the rest of this paper, small terms will
often be ignored without it being specifically stated).

We use boundary layer theory to find an approxi-
mate solution to (3.8) (e.g., see Bender and Orszag,
1978, Chap. 9). The domain of the solution to the
equation consists of:

(i) an outer region where the solution (¥°) varies
relatively slowly and we can ignore the terms with small
coefficients on the left-hand side,

(ii) an inner region (boundary layer), near ¢ = 0,
where the solution (¥) varies rapidly.

In the outer region, (3.8) becomes
WY, — k2W° = —Ad,.x*K(c). 3.9)

This is a linear inhomogeneous second order ordinary
differential equation, whose solution we define as x(c)4;
we assume that x(0) = O(d), where d is a typical value
of the greatest of the parameters |d;/|, |d,|, do within the
depth of wave influence [—¢ = O(1)].

In the particular case where we have a constant value
of dy (constant eddy viscosity) from the surface down
to a depth —¢’ with a subsequent linear variation of do
(see Fig. 2):

d0= DO’
do=Dy+ D.(c'—c), (3.10)

the right-hand side of (3.9) will have a delta-function
behavior (here we relax in an appropriate manner the
criterion that |d,.| < 1). We then have

<<,

c<c,

x(0) =2 xD,e" e+ He?, (3.11)
where H is an arbitrary constant, with H = O(d) under
the condition x(0) = O(d). For a more general behavior
of d,., we obtain x(c) by performing an appropriate
weighted integration with respect to ¢’ of solutions of
the form (3.11).
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— d,

FIG. 2. The piecewise linear profile of dy described in (3.10).

To determine the solution of (3.8) in the inner re-
gion, we define a “stretched” vertical coordinate C
= vc¢. The dimensionless length scale (1/v) can be
thought of as the “thickness” of the boundary layer.
Equation (3.8) then becomes, in the inner region

2y Vocce— i Wec+ ¥ =0, (3.12)

where we have assumed d, = 0 within the inner region.
If we have vy = [do(0)]7/2, (3.12) becomes

Viccc+2i¥ec=0, (3.13)
where we ignore the third term on the left-hand side
of (3.12) in comparison with the others. The boundary
layer thickness (1/7) is then equal to [d5(0)]'? < 1, and

we have a solution .
W= BM(c), (3.14)

where M{(c) = exp[dy""*(1 — i)c] and B is a constant.
(Note that we again assume that the solution tends to
ZEro as ¢ —> —oo).

We can obtain an approximation to ¥ which is valid
in both the outer and inner regions by simply adding
together ¥? and ¥,

¥ = Ax(c) + BM(c), (3.15)

since ¥ — 0 rapidly for ¢ < —1/y and ¥° varies so
slowly that it would give rise to a negligible contribution
. if it were added to ¥’ in (3.13).

From (3.3), (3.6), (3.7) and (3.15), we obtain, re-
taining the lowest-order terms (in d) proportional to
M(c), x(c) and x.(c), and the lowest and next-lowest
order terms proportional to K(c):

xW=[x(1+id,+ id)AK(c) — ix(1 — i)dy" > BM(c)
— iAx ()1 E(@)N(),
zW =[—ix(1 + id, + id,)AK(c) — xk BM(c)

— kAx(OIE(@)N(D). (3.16)
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Substituting (3.16) into (3.2) and retaining terms up
to O(1) - BM(c), O(1) - Ax(c) and O(d)- AK(c), we ob-
tain the following expression for the dynamic pressure:

pV= {I-i1 —id)) + ix(1 +id, + id,) — kd, JAK(c)
+[—(1 =)y 2+ 121 = i)dy ™ + &
+ kdy~'d 1BM(c) + [—k ' x(C) + kx ()4 }E(@)N(F).
3.17)
¢. Boundary conditions

Chang (1969) and Weber (1983a,b) determined the
following boundary conditions at the free surface
(c = 0), to O(e?):

1
P = ot V4 dief?) + & -p 0+ 2o
+zx<;>zsp—zxwzsy—xspzs,“—z;yzs,”]], (3.18)
1 1
P<xz>=5edo[xsp+z;;>1+eZ[pmzs,“+5do[xsz>+zsz>

1 1 1 1 1 1 1
+xPxfd) = xi@xV + 200 20 — 20200 — 2x {7 2§ )]} :

(3.19)

where P“? and P*? are the nondimensional vertical
and horizontal external stresses respectively and p,
= (0*/pgHPo is the nondimensional atmospheric pres-
sure. We expand the external stresses as follows, in
powers of e

P(zz) = —'po + G(Azr + IAZI)E(a)N(t) + 0(62)’
) L. (A + IANE(@N() + EPID 4+ O().

(3.20)
(3.21)

In formulating (3.20) and (3.21) we assume that the
O(e) surface stress is oscillatory, with the same fre-
quency and wavenumber as the O(e) surface wave field,
and we will show that this stress component contributes
to wave growth (Lamb, 1932, Art. 349; Miles, 1957).
We include all other contributions to the surface stress
in the O(¢?) and higher-order terms, apart from the
constant atmospheric pressure. The real quantities A,
and A,; are the components of the vertical stress vari-
ation in quadrature and in antiphase with the surface
elevation, respectively, and the quantities A,, and A,;
(each also real) are the corresponding components of
the horizontal stress variation. We now write:

k=1+0, (3.22)
B=B,+iB,, (3.23)

where 6 is real (the imaginary part of the wavenumber
is equal to «d,), as are B, and B;. From (3.19),

Bi = ‘Axrs
B, = Ady(0) + A,;.

(3.249)
(3.25)
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Normalizing the solutions (3.16) and (3.17) with 4
= 1, we find that ¢ = {,, the nondimensional wave
amplitude near ¢ = ¢ = 0. The small parameter e is
thus approximately equal to the physical amplitude of
the surface slope near 4 = ¢ = 0, provided that |B| < 4.
With this assumption, the perturbation expansion
should be valid near a particular location and time if
the wave slope = max[|0Z/3d|-0)] ~ €|E(@)N(?)| < 1.
If we now use the boundary condition (3.19), we
obtain
o= Axr -

Azi, (3.26)

di+3dy= do(0) +3[x(0) = Xe(O)] +3 Ao+ 5 Asi. (3.27)

Equation (3.26) provides a correction to the deep-water
wave dispersion relation (x = 1). It will be a small cor-
_rection (which we assume) if A,, and A,; are small, and
we can extend the definition of d so that they are both
O(d). We find, in fact, that § plays very little part in
the subsequent analysis and we can usually assume
k = 1, e.g. in (3.28) below. The left-hand side of (3.27)

P~ (1o + 2P+ PP — 1 dilx T+ X -

+2DZz0 - 7, 4 23S 4 L 3 do[~2x DX,

VP + (100X 3 doyB—3deyP =0,
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gives the rate of wave decay in a frame moving with
the group velocity. In the absence of surface stress vari-
ations, i.e., if all the A-parameters are zero, the decay
of the waves is given by
0
i a0 [ duererae. can
-0

c=0

The last two terms in (3.27) represent the tendency for
wave growth as a result of cyclic vertical and horizontal
surface stress variations, respectively. Note that for
wave growth to take place, the sum of the two terms
must be negative, and they should also be O(d) since
all the other terms are O(d). Consequently, by (3.24)
and (3.25), B = O(d).

4. Second-order equations

a. Derivation

The O(e?) parts of (2.5), when averaged over one
(monochromatic) wave cycle and expressed in terms
of non-dimensional coordinates and variables, are

d XD +2P) = pPxD + W0 4 L A —2xM2zD 4z

— 220X — 270X — 2P xD

—x“’xﬁ,‘,}—x‘l)x")—x“)zﬁ}g—x“’z“c)], (4.1)

4.2)

2042040

_ L
Ll + 71 - 47D = PR+ pPZD + ZPxD + TP+ X2 - PP

1
+ 420X - 2700 + L dof~2x P2 -

where the overbars denote the averages. Note that there
are some discrepancies between the above equations
and Pierson’s (1962) expansion, which is the result of
the presence of several errors in Pierson’s equations.
Differentiating (4.1) with respect to ¢ and (4.3) with
respect to g, subtracting and reintegrating, we obtain,
using complex notation with W = &[x? + iyP}:

Wt i(flo)W ~ (a/ac>(§ do Wc)
= 2(&12{ —ezc(dt + dO + dc) + dO_l/ze‘yc[(dO + Axi)

X (cosyc—sinyc) — Ay (cosyc +sinyc)]}, (4.4)

where {, = {, exp(—d;a — d,f) is the wave amplitude.

b. Boundary condition
From the O(¢?) part of (3.19) we obtain

22020 - 2280203 -

1 1
2xPzia — 2 xG) — 2 xQ) - 200260 — 20 2(0),

4.3)

SdgW= EPPD — 2dy+3 Ay

+x—x)—d—3d], ¢=0. (45)

¢. Splitting of the solution

Asin J1, we split Winto three parts: a vorticity layer
solution w®, a Stokes drift w'¥ and a quasi-Eulerian
current W%

W= WO+ w® 4w, (4.6)
We then have:
w® = —2d,712¢,2e(do + Axi)(cosyc + sinyc)
+ Ay (cosyc—sinyc)], (4.7)

(s)._ g- 2 2c (48)
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with W satisfying the following differential equation:
WO+ i(flo)W® —(8/ 36‘)[% do Wc("]

=[~d.— (i)W, (4.9)
and boundary condition;

ey 1
Lo = ZPED 4 w<s>[d,+§ds-§(x—xc)+5Ax,],

c=0. (4.10)

d. Momentum balance

The O(¢) oscillatory part of the horizontal surface
stress, ePYXD = ¢(A,, + iA)E(@)N(t), contributes a
net mean momentum flux. We see this by averaging
it over one wavelength, ignoring small terms where
appropriate and noting that dc = 0 since we are inte-
grating along the sea surface:

27/
_"_f PN gy = X
0

27 2w Ja=0

a=2x

" epeaxn(%X gg O 4o
da dc
= P[] + exD]

=2 AL E@N)P?

4.11)

This momentum flux contribution explains why Weber
(1983b) obtained an unbounded steady state mass
transport. velocity for infinite depth in the absence of
the Earth’s rotation for the case where the waves were
maintained at constant amplitude by an oscillatory
horizontal surface stress, even when what he defined
as the “mean horizontal wind stress” was zero. Weber
defined the mean horizontal wind stress as the mean
O(¢?) part of (3.21), whereas it would be more sensible
to define it so that it provides the tofal momentum flux
through the sea surface. We thus define the dimen-
sionless wind stress 7 = (¢°/pg?)7 as the sum of the
mean contributions from the O(e) and O(e®) parts of
P2 Equation (4.10) then becomes:

1 1 1
5o W=7+ W<s)[dz t3ds—5(x— Xc)]

=7+ ;j[d,+%ds—%(x - xc)], c=0. (4.12)

With this definition of 7, the behavior of W is inde-
pendent of the partition of the rate of energy input to
the waves between the horizontal and vertical com-
ponents of the oscillatory O(e) surface stress.
Equations (4.9) and (4.12) reduce to the corre-
sponding equations in J1 if dp is independent of ¢; i.e.,
if the eddy viscosity is constant. In the case of constant
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eddy viscosity, momentum which disappears from the
wave field due to wave dissipation is transferred to the
quasi-Eulerian current at the surface by means of the
$(d, + 1d,) part of (4.12), and thereafter diffuses into
the water column. This effect is in agreement with
Longuet-Higgins’ (1970) observation that the local
stress exerted by the waves is directly proportional to
the local rate of dissipation of wave energy.

In the case of depth-varying viscosity, the momen-
tum transfer at the surface is reduced by an amount
Y28.2[x — Xcle=o, Which is balanced by the —d.w'
source term in (4.9). The equivalence of the two con-
tributions can be demonstrated by integrating (3.28)
by parts, noting that 4. = 0 at the surface.

5. Solutions
a. Introduction

Equations (4.9) and (4.12) become, in terms of di-
mensional quantities,

WO+ if WO — 008y W = (— 20k — if W, (5.1)
v W =/p+ WX a/R) d+3ds =3 x;>],

=0, (5.2)
where W = (g/a) W, W = (g/e)w™ and & = (c*/g)x.

Equations (5.1) and (5.2) were solved numerically
with a variable vertical grid spacing, which was smallest
near the sea surface. The system was started from rest
at 7 = 0, by applying a wind stress in the x-direction
together with a monochromatic wave field with wave-
number vector in the same direction. The wave field
was assumed to be locally uniform in space and time
(d; = d, = 0), dissipation of the waves by the eddy
viscosity being balanced by energy input from the cyclic
stress variations of (3.20) and (3.21). To preserve self-
consistency, we represent all dissipative processes, in-
cluding wave breaking, by a suitable eddy viscosity
profile.

The wind stress 7 and friction velocity u, were as-
sumed to be given by

#/p = uk = c1opa/p)Ure?, (5.3)
where U)q is the wind speed at the 10 m level and c¢,o
is the drag coefficient. We used the relations between
Uio, €10, wavelength and wave amplitude which were
used by Weber (1983b). Table 1 shows the values of
the relevant parameters. The wave slope (=) is equal
to 0.17 throughout, which is perhaps rather large for
the perturbation expansion to be strictly valid, partic-
ularly since we assume that wave breaking (an ob-
viously strongly nonlinear wave phenomenon) is the
physical reason for the waves keeping a constant am-
plitude in the presence of the cyclic surface stress vari-
ations. [Note that what is commonly called the wave
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TABLE 1. Parameter values for numerical simulation runs.
Coriolis parameter: f=1.26 X 107*s™!
Von Kirmén’s constant: xx=0.4
Water:air density ratio: p/p, = 800
Acceleration due to gravity: g=9.8ms™
Water depth: 300 m (150 m forsimulation 4)
Eddy viscosit 2g7!
Y viscosity (m”s” ) Depths of eddy
Wave From Gradient viscosity “kinks”
Wind Drag - surface to below
speed coefficient Amplitude Period depth At depth depth —¢, —é -6
Run (ms™h) o $o (m) s) —é —é, (ms™) (m) (m)
i 10 1.8 %1073 0.88 4.5 1.54 X 1072 3.07 X 1072 6.0 x1073 2.56 5.1
2 10 1.8 X103 0.88 4.5 3.07X 1072 3.07 X102 6.0 x107? 2.56 5.1
3 10 1.8x1073 0.88 4.5 4.61%X1072 3.07 X102 6.0 x1073 2.56 5.1
4 5 1.8x1073 0.221 2.27 3.8 X1073 3.8 x1073 3.0 x1073 0.64 1.28
5 15 1.8x1073 1.99 6.8 0.104 0.104 9.0 x107? 5.8 11.5
6 20 2.7X1073 3.6 9.2 0.310 0.310 1.47 X 1072 10.6 21.1
7 25 2.7%X1073 5.7 11.5 0.61 0.61 1.84 X 1072 16.5 33.0
8 30 2.7% 1073 8.2 13.8 1.05 1.05 221 %1072 23.7 47

steepness = wave height/wavelength, is equal to {,/=
=~ 0.055.]

b. Vertical profile of eddy viscosity

Except for within a layer near the surface, the eddy
viscosity was assumed to be proportional to depth, as
in Madsen (1977):

V= —kglC, (5.4)
where kg is von Karman’s constant. Thorpe (1984),
from acoustic observations of bubbles generated by
breaking waves, concluded that the eddy viscosity pro-
file within the upper mixed layer was indeed probably
of the form (5.4), apart from in the zone directly af-
fected by breaking waves. He estimated this zone to
have a thickness of the order of 10 times the wave
amplitude {, = (g/0?){,. Breaking waves will obviously
have a considerabile effect for the steady state wind and
wave forcing considered in the numerical simulations
presented here, and can thus be expected to increase
the eddy viscosity significantly above the values given
by (5.4).

We have chosen three types of profile, referred to as
the “low”, “medium” and “high” surface eddy viscosity
profiles, which are shown in Fig. 3. The “medium”
profile has a constant eddy viscosity from the surface
down to a depth of 1/ (roughly 6§,), the “low” profile
has a constant eddy viscosity from the surface down
to a depth of 1/(2k) (the Stokes depth), and the “high”
profile has a constant eddy viscosity equal to 1.5 times
that of the “medium” profile from the surface down
to a depth of 1/(2k), with a subsequent linear decrease
down to the depth of 1/k. Using such piecewise-linear
eddy viscosity profiles, it is simple to calculate the ap-
propriate surface values of x — x. for the surface

boundary condition, using a modified form of (3.11)
to take account of the presence of two discontinuities
ind..

The water depth was set equal to 300 m, which is
sufficiently deep for the deep-water wave dispersion
relation to apply, apart from simulation 4 (wind speed
5 m s7!), where the water depth was set to 150 m in
order to keep the computer time within reasonable
bounds, given the finer vertical resolution requlred for
the small wavelength. A slip condition [W = 0] was
applied at the bottom boundary.

¢. Results

Figures 4, 5 and 6 show the development in time of
the Lagranglan mean current, W + w©, the vorticity
layer current being neglected since it is O[dy'?W'),
from the surface down to 20 m depth, for a wind speed
of 10 m s™! and “low”, “medium” and “high” surface
eddy viscosity respectively (simulations 1, 2 and 3).
The current was plotted every Y% pendulum hour, the
pronounced kinks in the “low” eddy viscosity curves
being at z = %4 pendulum hour. The points on the curves
correspond to ¢t = 0%, 1, 2,+ + «, 15 pendulum hours.
The development of the quasi-Eulerian current can be
obtained by dlsplacmg each of the curves so that the
¢ = 0" value is moved to the origin.

The “high” and “medium” eddy viscosity profiles
appear to give results which are roughly in accord with
observations, but the “low” eddy viscosity profile shows
anomalies near the surface; at the surface, the quasi-
Eulerian current is initially in the opposite direction
to the wind. This is a result of the wind stress feeding
insufficient momentum into the wave field to balance
the part of the wave dissipation due to the eddy viscosity
being different from its surface value: the first term on
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FIG. 3. The piecewise linear eddy viscosity profiles used in the simulations. Dotted -
line: “low” profile. Solid line: “medium” profile. Dash-dotted line: “high” profile.
(vm = “medium” value of surface eddy viscosity.)

the right-hand side of (5.2) is smaller in magnitude
than the second term. This condition is unlikely to be
realized in practice, it being more reasonable to believe
that the vertical shear in the quasi-Eulerian current
near the surface is in the same direction as the wind

x—vel,
cm/s

201 Surface

2m
101
m

o
s

m
y—vel.
10 cm/s

-10

FIG. 4. Development in time (0 to 48 pendulum hours) of the
Lagrangian current for a-wind speed of 10 m s™' (¢ > 0). Simulation
1—see Table 1 for details (“low” surface eddy viscosity). The dots
mark each pendulum hour from 0 to 15.

stress. It is possible that the wind drag coefficient should
be higher than we have assumed (see Donelan, 1982),
but for the purposes of this paper we did not alter the
drag coefficient, and assumed that we have a “medium”
eddy viscosity profile when performing the simulations
for different wind speeds.

Madsen’s (1977) results are also plotted in Fig. 5,
where his nondimensional current (=xx W/u,) is con-
verted to the appropriate physical values. The two
models give results which are surprisingly close, even
though Madsen does not take account of surface waves.
The agreement is best at greater depths, where the wave
influence is small and where the eddy viscosities are
the same in both models. Madsen’s surface current
values are somewhat uncertain, since his solution has
a singularity at Z = 0 (where » = 0), and he had to
choose a small negative value for Z to represent the
physical surface. Madsen’s time development of the
surface current appears to have a very similar form to
the present model results, particularly for the “high”
eddy viscosity case (Fig. 6), even though Madsen’s cur-
rent actually increases continuously from zero instead
of increasing discontinuously from zero to the Stokes
drift at £ = 0", _

Figure 7 shows the evolution of the quasi-Eulerian
current from the surface down to 100 m depth, for a
10 m s! wind and the “medium” eddy viscosity profile.
For depths of 20 m and greater, the Lagrangian mean
current will be almost identical to the quasi-Eulerian
current. Madsen’s steady state results are also shown:
they are in good agreement for greater depths, but di-
verge greatly from the present results closer to the sur-
face. Figures 8 and 9 show the evolution of the La-
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FIG. 5. As in Fig. 4 but for simulation 2 (wind speed 10 m s,
“medium” surface eddy viscosity). Madsen’s (1977) results are also
shown, with text in parentheses. Dotted line: Madsen’s steady-state
current profile; broken line: Madsen’s time development of surface
current.

grangian and quasi-Eulerian current respectively for
wind speeds of 10 and 25 m s™!. The relatively slower
decrease of the current with depth for the 25 m s™!
wind, as a result of the greater depth of wave influence
and greater values of eddy viscosity, is clearly seen.
The large circular oscillations of the 25 m s™! current
are inertial oscillations which persist after the influence
of the wind and waves has penetrated through the whole
depth; the slip boundary condition means that the os-
cillations are unable to dissipate. Smaller oscillations
are evident in the 10 m s™! current.

Figure 10 shows a plot of the long-term average La-
grangian and quasi-Eulerian surface current as a frac-
tion of the wind speed, and its direction (to the right
of the wind and wave direction), for “medium” eddy
viscosity profiles with winds of between 5 and 30 m
s™!. The long-term average was calculated by finding
the centers of the inertial-oscillation circles (see Figs.
4-9). The Lagrangian currents obtained are a roughly
constant fraction of wind speed (between 2.2% and
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FIG. 6. As in Fig. 4 but for simulation 3 (wind speed 10 m s/,

“high” surface eddy viscosity).

2.8%), and are in reasonably good agreement with drift
observations. The drift direction is closer to the wind
direction (between 12° and 17° to the right) than in
the constant eddy viscosity case (between 20° and 30°
to the right according to Weber, 1983b), which is an
improvement when compared with drift observations.
The quasi-Eulerian currents are much smaller and are
turned much more to the right than the Lagrangian

Surface

100m

F1G. 7. Development in time of the quasi-Eulerian current for
simulation 2 (wind speed 10 m s, “medium” surface eddy viscosity).
The dotted line and text in parentheses show Madsen’s (1977) steady-
state current profile.
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FIG. 8. Development in time of the Lagrangian current for
simulations 2 (wind speed 10 m s™') and 7 (wind speed 25 m s7).

currents. It is, however, difficult to compare them with
observations, since current meters moored near the
surface, even if they perform perfect vector averaging,
are liable to produce results which differ from the Eu-

x—vel.
cm/s
10+
10m/s
Surface

10m/s

50m \

y—vel. |
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lerian mean current by an amount of the same order
of magnitude as the Stokes drift at the surface, as a
result of mooring motion (Pollard, 1973).

The present model gives results which are in agree-
ment with those of Madsen (1977) below the zone of
wave influence. Within the wave zone, agreement with
Madsen’s results is better for the Lagrangian mean
rather than the Eulerian mean current. This is probably
because the Lagrangian mean current can be regarded
as a “truer” current in the dynamical sense: it repre-
sents directly the movement of particles, and is the
current which should be used when calculating the Co-
riolis force [compare (4.4) and (4.9)].

6. Applications
a. Introduction

The theory developed in this paper can be used to
calculate the current induced by an observed wind and
directional wave field, if we are able to extend it to
cover a general directional wave spectrum, if we can .
estimate the spatial variation in the wave field (d;), and
if it is possible to make an estimate of the effective
eddy viscosity profile.

b. General directional wave spectrum

For a random wave field, composed of many differ-
ent sinusoidal components with uncorrelated phases,
the time-averaged products of pairs of linear functions
of the O(e) velocity components, pressure, etc. will be
zero unless each factor in the product refers to the same
wavenumber vector. (We assume that we do not have
standing waves, so that wave components coming from

25m/s
Surface

10 cm/s

-101

25m/s
100m

FIG. 9. Development in time of the quasi-Eulerian current for simulations 2
(wind speed 10 m s™") and 7 (wind speed 25 m s™").
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FI1G. 10. Long-term average values of surface current as a percentage
of wind speed, and direction of surface current with respect to the
wind and wave direction. (Results of simulations 4, 2, 5, 6, 7, 8).

different directions are uncorrelated even if they have
the same frequency.) The averaging interval needs to
be long enough to eliminate low-frequency oscillations
due to interference of wave components closely spaced
in frequency (Chang, 1969).

As a consequence of the lack of correlation between
wave components of different wavenumber, we can
derive equations corresponding to (5.1) and (5.2) for
arandom wave field simply by summing or integrating
the individual contributions due to the different wave-
number components in the directional wave spectrum,
performing individual rotations of the coordinate axes
(a, b) as necessary.

Low frequency oscillations due to interference of
nearby wavenumber components are of interest in
themselves: they will give rise to Langmuir circulations
(LCs)—helical roll vortices, which occur in the near-
surface layer of the ocean and other water bodies and
which have axes nearly parallel with the wind and wave
direction. Langmuir circulations give rise to zones of
surface convergence and divergence, and contribute to
near-surface mixing. The interference of wave com-
ponents to produce L.Cs has been demonstrated in the
case of a constant eddy viscosity by Craik and Leibo-
vich (1976), N. E. Huang (1979) and Weber (1985).
Using nonaveraged versions of (4.1)-(4.3), a theory of
LCs in the presence of a vertically varying eddy vis-
cosity can be developed.

c¢. Spatial variation of the wave field

The parameter d; appears in the surface boundary
condition (5.2) as a contribution to the factor [d,
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+ (x — x¢) — (d; + 1d;)].~0, Which in turn represents
the rate at which the waves would grow as a result of
external forces (in a reference frame moving with the
group velocity) in the absence of dissipative effects.
Thus, the surface boundary condition can be obtained,
if we do not have direct measurements of the spatial
variation of the wave field, by applying appropriate
theories of wave growth based on field measurements
of pressure fluctuations over wave crests, laboratory
experiments, etc. (Hasselmann et al., 1973; Snyder et
al., 1981; Mitsuyasu and Honda, 1982). The applica-
tion of such wave growth theories is performed rou-
tinely in numerical wave models (e.g., see Komen et
al., 1984). It should be noted that the surface boundary
condition (5.2) is not affected by the nonlinear inter-
action of different wave components. Such interactions
preserve total wave momentum, so that there is no
resultant momentum excess or deficit to be compen-
sated for at the surface.

d. Evaluation of eddy viscosity profile

The theory developed in this paper is self-consistent
in the sense that the eddy viscosity parameterization
of momentum transfer is used not only to relate shear
stress and the rate of shear in the current, but also to
control the dynamics of the surface gravity wave field.
Thus, the eddy viscosity profile and the rates of wave
dissipation are intimately related: as we have already
stated, we assume that all wave dissipation processes
are included within the eddy viscosity formulation.
Hasselmann (1974) and Komen et al. (1984) have de-
termined rates of wave dissipation as a function of fre-
quency and global wave parameters from general theo-
retical considerations and from numerical experiments.
Since longer-wavelength components penetrate deeper
into the water column, their dissipation will be affected
by the values of eddy viscosity at greater depths than
shorter-wavelength components. This effect can be seen
by examining the behavior of the dimensional version
of (3.28), the exponential factor in the integral decaying
more slowly with depth for longer-wavelength com-
ponents. Thus, if we have an expression for the rate of
wave dissipation as a function of frequency, we can
estimate the eddy viscosity profile within the zone of
wave influence. The eddy viscosity profile below the
wave zone must, of course, be estimated by other
means.

e. Summary: applications

It should thus be relatively straightforward to apply
and extend the theory to the case of a random wave
field, to incorporate the effect of spatial variations of
the wave field, and to investigate more closely the near-
surface eddy viscosity profile by considering frequency-
dependent rates of wave dissipation. The most prom-
ising next step will be to combine the theory with the
output from a numerical wave model, using the wave



950

model’s input and dissipation source terms in the
equation for the surface boundary condition.

7. Conclusion

This paper extends the Lagrangian coordinate per-
turbation theory treatment developed by Weber
(1983a,b) and in J1 for wind and wave induced currents
in a viscous rotating sea, to the case of a sea which has
an eddy viscosity which is a function of the Lagrangian
vertical coordinate. The main differences caused by
the introduction of a vertically varying eddy viscosity
are as follows:

(i) The surface gravity wave velocity field has a small
rotational component within the water column {4x(c)],
as well as near the surface boundary [BM(c)].

(ii) The rate of wave dissipation is a functional of the
viscosity within the zone of wave influence [see (3.28)].

(iii) The differential equation which describes the
evolution of the quasi-Eulerian current within the water
column has an additional source term, locally propor-
tional to the vertical gradient of the eddy viscosity.
This source of momentum is balanced exactly by an
additional term in the surface boundary condition,
which represents the contribution to wave damping
caused by the eddy viscosity within the water column
being different from its surface value.

(iv) As would be expected, the VW(C-? term in the
equation for the evolution of the quasi-Eulerian current
profile is replaced by (3/0é)[» W ¥'].

The behavior of the quasi-Eulerian current depends
on the net rate of wave growth, but is independent of
the partition of the rate of wave energy input between
horizontal and vertical cyclic surface stress variations.

Numerical simulations were performed with a con-
stant wind stress and monochromatic wave field in the
same direction, applied simultaneously at ¢ = 0. The
eddy viscosity was assumed to be proportional to depth,
using Madsen’s (1977) relation, except for near the
surface where it was modified to account empirically
for the direct effects of breaking waves. Results for the
Lagrangian mean current were in reasonable agreement
with observations, given the crude nature of the wind
and wave forcing which was used. The deviation of the
current from the wind and wave direction was closer
to observed. drift current observations than the corre-
sponding results for a constant eddy viscosity (Weber,
1983b). The results are, in fact, in agreement with those
of Madsen’s (1977) model below the zone of wave in-
fluence. Within the wave zone, agreement with Mad-
sen’s results is better for the Lagrangian mean rather
than the Eulerian mean current.

It is straightforward to apply the theory to the case
of a random seastate. A promising approach will be to
couple it with the output from a numerical wave model,
using as input data the wave model’s input and dissi-
pation source terms as well as the wind stress and the
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directional wave spectrum. We should also be able to
use the frequency dependence of the dissipation source
function to estimate the vertical variation of the eddy
viscosity within the wave zone.

If a nonaveraged version of Egs. (4.1)-(4.3) is used,
the theory can be extended to investigate Langmuir
circulations and other phenomena dependent on the
interaction of wave components of the same frequency
or of closely spaced frequencies, in the presence of a
vertically varying eddy viscosity.
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