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Abstract

In this paper, the phenomenon of ocean waves propagating over a beach with variable water depth

is re-examined. Based on the assumption of shallow water, a linearised shallow water equation is

solved with an arbitrary beach profile. These irregular beach profiles form a set of partial differential

equation with variable coefficient as the governing equation, which is the main obstacle in obtaining

analytical solutions. In this paper, two families of beach profile are used as examples. A parametric

study is conducted to investigate the influence of the beach profiles on the water surface elevation (h)

and velocities (u).
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1. Introduction

The evolution of ocean waves on beaches is the quintessential problem of coastal

engineering. The phenomenon of ocean waves traveling from offshore (deep water) to

nearshore (shallow water) is particularly important for the design and protection of

coastline. This includes the topics of wave breaking, the stability of coastline, and beach

nourishment. Also, the transmission of wave energy in the nearshore region is a dominant

factor in the design of coastal structures.
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To understand the wave phenomenon in nearshore region is commonly required to

solve the shallow water equation. The solution of shallow water wave equation is one of

the classic problems of coastal hydrodynamics, and most great hydrodynamicists and

mathematicians of the past two centuries have contributed ideas and solutions to specific

bathymetric configuration. Numerous investigations of ocean waves propagating over a

sloping seabed have been carried out. Carrier and his co-author (Carrier and Greenspan,

1958; Carrier, 1966) developed a series of analytical solutions for gravity waves

propagating on the water of variable depths. Their solutions are limited to a beach with

constant slope, although the solution for a beach with arbitrary bottom was suggested.

To date, a common-used step model is based on the uniform depth model, with an

application of the conservation of energy flux to solve the wave fluctuation with step-

varying depth (Chen and Hwung, 1982; Le Mehaute and Web, 1964). This type of

approach cannot represent the effect of a variable slope seabed bottom in the solution.

Few researchers have attempted to directly take the slope into account in the whole problem

(Keller, 1958). However, their approach is only limited to cases with small slope and small

relative water depth. Recently, with advances in numerical methods, a wave propagating over

a sloping seabed, even to the point of breaking, can be described numerically. For example, the

parabolic wave model proposed by Li (1994) has been widely used and extended to various

situations (Liu, 1994; Li, 1997, Suh et al., 1997, Synolakis, 1999).

Besides analytical approximations for wave problems, significant advances have been

made in developing mathematical models to describe fully non-linear and weakly

dispersive waves propagating over an impermeable bottom (Gobbi and Kirby, 1999; Suh

et al., 1997, Hsu and Wen, 2001, Ehrenmark and Williams, 2001). Based on the inviscid

fluid assumption, these models reduce the three-dimensional Euler equations to a set of

two-dimensional governing equations, and are usually expressed in terms of the free

surface displacement and representative horizontal velocity components, which are either

evaluated at a certain elevation, or depth averaged.

In this study, a new analytical solution is developed for the phenomenon of ocean wave

propagating over a sloping beach. Unlike previous analytical approximations, we consider

the beach with a structured shape, rather than a linear beach. Two types of beach shapes

are used as examples, and their effects on the water surface elevation will be investigated.
2. Theoretical formulations
2.1. Boundary value problem

In this study, we consider ocean gravity waves propagating over a sloping beach, as

depicted in Fig. 1. In the figure, ha is the reference water depth far from the beach, h(x,t) is

the water surface elevation, which is defined by

hðx; tÞ Z hoðxÞChðx; tÞ; (1)

where h(x,t) represents the fluctuation in the water height, and ho(x) is the water depth at

the location (x).



Fig. 1. Geometry of the general propagating problem.
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Based on the shallow water theory (Carrier and Greenspan, 1958), the governing

equations for the gravity waves on an incompressible and invisid fluid can be expressed in

Eulerian system as

ut Cuux Cghx Z 0; (2)

ht C ðuhÞx Z 0; (3)

where u is the velocity in the horizontal direction, t is the time, g is the gravitational

acceleration, and the subscripts ‘x’ and ‘t’ denote the partial differentiation respective to x

and t, respectively.

Now, we consider the problem in a Lagrangian system, and choose ha as the reference

height, the relationship between two co-ordinates is

vx

vX
Z

ha

hðx; tÞChðx; tÞ
: (4)

To simplify the problem, we linearise (4) as,

vx

vX
Z

ha

hðx; tÞ
: (5)

Then the linearised governing equations in a Lagrangian system can be expressed as

vu

vt
C

ho

ha

g
vh

vX
Z 0; (6)

vh

vt
C

h2
0

ha

vu

vX
Z 0: (7)

To simplify the mathematical expression, we non-dimensionalise the variables as

follows

ðX�;h�; h�Þ Z ðX;h; hÞ=ha; t� Z t= ha=
ffiffiffiffiffiffiffi
gha

p� �
; (8)

where the superscript ‘*’ denotes a non-dimensional variable. To avoid complicated

expressions, the ‘*’ will be ignored, and all physical variables are non-dimensional

parameters in the following section, unless specified.
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Introducing (8) into (6) and (7), the governing equations can be re-written as

vu

vt
Ch0

vh

vX
Z 0; (9)

vh

vt
Ch2

0

vu

vX
Z 0: (10)
2.2. Analytical solution

In this paper, we solve the above governing Eqs. (9) and (10) analytically. Herein, we

define a new variable by,

dR

dX
Z

1

h3=2
0

; (11)

so that Eqs. (9) and (10) become

vu

vt
C

1ffiffiffiffiffi
h0

p
vh

vR
Z 0; (12)

vh

vt
C

ffiffiffiffiffi
h0

p vu

vR
Z 0; (13)

or, eliminating u(x, t),

v2h

vt2
K

ffiffiffiffiffi
h0

p v

vR

1ffiffiffiffiffi
h0

p
vh

vR

� �
Z 0: (14)

Let CðRÞZ
ffiffiffiffiffiffiffiffiffiffiffi
h0ðXÞ

p
, we have

v2h

vt2
KCðRÞ

v

vR

1

CðRÞ

vh

vR

� �
Z 0: (15)

v2u

vt2
K

1

CðRÞ

v

vR
CðRÞ

vu

vR

� �
Z 0 (16)

in which

R Z

ðX

0

ds

C3ðsÞ
and X Z

ðR

0
C3ðsÞ ds: (17)

Note that Eqs. (15) and (16) contains the beach shape function, CðRÞZ
ffiffiffiffiffiffiffiffiffiffiffi
h0ðXÞ

p
, which

describes the variation in the beach profile with depth. In general, it is difficult to obtain

analytical solutions for equations of the form (15) and (16). However, an exact solution is

possible using the approach of Varley and Seymour (1988).
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The general solution for (15) and (16) can be expressed as

h Z
XN

nZ0

fnðRÞ
vNKnF

vRNKn
; (18)

u Z
XN

nZ0

enðRÞ
vNKnE

vRNKn
; (19)

where f0Z1=e0Z
ffiffiffiffiffiffiffiffiffiffi
CðRÞ

p
Zh1=4

0 ðXÞ, and E and F satisfy

vE

vt
C

vF

vR
Z 0 and

vF

vt
C

vE

vR
Z 0: (20)

The function E and F can be expressed as

E Z Aðt CRÞCBðt KRÞ; (21)

F ZKAðt CRÞCBðt KRÞ: (22)

where A(tCR) is given as the incident wave components, and B(tKR) is an unknown

function, which needs to be determined later.

To find B, the following boundary conditions are required:

h/0 as CðRÞ/0 (23)

u is bounded as CðRÞ/0 (24)

Using NZ1 as the first approximation, we have

h Z
ffiffiffiffi
C

p vF

vR
Cl1F; (25)

u Z
1ffiffiffiffi
C

p
vE

vR
Ck1E: (26)

With the boundary conditions, we have A(t)ZB(t), which gives us

E Z Aðt CRÞCAðt KRÞ; (27)

F ZKAðt CRÞCAðt KRÞ: (28)

If we consider the incident wave A(tCR) to be periodic of the form for an incoming

wave traveling to the left

Aðx; tÞ Z A0 cos
2p

L
ðct KxÞ

� �
Z A0 cos

2pha

L
ðX� K t�Þ

� �
: (29)

where L is the wavelength of incident wave in deep water, A0 is the amplitude of waves.
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3. Results and discussions
3.1. Beach profile

In this paper, two types of beach profiles are used:—need to make these more general—

include a parameter
†
 Case I: h0ðRÞZ ½a1 tanhðb1RÞ�4
†
 Case II: h0ðRÞZ ðc1RÞ4
Fig. 2. Beach profile—Case I.



Fig. 3. Beach profile—Case II.
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Two different beach shapes are plotted in Figs. 2 and 3. As shown in the figure, Case I

represents a case with gentle slope, which is a function of ‘[a1 tanh(b1R)]4’, while Case II

represents a case of rapidly slope, which is a function of ‘ð
ffiffiffiffiffi
c1

p
RÞ4R4’. The coefficients, a1,

b1 and c1 are listed in Table 1. In this study, we use haZ0.05L as the reference water depth,

because we are only concern with the case of shallow water. In the following discussion,

the non-dimensional variables will be represented with ‘*’ superscripts.

3.2. Case I—‘hðRÞZ ½a1 tanhðb1RÞ�4’ type beach profile

For the first family of beach profile, Case I, the values of coefficients a1 and b1 are

varied to test the influences of these coefficients on the beach profiles, water surface
Table 1

Beach profiles used in the numerical examples

Case no Coefficients

Case I-a a1Z0.2 and b1Z0.2

Case I-b a1Z0.3 and b1Z0.2

Case I-c a1Z0.4 and b1Z0.2

Case I-d a1Z0.5 and b1Z0.2

Case I-e a1Z0.3 and b1Z0.3

Case I-f a1Z0.3 and b1Z0.4

Case I-g a1Z0.3 and b1Z0.5

Case II-a c1Z0.25

Case II-b c1Z1

Case II-c c1Z2.5

Case II-d c1Z5



Fig. 4. Distribution of the water surface elevation (h) versus R for different cases (Case I).
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elevation and velocities. As shown in Fig. 2, the beach profile is more sensitive to the

coefficient a1 (with fixed value of b1Z0.2, compared with the coefficient b1.

The distribution of water surface elevation (h) versus R for the beaches with various

values of a1 is plotted in Fig. 4(a). The water surface elevation slightly increases as a1

increases before it reach the crest. Then, an opposite trend is observed between the crest

and troughs. Compared with the influence of a1, the water surface elevation is in-sensitive

to the coefficient b1, as shown in Fig. 4(b).



Fig. 5. Distribution of the Eulerian velocity (u) versus R for different cases (Case I).
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Fig. 5 illustrates the distribution of velocity (u) versus R with various beach profiles.

The amplitude of the fluctuations of the velocity increases as a1 increases near wave crests,

while it decreases near wave troughs. A similar trend is observed in Fig. 5(b). Since the

influence of b1 is less significant, we only plot the range between RZ0 and 5 to

demonstrate the influence of b1 on the velocity.



Fig. 6. Distribution of the water surface elevation (h) versus R for different cases (Case II).
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3.3. Case II—‘hðRÞZc2
1R4’ type beach profile

Another family of beach profile, Case II, represents a steeper beach profile. The beach

profile is very sensitive to the coefficient c1, as shown in Fig. 3. Compared with Case I, the

influence of this family of beach profile significantly affects the water surface elevation and

velocity, as shown in Figs. 6 and 7. It is noted that the amplitude of h increases as R increases.

This is the limitation of the present solution. That is, the present solution is only valid in

shallow water. For deep water or intermediate water, the present solution will be invalid.
Fig. 7. Distribution of the Eulerian velocities (u) versus R for different cases (Case II).
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4. Conclusions

In this paper, an exact solution for linearised shallow water equation with arbitrary

beach profile is derived. Two families of beach profiles, Case I ðhðRÞZ ½a1 tanhðb1RÞ�4Þ

and Case II ðhðRÞZc2
1R4Þ are considered. A parametric study indicates that coefficients a1

and c1 significantly affect the beach profile, water surface elevation and velocity.
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