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ABSTRACT

The effect of ocean waves on near-surface currents is a topic about which
interest has recently revived, as a result of various factors including the
prediction of the drift of oil spills from marine accidents. In order to
evaluate properly the effect of waves, it is necessary to employ a consis-
tent formulation of the energy and momentum balance within the airflow,
the wave field, and the water column. Although the usual Eulerian equa-
tions of fluid mechanics are often used, it is also very desirable to use
a coordinate system which can represent vertical variations near the sea
surface at scales smaller than the wave height: surface-following coor-
dinate systems fall into this category. We review the application of such
coordinate systems, and relate them to the Generalized Lagrangian Mean
formalism of Andrews and McIntyre.

KEY WORDS: Ocean waves; wave–current interaction; wave refrac-
tion; Langmuir circulations; wave setup.

INTRODUCTION

The need to understand and forecast the state of the ocean, including
the prediction of the drift of oil spills from marine accidents, is promot-
ing the use of remote sensing techniques that measure surface velocities
(High-Frequency radar and interferometric Synthetic Aperture Radar),
together with the realistic numerical modeling of ocean currents. This
context opens perspectives for the modeling of ocean waves and currents
in a consistent way since both are important components of the jigsaw
puzzle of ocean surface processes.

However, this task is complicated by the many interactions of waves and
currents, and the specific theories that have been developed to address
one or the other. Our intention is thus to reconcile the views of wave
experts that have tended to follow Phillips (1977) and Bretherton and
Garrett (1968) to describe the interaction of waves and the mean flow,
and the views of surface mixing experts that have adopted the Craik-
Leibovich (CL) theory (Leibovich 1983) to describe the generation of
Langmuir circulations that are important for mixing in the upper ocean
and arise from a coupling of waves with a vertically sheared current.
That theory represents wave-mean flow coupling by the introduction of
a uniform (at the very least non-divergent) and constant Stokes drift, it is
thus a one-way forcing of the wave field driving the mean flow. It is quite
successful in explaining Langmuir circulations (Leibovich 1983), but it
does not reflect the feedback of the mean flow on waves, previously dis-
cussed by Garrett (1976). This produces a steady source of momentum
and vorticity for the mean flow (e.g. Gjaja and Holm 1996), that also

needs to be taken into account.

The vortex force that generates Langmuir circulations can be derived
from the mean flow momentum equations that use radiation stresses in
the fashion of Phillips (1977) for depth-integrated momentum equations,
and more importantly how this force must be balanced, for the total flow
by the refraction of waves over the surface current pattern. This leads
to an interpretation of the Langmuir circulation as a wave-mean flow
recoil mechanism, similar to the effect described by Bühler and McIntyre
(2003).

In treating the problem, it is also useful to apply surface-following co-
ordinates, in order to resolve mean flow variables at distances from the
surface which are less than the wave height. A suitable method is the
Generalized Lagrangian Mean (GLM) theory of Andrews and McIntyre
(1978a), which can also be coupled to a version of the conservation law
for wave action (Whitham 1967, Andrews and McIntyre 1978b). This
can provide a practical parameterization of wave-mean flow coupling
terms from wave spectra, accurate to second order in the wave slope,
thereby extending Jenkins’ (1989) results.

We finally discuss the implications our findings for the generation of
Langmuir circulations and the general problem of coupled wave-ocean
circulation modeling.

DEPTH-INTEGRATED EQUATIONS

We generally follow Hasselmann’s (1971) notations we use dummy
Greek indicesα andβ for horizontal componentsx1 = x andx2 = y.
Latin indicesi andj refer to Eulerian coordinatesx1 = x, x2 = y, and
x3 = z. We defineρa andρw to be the densities of air and water respec-
tively. We definep as the pressureP minus the hydrostatic equilibrium
pressure

∫
(−ρg) dx3. Means may be time averages or averages over

flow realizations.

The mean horizontal momentumM is separated into a mean flow and a
wave part,

M = Mm + Mw, (1)

with

Mm
α =

∫ ζ

−h
ρwuαdz, (2)
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and

Mw
α =

∫ ζ

ζ

ρwuαdz, (3)

whereζ (x, y) is the position of the free surface,(ux, uy) is the horizon-
tal velocity vector, and the overbar denotes the averaging operator.

The present derivation is a simple extension of Ardhuin et al. [2003,
manuscript submitted to Journal of Physical Oceanography], where a
mean current is added, which is an extension of Garrett’s (1976) equa-
tions, to which the Coriolis force is added.

The horizontal mean flow momentum equation is then

∂Mm

∂t
=

[
∇·τm − f3e3 ×Mm + pa∇ζ + (pm + gh)−h∇h

+Ta −Tb]+ pw−h∇h− f3e3 ×Mw −∇·S (4)

−∇·τ rad2 − ∂Mw

∂t
,

whereτm is a horizontal tensor that contains mean momentum advection
terms and mean-flow pressure gradients (including hydrostatic pressure)
and viscous stresses,

τmαβ = −
∫ ζ

−h
ρw (uαuβ) + δαβ (pm − ρwgz) + µw

∂2u1

∂xβ∂xβ
dx3, (5)

Ta is the wind stress vector, equal to the total atmosphere to ocean mo-
mentum flux, andTb is the bottom stress vector, equal to the total ocean
to bottom momentum flux. These two fluxes are counted positive down-
wards. The last five terms in (4) represent wave effects on the mean flow
that are not represented in current ocean-circulation models.pw−h

∂h
∂xα

can be neglected in deep water or for mild bottom slopes and will not be
considered here. In steady quasi-geostrophic conditions, the divergence
of the Hasselmann stress∂TH/∂x3 = −f×Mw, will drive a mean Eu-
lerian transport that will exactly balance the Stokes drift, giving a zero
Lagrangian wave-induced transport. In other conditions, such as varia-
tions in time of the wave field, the Lagrangian wave-induced transport
may not be balanced and waves may drive net mass transports (Hassel-
mann 1970).

We have chosen here to use the usual notationSαβ for the radiation
stresses in the absence of a mean current. The tensorS can be computed
from the wave elevation variance spectrumF , to second order in the
wave slope,

Sαβ = ρwg

∫
k

F (k)

[(
Cg
C
− 1

2

)
δαβ +

Cg
C
kαkβ/k

2

]
dk (6)

with C andCg the intrinsic phase and group speed velocities, respec-
tively.

The termτ rad2 represents the advection of wave momentum by the mean
flow,

τ rad2
αβ = UαM

w
β + UβM

w
α . (7)

Following Garrett (1976), vortex force appears by using the equation for
the conservation of the wave action. We shall keep here the possibility
that the action evolves with a source termStot/σ,

∂(E/σ)

∂t
+∇· [(U + Cg)E/σ] =

Stot

σ
. (8)

This equation for monochromatic waves can be seen as the limit for
small∆k of it spectral counterpart, generally used in wave models, and
here integrated over wavenumbers,

∂
∫
k
(F (k)/σ)dk

∂t
+∇

∫
k

· [(U + Cg)F (k)/σ] dk

=

∫
k

Stot(k)

σ
dk. (9)

Using the time rate of change of the wave numberk,

∂kα
∂t

+ (U + Cg)
∂kα
∂xβ

= −kβ
∂Uβ
∂xα

, (10)

and the fact thatMw
α =

∫
k
kαF (k)/σdk, we find

∂Mw
α

∂t
= − ∂

∂xβ

[
Mw
α

(
Uβ + Cg

kβ
k

)]
−Mw

β
∂Uβ
∂xα

+

∫
k

kαStot(k)

σ
dk. (11)

This equation can now be replaced in (4) to give

∂Mm

∂t
=

[
∇·τm − f3e3 ×Mm + pa∇ζ + (pm + gh)−h∇h

+ Ta −Tb]+ Fm, (12)

with the wave forceFm taking the form

Fmα = [Mw × (Ω + f3) e3]α −
∫

k

kαStot(k)

σ
dk

− Uα
∂

∂xβ
Mw
β −

∂

∂xα
Π?, (13)

with Ω the vertical component of vorticity, assumed vertically uniform,
and

Π? =

∫
k

[(
Cg
C
− 1

2

)
F (k)

]
dk. (14)

The continuity equation is given by Hasselmann (1971) and Garrett
(1976),

ρw
∂ζ

∂t
+ ρw

∂

∂xα

[
Uα
(
h+ ζ

)]
= −∂M

w
α

∂xα
. (15)

These equation must be compared to the Craik-Leibovich (CL) equa-
tions for vertically uniform currents. The momentum equation (13) is a
small extension of Garrett’s (1976) equation (3.11), written in the form
of Craik and Leibovich. The vortex force term that drives Langmuir cir-
culations,Mw × (Ω + f3) e3, and includes the planetary vorticityf3

is common to both equations. TheΠ? term here is the vertically inte-
grated wave-induced pressure gradient and should be part of the modi-
fied pressure term in Craik-Leibovich equations, that is usually written
as$ =

∣∣u + ust
∣∣2 − |u|, whereust is the Stokes drift andu is the hor-

izontal Eulerian velocity vector. However, the Craik-Leibovich theory
assumes that the Stokes drift is non-divergent and the resulting defini-
tion of the mean pressure is affected by this definition (see Holm 1996).
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It is therefore not clear that the depth-integrated equations of motion are
the same, to second order in the wave slope, when horizontal variations
in the wave field are allowed.

Our equations also suggest that it may be desirable to include the vertical
variation of currents to generalize the radiation stress approach followed
here. However, shear at the surface is generally weak (e.g. Smyth et al.
2002), and should only affect the wave field to a limited extent. More
importantly, the radiation stress approach shows that the ‘vortex force’
compensates for the refraction force exerted on the wave field. Thus the
existence of a vortex force in a Langmuir circulation system must be
accompanied by wave refraction over the surface current pattern. In this
context it is likely that the current pattern creates a wave field pattern,
with gradients that should be taken into account. This coupling also
offers one more mechanism for wave scattering. Since Craik-Leibovich
theory as such assumes a uniform wave field, a more general framework
must be sought. This does not invalidate the explanation of Langmuir
circulations by Craik-Leibovich theory, but it may modify the structure
and strength of the wave forcing.

SURFACE-FOLLOWING COORDINATE FORMULATIONS

A more general set of equations can be obtained by removing the integra-
tion over depth, using the same approach with Eulerian coordinates and
a small surface slope expansion of wave variables. However, this type
of approach fails above the wave trough level because a fixed volume
element is successively filled by air and water, requiring a two-phase
approach. A number of different approaches, involving changes of vari-
ables, have been suggested to remove this difficulty: a sigma-coordinate
transformation (Mellor 2003); the generalized Lagrangian mean (GLM)
formulation (Andrews and McIntyre 1978a); a limited time Lagrangian
approach (Pierson 1962, Weber 1983, Jenkins 1987). Similar surface-
following coordinate approaches have been employed for airflow over
waves (Brooke Benjamin 1959, Jenkins 1992, Miles 1996).

The GLM formulation, in which the mean current velocity (uL) is equal
to the mean velocity of fluid particles, is perhaps the approach which
is the most dynamically satisfactory. In fact, the Lagrangian averaging
technique employed in the GLM formulation has been shown to pre-
serve the variational structure of the Euler-Poincaré framework for fluid
dynamics (Holm 2002). It is necessary to bear in mind some disad-
vantages of the technique. The equations derived are rather complex,
although not necessarily more so than other methods involving curvilin-
ear coordinates. A pure Lagrangian coordinate formulation has a more
direct interpretation, with a coordinate transformation jacobian which is
constant for incompressible flow, although it cannot be applied for long
times due to the distortion of the coordinate system. A sigma-coordinate
method, in which the coordinates move only vertically, leads to a sim-
pler interpretation of vertical fluxes, since there is no variation of the area
of two-dimensional cross-sections. If, as is the case for breaking waves
and in atmospheric flow over waves, there exist critical layers where the
mean flow velocity is equal to the wave phase speed, the amplitude of
the oscillatory part of the coordinate transformation tends to infinity and
the GLM method breaks down, so that a more general curvilinear coor-
dinate formulation becomes necessary. It should also be noted that the
GLM coordinate system is not completely surface-following: the mean
equations are with respect to a fixed Cartesian coordinate system, and
the air-water interface has a vertical coordinate equal to the Lagrangian

mean vertical surface displacementζ
L

, a quantity which is of second
order in wave slope for small-amplitude surface waves, and will vary in

space and time (Grimshaw 1984, Groeneweg and Klopman 1998).

Nevertheless, the GLM technique has provided a very powerful foun-
dation for the analysis of wave–mean flow interaction. It provides a
convenient framework point for modeling wave–current interaction in a
consistent manner, particularly since related equations for the evolution
and propagation of waves, in terms of wave action conservation, have
also been formulated (Andrews and McIntyre 1978b).

GLM foundation for wave–current coupling

The following set of equations is based on those of Andrews and McIn-
tyre (1978a;b)—see also Craik (1985):

D
L

(uLi − pi) + uLk,i(u
L
k − pk) + (f×uL)i + Π

L
,i

= −XL
i − ξk,iXl

k, (16)

Π,i ≡ Fi +
∂

∂xi

∫
dP

ρ
,

D
L
ρ̃+ ρ̃∇·uL = 0, (17)

D
L ≡ ∂/∂t+ uL·∇,

D
L
Aη + ρ̃−1∇·Bη = H. (18)

In the above equations, we employ the notation( · ),i for partial differen-
tiation in theith coordinate direction. The pressureP does not include
the hydrostatic correction of the previous sections.

The generalized Lagrangian meanφ
L

of a dependent variableφ is de-
fined in terms of the particle displacementξ(x, t) due to the wave mo-
tions, as follows:

φ(x, t)
L

= φξ(x, t), φξ(x, t) = φ(x + ξ, t), (19)

with ( · ) being a suitable averaging operator. The generalized La-
grangian mean (GLM) velocityuL is defined by(
∂

∂t
+ uL · ∇

)
[x + ξ(x, t)] = u(x + ξ, t). (20)

We also define( · )l = ( · )ξ − ( · )
L

.

In Eq. 16,pi = −ξj,i[ulj + ( 1
2
f×ξ)j ] is the wave pseudomomentum per

unit mass,f is the planetary vorticity vector,Fi represents external body
forces, andXi represents dissipative forces. In (17),

ρ̃ = ρξJ, J = det{δij + ξi,j}, (21)

J being the Jacobian determinant of the mappingx 7→ x + ξ.

In Eq. 18,Aη = ξj,η[ulj + ( 1
2
f×ξ)j ] is the generalized wave action

density, andBηi = P ξξj,ηKji, whereKji is the(j, i)th co-factor of the
JacobianJ in (21). The averaging is in this case with respect to the label
η, for which various alternatives can be chosen.

In the case of waves propagating in thex1-direction, we may choose
η = −x1 (Craik 1985), andAη becomesA−x1 , thex1-component of
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wave pseudomomentum. We may also chooseη = t − k·U/σ (see
below), for whichAη = At is now the wave energy density, orη = −θ,
θ being the wave phase, for whichA−θ is the wave action density. The
relations (x, momentum), (time, energy), and (phase, action), are the
same as the relation between translational symmetry with respect to a
coordinate, and the related conserved mechanical quantity, as specified
in Noether’s Theorem.

For adiabatic or constant-density flow,H is given by Andrews and McIn-
tyre (1978b) as

H = −ξi,ηXl
i . (22)

If the density is constant and the only body force is gravity, expressed
by a potentialΦ, we have in in Eq. 16, from Andrews and McIntyre
(1978a):

Π
L
,i =

1

ρ
P
L

+ Φ
L
,i −

{
uξj

[
1
2
uξj + ( 1

2
f×ξ)j

]}
,i

. (23)

We may also assume that the forcesXi, which may represent viscosity
or the averaged effects of smaller-scale turbulent eddies, conserve mo-
mentum locally, and so may be expressed as the divergence of a stress
tensor. In a fixed coordinate system,Xi = ∂τij/∂xj , which becomes in
the GLM representation (cf. Jenkins 1992), we have

Xξ
i = (τ ξilKlj),j . (24)

Surface gravity waves, without friction or rotation.

We first assume that the wave field consists of surface gravity waves,
on a fluid of depthh, and neglect frictional and Coriolis forces. Since
the waves are restricted to propagating parallel to the surface, the rele-
vant quantities for wave energy, action, and pseudomomentum are those
obtained by integrating with respect to the vertical coordinate.

We consider firstly a single wave component, with amplitudea, phaseθ,
wavenumberk = ∇θ, and intrinsic angular frequencyσ = −θ,t+k·U,
the dispersion relation beingσ2 = gk tanh kh, wherek = |k|. We
have, toO(ε),

ξα = <
{
ia
kα
k

eiθ cosh(k(x3 + h))

sinh kh

}
, (25)

ξ3 = <
{
a
eiθ sinh(k(x3 + h))

sinh kh

}
,

ulα = <
{
a
kα
k
σ
eiθ cosh(k(x3 + h))

sinh kh

}
, (26)

ul3 = <
{
−iaσ e

iθ sinh(k(x3 + h))

sinh kh

}
,

P l = −ρgξ3 + <
{
ρa
σ2

k

eiθ cosh(k(x3 + h))

sinh kh

}
. (27)

The “wave advection” velocityU = (U1, U2) is given approximately by

Uα = 2k

∫ 0

−∞
uLα(x3) e2kx3 dx3 (28)

(Teague 1986).

The most convenient definition ofAη usesη = −θ, so that, toO(ε2),

∫ 0

−h
ρA−θ(x3) dx3 =

1

2

ρga2

σ
=
E

σ
, (29)

the usual definition of wave action. If we assume the waves to propagate
in thex1-direction, the non-advective wave action fluxB−θ is given by:

B−θ1 = −P ξξ1,θK11 − P ξξ3,1K31

B−θ3 = −P ξξ1,θK13 − P ξξ3,1K33 (30)

A noteworthy feature of (30) is that the surface pressure-slope covari-
ance, proportional tokαP ξξ3,α, gives a negativeO(ε2) contribution to
the vertical wave action flux, as is required when waves are generated by
the Jeffreys–Miles mechanism. Andrews and McIntyre (1978b) noted
that, toO(ε2),Bηi was equal toP ′ξi,η plus a term with zero divergence,
whereP ′ is the Eulerian pressure fluctuation.

Radiation stress and pseudomomentum flux.

Equation 18 may be re-written as

(ρ̃Aη),t +∇·(uLρ̃Aη + Bη) (31)

(Andrews and McIntyre 1978b, Eqs. 2.15–16). ToO(ε2), neglecting
advection by the mean current,∫ 0

−h
Bη(x3) dx3 = ρCg

∫ 0

−h
Aη(x3) dx3. (32)

It can thus be seen that the waves transport wave energy and pseudomo-
mentum, as well as wave action, at the same speed as the wave action.

The quantityB−x can be regarded as a radiation stress. For waves prop-
agating in thex1-direction, toO(ε2) in the absence of a mean current,
when integrated vertically it becomes

R11 =

∫ 0

−h
B−x

1 (x3) dx3 = E

(
1

2
+

kh

sinh 2kh

)
= E

Cg

C
. (33)

For finite water depth, this is different from the radiation stress computed
in a fixed, Eulerian coordinate system (Longuet-Higgins and Stewart
1962):

S11 =

∫ ζ

−h
(P + ρu2

1) dx3 −
∫ ζ

−h
ρg(ζ − x3) dx3

= E

(
1

2
+

2kh

sinh 2kh

)
. (34)

However, the result (34) is also obtained in the GLM coordinate system,
using theO(ε2) formula

S11 =

∫ 0

−h

(
P l + (ul1)2

)(
1 + ξ3,3

)
dx3

=

∫ 0

−h

(
P lξ3,3 + (ul1)2

)
dx3. (35)
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The difference between the momentum fluxS11 and the pseudomomen-
tum fluxR11 is accounted for by anO(ε2) change in the (Eulerian) mean
surface elevation (Longuet-Higgins and Stewart 1962):

ζ = −1

2

a2k

sinh 2kh
, (36)

which corresponds to the mean Bernoulli pressure reduction at the sea
bottom due to the oscillatory wave motion,ρ[ul1(−h)]2. Horizontal
depth variations thus induce mean hydrostatic pressure gradients which
account for the variations inS11 − R11. Note that the GLM surface
elevation will in this case become

ζ
L

= −1

2

a2k

sinh 2kh
+

1

2

a2k

tanh kh
, (37)

the extra term( 1
2
a2k/ tanh kh) being required as a result of mass con-

servation.

Note that Eq. 37 is only valid in the absence of dissipative processes.
If waves break when they propagate to the shore, the momentum which
they then transfer to the mean current will, of course, cause anincrease
in the mean surface elevation.

Effect of dissipative processes.

If we apply Eq. 24 to the GLM equations (16–23), we obtain a system
in which the dissipative forces cannot change the total momentum of
the system except at the surface and bottom boundaries. A systematic
solution of the GLM equations in such a system, withf = 0 has been
given by Groeneweg and Klopman (1998).

For non-zerof , where the dissipative forces are the result of a constant
eddy viscosityν, Weber (1983) and Jenkins (1986) employed anO(ε2)
perturbation expansion in Lagrangian coordinates to derive equations
for the mean current in deep water. An important feature of the solu-
tion is a surface viscous boundary layer (vorticity layer) of thickness
O((2ν/σ)1/2), which may be regarded as altering the surface bound-
ary conditions for the fluid underneath. If wave dissipation is due to
this constant eddy viscosity, the wave pseudomomentum is converted to
momentum of the mean Eulerian current in this boundary layer.

Jenkins (1987) used the same technique with a vertically-varying eddy
viscosity, and found out that, in addition to the conversion of wave pseu-
domomentum to momentum of the mean current in the vorticity layer,
a proportion of the wave pseudomomentum also acted as a momen-
tum source for the mean current within the water column, the source
strength being proportional to the product of the eddy viscosity gradient
ande2kx3 (in deep water). The waves tend to decay according to

a ∝ exp

[
−2k2

(∫ 0

−∞
2k ν(x3) e2kx3 dx3

)
t

]
.

One can simulate wave dissipation by wave breaking and white-capping
(e.g. Hasselmann 1974), by employing a vertically-varying eddy viscos-
ity which has the same wave-frequency-dependent wave-damping effect.
It is impossible to use the same eddy viscosity to damp the wave energy
as one uses for the diffusion of momentum within the current field: the
former must be much smaller than the latter. This is because of the fact
that the current will be affected by turbulent eddies and other motions
such as Langmuir circulations, which have time scales too great to cause

much wave damping. It is therefore necessary to employ timescale-
dependent eddy-viscosity profiles in order to use this approach, as was
done by Jenkins (1989). The wave model results also had to be adjusted
to ensure that wave energy, momentum, and action were properly con-
served. In Eq. 16, we then have, for deep water,

−XL
i − ξk,iXl

k = [ν(uL − p),3],3

−
∫

k

2kN(k, x3) e2kx3 kSds(k); (38)∫ 0

−∞
2kN(k, x3) e2kx3 dx3 = 1,

where −Sds(k) is the rate of wave action dissipation, and
2kN(k, x3) e2kx3 represents how the dissipation is distributed with
depth. If the wave dissipation can be regarded as being due to an eddy
viscosityνw, thenN(k, x3) is proportional toνw. The boundary condi-
tion at the water surface is

ν(uL − p),3 =
τ

ρ
−
∫

k

kSin(k), (39)

whereτ is the total applied surface stress, andSin(k), andSin(k) is the
rate at which wave action is applied to the wave field at the sea surface,
by means of pressure or shear stress fluctuations.

Vorticity equation, and wave—mean flow recoil

Equations which describe the evolution of the vorticity field under the
influence of the Stokes drift (see Eq. 43 below), which may lead to the
development and maintenance of Langmuir circulations, were derived
by Craik and Leibovich (1976), on the basis of a rather complex pertur-
bation analysis in Eulerian coordinates. This analysis becomes simpler
if one employs the GLM formulation.

Assuming that the dissipative forces are the result of a constant viscosity
or eddy viscosityν

−Xi = ν∇2ui (40)

in fixed Cartesian coordinates, Leibovich (1980) derived the following
equations for a constant-density fluid, with relative errorO(U/c) +
O(ε2ν/(Uλ)) +O(|f |/σ):(
∂

∂t
+ uE · ∇

)
uE + f×(uE + uS) +∇(Π

L
+ uE · uS)

= uS× curl uE + ν∇2uE , (41)

∇ · uE = 0, (42)

whereuE = uL − p is, to O(ε3U), the Eulerian mean velocity (or
“quasi-Eulerian” velocity (Jenkins 1986), since it is referred to mean
particle positions rather than fixed points in space),uS = uL − uE , U
being a typical mean velocity, andε a typical ratio of particle excursion
ξ to wavelengthλ. For f = 0, Eqs. 41–42 may be reduced to the CL
equations(
∂

∂t
− ν∇2

)
Ω = (Ω · ∇)(uE + uS)− (uE + uS) · ∇Ω, (43)
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whereΩ is the wave-averaged vorticity vector (Craik and Leibovich
1976, Leibovich 1977, Craik 1985).

Holm (1996) provides an interesting treatment of the CL equations. He
derives the inviscid form of the equations by means of Hamilton’s prin-
ciple, with a Lagrangian

L =

∫ ∫ [
1

2
D|uL|2 −DuL·uS − P (D − 1)

]
d3x dt, (44)

whereD is the determinant of∇y, the (y1, y2, y3) being Lagrangian
particle labels, and theP (the pressure) is a Lagrange multiplier. The
inviscid CL equations are obtained by requiringL to be stationary with
respect to variations iny.

Refraction and wave–mean flow recoil.The refraction of waves in a
rotational mean current field has been shown by Bühler and McIntyre
(2003) to exert a force on the mean flow at locations, such as the vor-
tex core, where the wave field is in fact not present. This fundamentally
new wave–mean interaction effect is nevertheless capable of being repro-
duced within the system of equations (16–23), for example, in numerical
coupled wave—ocean circulation models. The Bühler–McIntyre mech-
anism is non-dissipative, so conserves total energy, action, and momen-
tum will be conserved, and the propagation of waves of small amplitude
under the influence of the mean current can be computed by ray tracing
or the WKBJ approximation. Any change in the wave pseudomomentum
due to refraction by the current will necessarily cause a corresponding
reaction (acceleration) of the mean flow.

An application of the technique outlined here, with the addition of dis-
sipative mechanisms, may enable us to put on a quantitative footing the
wave refraction mechanism for generation and maintenance of Langmuir
circulations (Garrett 1976), with the addition of a full three-dimensional
description of the mean and fluctuating flow field.

DISCUSSION AND CONCLUSIONS

Garrett proposed that waves would be focused in the areas of maximum
current velocity. He then went on to discuss the generation of Lang-
muir circulations as a consequence of a feedback with preferential wave
breaking in these areas. Without going that far, it is apparent that such
spanwise gradients in the wave field act as an extra force on the mean
flow (this is done through the gradient of the modified pressure in Craik–
Leibovich theory). Use of that theory is limited because of the hypothe-
sis of a divergence-free Stokes drift, which is generally not the case. In
this paper we give pointers to the use of more general theories such as
the Generalized Lagrangian Mean to model or study real conditions.

However, the current-induced relative modification of the wave momen-
tum should be of orderδMw/Mw = δU/C with δU the difference
of velocity between the Langmuir convergence and divergence zones.
The relative change in the vortex force should then be of orderδU/C
which should not exceed 10 %. If waves are indeed larger in the con-
vergence zone, the vortex force term becomes larger while the mean
wave-added pressure acts to increase the vortex force. Besides, the term
−Uα ∂

∂xβ
Mw
β in 13 would then act as a force in the downwind direc-

tion, strengthening the jets in the convergence areas and weakening the
currents in the divergence area Therefore it may be anticipated that a
varying wave field would slightly increase the asymmetry of the Lang-
muir circulations and enhance variation in downwind velocity between
convergence and divergence zones.

Although small-scale studies may use any type of formalism, application
to large scale modeling is more easily performed by adapting existing
tools, as proposed by Jenkins (1987; 1989). These are primitive equation
models with coordinates that follow a mean free surface and many possi-
ble turbulence closure schemes, and the spectral wave models. The GLM
approach summarized here, although it gives rise to a rather complex set
of equations, and although its results must be interpreted carefully as
a result of its non-constant coordinate transformation Jacobian determi-
nant, provides a good starting point, since it treats the various conserved
dynamical quantities such as energy, momentum, wave action, and wave
pseudomomentum, in a consistent manner.
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