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Formation of Water Waves by Wind. 241

The difference in the magnitude of the interference effects is sufficiently
obvious from these curves. The variation in the form of the models shown in
fig. 1 is considerable, and it would have been of interest to compare forms
intermediate between those shown for the rear part of the model; but equa-
tions for such curves led to expressions for the wave resistance which were too
complicated for numerical calculation. However, it may be inferred that for
any case in which the lines of the model are smoothed out in this manner
there will be a very considerable reduction in the magnitude of the interference
effects.

On the Formation of Water Waves by Wind (Second Paper).

By Harorp JerrreYs, M.A., D.Sc., F.R.S., Fellow and Lecturer of St. John’s
College, Cambridge.

(Received November 24, 1925.)

In a previous paper* I investigated the problem of the formation of waves on
deep water by wind, and found that the available data were consistent with the
hypothesis that the growth of the waves is due principally to a systematic
difference between the pressures of the air on the front and rear slopes. Lambt
had already discussed the maintenance of waves against viscosity by an approxi-
mate method, but without obtaining numerical results. Being under the
incorrect impression that Lamb’s approximation would not hold for the short
waves I was chiefly considering, I proceeded on more elaborate lines. It now
appears, however, that Lamb’s method is not only applicable to the problem of
waves on deep water, but is readily extended to cover the case when the water
is comparatively shallow, and to allow for surface tension. The fundamental
approximations are first, the usual one that squares of the displacements from
the steady state can be neglected, and second, that viscosity modifies the
motion of the water to only a small extent. The motion of the water can then,
to a first approximation, be considered as irrotational.

With the previous notation, let { be the elevation of the free surface, z, ¥, 2
the position co-ordinates, ¢ the time, U the undisturbed velocity of the water, A

* <Roy. Soc. Proc.,” A, vol. 107, pp. 189-206 (1925).
1 ¢ Hydrodynamics,” §§ 349, 350.
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the depth, and ¢ the velocity potential. Also let o, p, ¢, and Y denote respec-
tively 0/dt, 0/0x, 8/dy, and 0/0z, and write
P = M)

Further, let the ratio of surface tension to density be T’. Then the velocity
potential satisfies Laplace’s equation

(3 =) =0, @)
whence
¢ = Uz -+ €A+ ¢ "B (3)
where A and B are independent of z. At the free surface we have
and also
=% — o+ UL, ()
At the bottom z = — h, and w==0. Hence
e"™A — "B =0, (6)
and

o+ Up coshr(z + k)C
7 sinh A )

¢ =Us+ (7)
The disturbance of pressure at the surface z=101is g (p — p’) T+ pT%,
allowing for the weight of the air displaced, but not for the disturbance of its
velocity. It is also equal to —p (¢ + Up) (¢ — Uz).

Hence
2 N
[Kﬁ‘_’*_‘_{_jﬁ_ coth 7k + g S T'rﬂ {=0. _ (8)
. 7 P .
Suppose now that the water is initially at rest, so that U = 0, and assume that
= acos (yt — xx) cos ky. (9)
Then
N |
b= —1 %—@ sin (vt — ) cos &'y, (10)
' 7 sinh 7h
where now :
7‘2 == K,'2 —}'* IC’?‘. (11)

The kinetic energy of the water is given by
o — OH 4% a3 (12)
on

taken over the bounding surfaces, dn being an element of the outward normal.
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The mean kinetic energy of a column of the water, of unit cross section, if «’ is
not zero, is then evidently

2,2

10 Y% coth 7k, (13)

T
since O¢/on is zero at the bottom. The gravitational potential energy is
3g9(p — @) € per unit area, and its mean valueis 3¢ (o — p") @ The potential
energy due to the extension of the surface is 1T’ [(p%)* -+ (¢%)*], and its
mean value is §pT"7%¢2. The mean potential energy per unit area is therefore
La® [g(p — @) + pT'#%], which, by (8), is equal to the mean kinetic energy.
The total energy per unit area is therefore

22
E = 1o L% coth rh. (14)
r

The rate of dissipation of energy is
,‘an
== dS 15
. j j on 19)

where p. is the mechanical viscosity, otherwise denoted by vp, and Q is the
resultant velocity. Now

Q= (pg) + (¢4)° + (Y9)% ()

and its mean value at a given depth is found, after some simPliﬁcation, to be
2 . Yzaz Dpe 1

Q —-————Sinh% 7 cosh 27 (z -+ &). | ) |

The mean value of 0Q?/on at the bottom is zero. At the surface

<%%2> = 1y%a’® coth rh. (18)

The rate of dissipation in a column of unit cross section is therefore equal, on an
average, to

pry*a® coth rh. (19)

Now suppose the wind to have velocity V, and call the wave velocity c.

Then

¢ =/k. (20)

The velocity of the wind relative to the crestsis V — ¢, and if s be the shelter-

ing coefficient* the part of the pressure of the air that contributes to wave

growth is sp” (V — ¢)? p{. The rate at which the pressure does work per unit

* Jefireys, loc. cit., p. 193.,
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area is equal to the product of the pressure and the downward normal velocity.
Thus it is equal to

sp" [(V — ¢)* pll[— oC1 = sp" (V — ¢)* yxa?® sin? (yt — k) cos® K'y,
and its mean value is
1sp" (V — o) yua?. 21)
From (14) and (19), the energy, in the absence of wind, satisfies the equation
2.2
%( 1o y_:z_ coth ﬂz» = — pry’a® coth rh, (22)

and hence @ varies like exp(— 2vr%). The only effect of the three-dimensional
character of the wave is then to replace « by r. If " were zero the mean value
of cosx’y would be 1 instead of %, but this affects all the quantities concerned
and the growth or decay of waves involves only their ratios. Neither finiteness
of depth nor surface tension affects the rate of decay.

From (19) and (21) we see that the wave will grow if

15" (V — ¢)?ve > vpry® coth 7, - (23)

which may be written

N 24
c s’ tanh 7h 24)
We recall that, by (8),

¢ = [q e _O e+ T'r{l —/—:,—ztanh rh. (25)

Now if V is given the left side of (24) increases steadily as ¢ diminishes, and
therefore has its greatest value when ¢is a minimum. The right side increases
steadily with », and therefore, subject to « being the same, is an increasing
function of x’. By (25), ¢is also an increasing function of «” if « is kept constant.
Hence if &’ is not zero, we can increase the left side of (24) and decrease the
right side by decreasing #’. The inequality (24) therefore has the best chance of
being satisfied if " = 0. Thus the easiest waves to excite are always two-
dimensional.
Taking now «" == 0, (25) becomes

= l‘z e—e T,K} tanh «h, (26)
K -
whence

2¢ gf = [— ﬂ, e -+ T’] tanh «h -+ [% E—-—;—Q— |- T’/c} hsech®«h. (27)

dre Kk 9
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When « is zero, this is negative ; when « is infinite, it is positive ; and, indeed,
when « is such that ’
ge—f=m, (28)
Kep
2¢ (dc/dk) is positive. Thus there is always a minimum velocity, and the
corresponding wave-length is greater than that which gives the minimum
velocity on deep water. The minimum velocity is evidently less than the
minimum velocity on deep water.

If now « is such that the wave-length is less than that which corresponds
to the minimum wave velocity, we see that, as « decreases, ¢ decreases, and
therefore (V — ¢)?/c increases. At the same time «/tanh «/ decreases. Thus
the inequality (24), if satisfied by any value of « in this range, will be satisfied
by the value giving the minimum velocity. The easiest wave to excite is
therefore never a ripple, in the Kelvin sense.

We are therefore limited to gravity waves in two dimensions. Now the
depth enters (24) and (25) only through tanh «h, which is practically unity if
kh> 15, and practically «h if kh <0-5. The former case is that of deep
water, which was examined in the previous paper. If indeed we ignore T’
and put tanh «h =1,

2=9L2_"°
£ P
and
KC = Lq_ b———P — P
c ¢
Then (24) becomes
(V — o> 2 le—¢) (jp," e, (29)

which is identical with equation 3 (14) of the previous paper. This was there
found to imply that the easiest wave-length to excite was about 8 cm., based
on the observational fact that waves first appear when V is about 110 ¢m. /sec.,
and itself agreeing with observation so far as yet tested. Then x = 0-7/1 cm.
nearly, and then if «h =15 we must have 2 =2 cm. nearly. The former
theory should, then, hold for water of all depths greater than about 2 cm.
The critical wave-length is great enough for the neglect of surface tension to
be justifiable.
Taking now the other extreme case, where tanh «% is replaceable by «b,
we find that (24) and (25) reduce to
(V—0)* _4vp
c sp’h’
¢t = (g + T'«®h, (31)

(30)
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where the unimportant factor (p—p’)/p has now been dropped. The right
side of (30) is now a constant, and the easiest wave-length to excite, therefore,
corresponds to the smallest wave-velocity. This is evidently 4/(gh), provided
the wave-length is several times 274/(T"/g) or 18 cm. Then

vV — (Gp>2E (L] (2
sp’ \ h

Thus the velocity needed to raise waves is determinate. But this analysis is
only valid if «h <0-5, which for a wave-length of 1-8 cm. would make
h <014 cm. ; actually, with longer waves, it may be several times greater.
But a further restriction is operative. The minimum velocity is less, and the
corresponding wave-length greater, than are applicable in deep water. On
both grounds the period is greater; the period corresponding to the least
velocity on deep water is about 0-08 sec. Now viscosity is dominant through
a region whose thickness is about the square root of the product of the kinematic
viscosity and the period, or, with these values, 0038 cm. The conditions
of shallow water will increase this result several times, and further viscosity
will be operative both at the top and the bottom, thus again doubling the
thickness affected. Thus in long waves on shallow water the motion will
be dominated by viscosity, and no wave-formation will be possible. The
only ‘waves capable of being formed, therefore, are those whose length is not
great enough to make the shallow-water approximation valid; the easiest
waves to form have, therefore, lengths not more than about four times the
depth. This agrees with what is observable in shallow roadside puddles.
When the wind is strong enough to raise considerable waves on deep water,
it often produces no noticeable disturbance in these puddles ; a strong wind
will raise waves, but their length does not exceed about 2 ecm. It is easily
found from (24) that waves of this length would be formed on deep water by
a wind of 160 em./sec., and this would hold for depths down to about 1 em.

Summary.

On the hypothesis that, in a first approximation, water waves may be
considered irrotational, viscosity and other factors tending to change the
amplitude being small, it has been found possible to investigate the conditions
of growth of waves under the action of wind, even when the depth is finite
and surface tension is allowed for. It is found that the rate of decay of waves,
in the absence of wind, is independent of the depth and the surface-tension.
The easiest waves for a wind to raise are always two-dimensional, and are



The Excitation of Soft X-Rays. 247

gravity waves, not ripples. The wind velocity needed to produce waves is
greater in shallow water than in deep water. The longer waves on shallow
water (less than about 1 cm. deep) are, however, so much affected by viscosity
that the hypothesis that viscosity exerts only a modifying effect on the motion
is invalid for them, and it seems that they can in no case be formed by wind.
The waves produced on shallow water must therefore be very short, about
2-3 cm. say, which agrees with observation.

The Fxcitatron of Soft X-Rays.

By O. W. Ricuarpson, F.R.8., Yarrow Research Professor of the Royal
Society, and F. C. CraLxLIN, B.Sc., King’s College, London.

(Received September 14, 1925.)

§1. In a paper (1) by one of us (0. W.R.) and Prof. Bazzoni it was shown
that it was possible to detect the excitation of characteristic soft X-rays,
such as the K X-rays of carbon, by a photoelectric method. The substance
under investigation was bombarded with electrons in a highly-evacuated
bulb of quartz glass, and the radiation generated, after passing between two
parallel plates of a vacuum condenser to filter out ions and electrons, was
received on a metal plate from which the photoelectric emission could be
measured. The photoelectric current increases with the thermionic electron
current, and with the potential difference driving the latter. If the photo-
electric current divided by the thermionic current is plotted against this
‘potential difference the excitation of characteristic X-rays setting in at certain
voltages could be detected by the existence of discontinuous changes of slope
in the curves so obtained. Similar observations were made almost simul-
taneously by A. Ll Hughes (2), E. H. Kurth (3), P. Holweck (4), and
Mobler and Foote (5), and since that time a very considerable number of
papers on this subject has appeared (6) —(16).

This paper gives an account of measurements made since the autumn of
1923 on the elements carbon, tungsten, nickel and iron, starting with carbon and
proceeding in the order named. It is believed that they represent a progressive
improvement in this branch of experimenting so that the accuracy of the
results probably increases from carbon to iron. It should also be made clear
that the present communication does not represent an immediate continuation



