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On the Formation of Water Waves by Wind.

By Harorp Jursreys, M.A., D.Sc., Fellow and Lecturer of S$t. John’s College,
Cambridge.

(Communicated by Prof. G. I. Taylor, F.R.S.—Received October 24, 1924.)
[PraTms 4-5.]

It is well known that in certain circumstances a type of instability may
arise at the surface of separation of two fluids when there is a finite difference
between the velocities on the two sides of the surface. Some disturbances
of the surface, of simple harmonic type, may increase exponentially in ampli-
tude until the customary simplifying assumption, that the terms of the second
degree in the displacements from the undisturbed state can be ignored, breaks
down. One would naturally expect that in the case, for instance, of a wind
blowing over the surface of water, waves would be first formed when the
velocity of the wind is just great enough to make one particular type of wave
grow ; thus the critical wind velocity and the wave-length of the waves first
formed will constitute checks on any theory of wave formation. The problem
for frictionless fluids has been solved By Lord Kelvin®*, subject to the restric-
tion that the disturbances considered are two-dimensional, no horizontal dis-
placement occurring across the relative velocity of the fluids. Since, how-
ever, the possible initial deformations of a horizontal surface will not as a rule
satisfy this condition, an investigation of the growth or decay of deformations
of other types is desirable.

1. Hypothesis of Irrotaiional Motion.

Let the two fluids be incompressible (a legitimate approximation so long
as the wave velocity is small compared with that of sound in either fluid)
and of great vertical extent. Let the origin be in the undisturbed position
of the surface of separation and the axis of z vertically upwards. Let { be the
elevation of the surface, and suppose the two fluids to have initially velocities
U and U’ parallel to the axis of z, accents referring to the upper fluid. Let
the densities of the fluids be respectively p and p’, and the velocity potentials

* < Phil. Mag.’ (4), vol. 42, pp. 368-370 (1871), or Lamb, Hydrodynamics,” p. 439
(1906).

P2



190 H. Jeffreys.

in them ¢ and ¢’. Let the operators 0/o¢, 0/dx, 0/dy, 0/dz be denoted by
o, p, ¢, and 3 respectively. Putting #* for — (p? -+ ¢?) we see that

Vi =0 1)
is equivalent to
(=1 ¢ =0, (2)
whence
¢ = Uz} €A, (3)

where A is a function of z and y, determined by the value of ¢ where 2
is zero.

Now the vertical velocity of a particle in the surface is d{/d¢, where d/di
denotes differentiation following a particle of the fluid, and this must be equal
to the value of 9¢ for surface particles. Hence to the first order in the

small disturbances

(04 Up) L = rA. (4)
Thus
$=To+ 2t %)
Similarly
(,b, — le—“‘ gj_yp__j}e—rzc_ (6)
If P denote the pressure and @ the resultant velocity, the pressure integral is
P__ % _ 1Q? — gz - const.
P ot
= — g — Ue*pA — gz 4 const., (7
to the first order. This becomes, when z = C,
2
P__ {(_._____G + Up) + g} ¢ + const. 8)
P 7
Similarly we have, when z = C,
]37, = {M — g}c -{.. const. (9)
0 7
Also
P—P=T(@p>+ ¢ (10)

where T is the surface-tension. Hence { satisfies the differential equation
{e(@+UpP+e (0 +UpP+gle—e)r+TrT=0. (11)
In particular, if ¢ is proportional to cos (yt — «x) cos &y, where p, , " are

constants, we must have

oy —UkP+ o (p —UkP =g —p)r+Tr (12)
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where
72 = k2 —l— k2, (13)
This gives
NIV T G FTCETALE A Ll S
et+e p+e (e +¢)

If the motion is two-dimensional, so that «’ = 0 and r = &, the solution
becomes equivalent to that of Lord Kelvin.

So long as vy is purely real, the given disturbance will neither increase nor
decrease in amplitude. Thus the condition for a wave to develop is that y
shall be imaginary. This gives at once

20 —UR > %f'{g (o — ') 7 + T3} (15)
> P—jp—f’—'{g(p —o") K -+ T} (16)
S 9 E—P%?—'{Tg (0 — o)}t (17)

the first sign of equality holding when the wind is just strong enough to increase

the wave considered, the second when the wave is two-dimensional, and the

third when the wave-length is such as to make 9.(p —¢) + T« a minimum.
K

If the corresponding value of « is #,, we have

=9 —e)

I (18)

For air and water we have
p=1gm./em?; p'=0-0013gm./em?; T =173 dyne/cm. (19)
Hence from (18) #, is 3-5/cm., and the critical wave-length is 2r/«, or 1-8 cm.

The critical value of U’ — U, the velocity of the wind relative to the water,
is given by

(U — 0 = 2 E5E {1y o — )} (20)

making
U’ — U = 640 cm. [sec. (21)

Again, if « be the rate of travel of the waves first formed, we have
o=yl (22)
and

«—U=-L (U -0 23
Pte (23)

= 0-8 cm./sec. (24)
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At each point these predictions are in disagreement with observation. The
velocity of a wind just strong enough to raise waves is actually only about
110 cm./sec.; the wave-length of the waves first formed by such a wind is
from 6 to 8 cm., and the rate of travel of the waves is about 30 cm. /sec.

A further discrepancy is provided by the wave-length of the swell in mid-
ocean. Vaughan Cornish* gives 1,150 feet as the wave-length of a typical
swell. This makes « equal to 1-8 x 107*/cm., and hence by (16)

U’ — U=6-5 X 10% cm. [sec.
This is far beyond any actual velocity. It follows that no wind occurring at

sea would be capable of raising a typical swell if the theory of irrotational
motion were applicable to the formation of water waves.

2. The Hypotheses of Sheltering and Skin Friction.

It therefore appears that, in any theory of wave formation that is to stand
the test of quantitative comparison with observation, the hypothesis of irro-
tational motion must be abandoned, and the effects of quasi-discontinuities
and turbulence must be included. The regular form of the waves first formed
suggests that discontinuities and turbulence in the water are unimportant, at
least when waves first appear ; so that attention will have to be given primarily
to irregular motions in the air. There are two obvious mechanisms by which
the existence of waves on the surface of the water may introduce rotational
motions in the air, which may then react on the water in such a way as to alter
the size of the waves. The first is that the air blowing over the waves may be
unable to follow the deformed surface of the.water. Water flowing past a
sphere does not in general flow all round it ; the particles that strike the front
of the sphere leave it soon after they have passed the centre, and the region
behind the sphere is occupied by eddying liquid with little or no systematic
motion relative to the sphere. By analogy one may suggest that if waves
are once formed on water, the main air current, instead of flowing steadily
down into the troughs and over the crests, merely slides over each crest and
impinges on the next wave at some point intermediate between the trough and
the crest. The region sheltered from the main air current contains an eddy
with a horizontal axis, while smaller eddies exist along the boundary between
this eddy and the main current. If such a theory is correct, the pressure of
the air will be greater on the slopes facing the wind than on those away from
it ; for the deflexion of the air upwards when it strikes the exposed slopes

* ¢« Waves of the Sea and Other Water Waves,” p. 97 (1910).
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implies a reaction between the air and the water. By analogy with the two-
dimensional problem of the thrust of a current on a plane lamina inclined to
the direction of flow,* we may infer that the reaction is approximately normal
to the surface and proportional to o'U” 8%/0x, where U’ is now the velocity
of the wind over the crests. Within the sheltered region the reaction will be
nearly uniform. The reaction is thus not an analytic function of z, but it
could be expressed as a series of harmonic functions of multiples of z. This
series would evidently contain many terms ; but so long as we are considering
only whether the fundamental wave will increase or decrease, it will be suffi-
cient to consider only the term of the same wave-length as the disturbance of
the surface of the water. We shall, therefore, consider the reaction as equal
to sp'U'2 0¢/0x, where s is a numerical constant, not necessarily small. This
hypothesis will be called the hypothesis of sheltering.

The alternative hypothesis is based on the conception of skin friction. There
is a great deal of evidence to indicate that the tangential reaction of a turbulent
fluid on a fixed surface is of the form §'p"V2, where s’ is a numerical coefficient
about equal to 0-002 and V is the tangential velocity in the neighbourhood
of the surface. We shall overestimate this effect if we neglect the reaction
of this friction on the air, which reduces the velocity of the air near the surface,
and simply calculate V as if the motion of the air was irrotational.

Up to a point these two hypotheses can be treated together. The equations
of viscous motion of the water are three, of the form

du 1 0P

—_— —— vV2 ) 1

dt p Oz TV 1)
where v is the effective kinematic coefficient of viscosity. With our previous
conventions we can write these

1

{G+UP—V(P2+Q2+32)}(u,v,?v)=—(;(p,q,5)?- (2)
The equation of continuity is
pu 4 qv F Sw =0. (3)
Combining (2) and (3) we have
(p*+ ¢+ 9P =0, (4)
whence o
0 = eIl (5)

* Lamb, ¢ Hydrodynamics,” p. 94.
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where 1I is a function of z and . Hence

U, — PHE 6
w ‘Ul6 U+Up’ ( )
) = Ve — 1"
v = Ve ot Up (7)
He’l’z
= We¥ — 2% 8
w e o+ Up (8)
where U,, V and W are unspecified functions of z and ¥, and
o+ Up —v(A2—1?)=0. 9)
In consequence of (3) we must have
pU 4+ ¢V 4+ AW =0. (10)
The surface condition is
8
o 11
i (11)
leading to
0+ UpL=W— "1 (12
o4 Up
The stress-components across the surface z = 0 are
/ 2
%f:_P+2mmW=mMW—pHQ+Gz%J, (13)
Pra= o (S0 p) = v (40, + pW — 210 (1)
2 i / po _{_ Up )
2¢rI1
oy = = ] ——t), 15
P (V4 W — 2 (15)

Suppose also that these stress-components are given in terms of the surface
elevation by the relations

P==pQC;  Pu=ppRL;  pn = pqRC (16)
where  and R are linear operators. Then (14) and (15) give

Wy AWV _BE o 21D

17
P q v o4 Up 17)
and on substitution in (10) we find
72 RC 2rIT
= (= 4 - —J. 18
W P+ﬂ<v 1) (18)

Eliminating W between (12) and (18) we have, using (9),

=g =YD o Ut (19)
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and thence
W= (0 + Up) {+ e (24 )¢
o+ Up
= — 2wl } GZ_%R%]) (20)
Substituting in (18) we have now
oyt (B
Qf = 2v 2 ko‘ T 2v> 4
2R _ o+ Up+2»* ,
1+ 2 (e ARG rupt) e

The amplitudes of the types of waves considered do not change by large fractions
of themselves within a wave-length. Hence we shall expect that vr® will be
small compared with o 4 Up, and that 2R will be small compared with
(7 +- Up)2.  1f, then, we omit all terms of order higher than the first in v and R,
we have

{(6+Up + 2v?P — Qr — R®} {=0 (22)

which is the differential equation required. For further progress it is necessary
to specify the forms of Q and R.

3. Hypothesis of Shellering.

On the hypothesis of discontinuous motion of the air there is no tangentia
reaction, so that R is zero. The vertical pressure across a given horizontal
surface will depart from its value in the undisturbed state for three reasons.
First, there is a depth { of water above the surface instead of an equal depth of
air ; hence the pressure is increased by g (p - ¢’) €. or. since in (13) tensions are
reckoned positive, p,, must contain a term — g (p — ') ¢. Second, as in the
irrotational case, the surface tension introduces a discontinuity of amount
T(p?4¢®¢. Third, the pressure of the air on the side of the wave facing the
wind introduces a term sp'U’2pf, where such a velocity has heen supposed
superposed on the whole system that the crests of the waves have no horizontal
motion. The exposed side of the wave is that facing in the direction of
increasing, if U is negative, which will be the case considered. Thus p,, is
positive when p{ is positive, and this term must therefore be associated with a
positive sign. Thus in all

PR=—g(e—p)—Trr+ sp'U% 1)
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and the differential equation satisfied by { becomes

{0+ Up+ 2 o — By L r—o, @)
where pc? :% (e — o)+ Tr. (3)

In accordance with our conventions the wave is a stationary one, with
gradually varying amplitude. Thus we can take { as proportional to
@'t cos kx cos «'y, where v, £ and «’ are constants. Then

oG =yL; pl=—w; f){=f(+£?)L (4)

Then (2) gives
{2 =T L {20+ 28 =T bpl=0 ()

Neither € nor p¢ is in general zero, nor is their ratio a constant. Hence the
coefficients must both vanish, giving

rTY2
—_gy2 . 5 U 6
4 S T (6)
x*U? = ¢%*® - a second-order quantity. (M)

We notice from (6) that the wave will necessarily die down if U is negative.
Thus when U’ is negative U must be positive. Remembering that these
velocities were both referred to the crests of the waves, we see that this implies
that the velocity of the waves is intermediate hetween those of the air and
the water. Again, (3) and (7) give

———— 4 3
Uz:@a,_a+gt (8)

and if v is positive we must also have
ue>Hey,, 9)
Sl

Let us denote the coefficient 4vp/sp” by C.  For every value of «, r increases
steadily with «’. Hence U and | U’| both increase with «’. But the observed
speed of the wind relative to the water is U’ — U, and its absolute value is
| U] 4 U. Hence, for any given wave-length in the z-direction, the wind
velocity relative to the water needed to excite the disturbance is least when the
wave-length in the y-direction is infinite ; that is, when the disturbance is two-
dimensional. Thus the waves produced by the gentlest wind that can ruftle
the water at all should be two-dimensional.

Let us assume that the value of £ corresponding to actual waves is such as to
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make Tx?/g (¢ — ') small ; that is, that wind-raised waves are gravity waves
and not ripples. Also let the velocity of the wind relative to the water be V.
Then (9) gives

(V—-1Uy
<< T’ (10)

the sign of equality holding when the wave can just be maintained. Again,
we have

">k (11)
the sign of equality holding when the disturbance is two-dimensional. Then,
subject to the neglect of T, we have from (8)

cU2>g "—g—i (12)
and, therefore,
r >—g§ p———-p— e (13)
From (10) and (13) then
U((V—Up> oge‘;—f’. (14)

For a given value of V, the value of U between O and V that makes the
quantity on the left greatest is

U=1V (1b)
so that the condition for a wind to be able to raise a wave at all is
ve> 2T g0 ¢ (16)
4 e
whence, with v == 0-018 cm.?/sec.
V > 73s7% cm.[sec. (17)
and from (12)
x3 = bg? (18)

for the critical case. Thus, so long as s is less than unity, as it must be, the
assumption made in the neglect of the surface tension is justified.

4. Hypothesis of Skin Friction.

In discussing this hypothesis the motion of the air will be treated as if
unmodified by friction. In this way the velocity of the air in contact with the
water surface will be exaggerated, and therefore the effects of skin friction will

be over-estimated. The pressure in the air is given by
PI
2
- = —gz — o’ — 3Q" ~- const.

P
= — (6 U’p) ¢’ —gz + const., (1
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(e 1TV )2
and the value over the boundary is — ¢f - (o4 Up)? € + constant. Then
r

o= { —g—o) +TETL o _pele @)

The tangential velocity over the surface is, to the first order, p¢’, and the skin

friction is s'p’ (p¢p')%  The components p,, and p,, cannot as a rule be put in
the form used in 3 (16), except when the motion is two-dimensional. Restricting

the discussion to this case, we have for the first order part of p,,

Pzz = — 2 /S’UIG—{— Up C
= ppRC, (3)
and from 3 (22)
{+Upt2mpg B2 Do o U
20's'U’ -
+ 250 o U e f L0 (@

If now we suppose, as before, that  is proportional to e\ cos xz, and introduce
¢® as before, we have

(y + 29622 + (¢ — U)x2 — (p® — U2 — 25'ky) £ —o. (5)
P
’ 1,7 9
-+ 2 U — U &y BT (6)
D
First approximations to these are
y:~2vm2—§~§—%g~ (7)
U2 =2 (8)

In deriving the skin friction we have tacitly supposed U’ to be positive.
Hence (7) shows that for a wave to grow U must be negative, and the wave-
velocity must, as before, be between those of the water and the air. But s’
is known to be about 0-002. Hence, for a wave to grow we must have

U2 > 14400 xc

and thence

~U > 120 (gt + (4],

The right side of this inequality has its least value when « is 1/23 cm., making
the wave-length 140 cm. The corresponding value of U’ — U is 480 em. /sec.
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5. Comparison with Observation.

Observations on the initial stages of wave formation have been described
by J. Scott Russell.* He states that a wind with a velocity between half a
mile and two miles an hour produces small capillary waves, and that regular
gravity waves, with a wave-length of about 2 inches, first develop when the
wind reaches about two miles an hour.

These observations seem to have been non-instrumental, and I considered it
desirable to check them against a modern instrument. A Negretti and Zambra
Air Meter was kindly lent to me by the Meteorological Office, to the Director
of which I am indebted, and observations were made on the River Cam, where
1t enters St. John’s College grounds, and just above Jesus Lock, and also on
a large pond at Barnwell produced by the flooding of a clay pit. It was found
that velocities up to 3-4 ft./sec. produced no change in the appearance of the
surface of the water, which always showed a slight unevenness however gentle
the wind seemed, but that strong regular waves were produced by winds of
3-8 and 4 ft./sec.; the latter should be reduced by a few inches per second
to allow for the speed of the water. On the pond ripples were once observed
at a velocity of 3-6 ft./sec.

These velocities are very much lower than would be consistent with either
the irrotational theory or the skin-friction theory. They agree well, however,
with the theory of sheltering. Using the relations found under this theory,
we find the following values for s and for the initial wave-length for various
values of the critical wind velocity—

V{ﬁ [sec.. .. .. 34 3-6 3-8
cm. /sec .. .. 104 110 116
. 0-318 0-269 0-229
1/cm) c .. 079 0-71 0-64
m://c cm.) .. .. 80 8-8 9-8

The quantity s is a pure number, and since it expresses the amount of a wave
that is exposed to the action of the wind, it will be called the exposure
co-efficient. There are few @ priort conditions to guide us as to its value, and
such as there are indicate that the values just found are plausible.

A crucial test of the theory should be provided, however, if the critical
wave-length could be found by ohservation and compared with the theoretical
estimates just made from the critical wind velocity. Unfortunately the critical

* ¢ Brit, Assoc. Report,” pp. 317-8 (1844).
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wave-length is rather difficult to measure. When waves are formed the wind
must be systematically somewhat above the true critical value ; thus s will
be systematically under-estimated, and so will .  Thus the wave-length
calculated from the velocity of the wind will, as a rule, be too great. On the
other hand, a wind rather above the critical velocity will raise at first waves
whose lengths differ over a finite range. The longest of these move fastest,
and thus the shortest tend to remain at the rear of the group. If, then, the
waves at the rear of the group are taken as the standard, the wave-length will
be systematically under-estimated. By eye estimation I find the length of
waves raised when the wind is under 4 ft./sec. to be from 6 to 8 cm:, which is
consistent with the above considerations; attempts were made to find the
length indirectly from the number of waves passing a given fixed object in a
known time, but they proved unsuccessful on account of the difficulty of
counting disturbances with such a short period.

The observational evidence, therefore, appears consistent with the theory
that discontinuous motion in the air plays a fundamental part in the formation

of water waves.

6. OraEr ASPECTS OF THE SHELTERING THEORY.

The account of the sheltering theory given in 3 describes only the initial
stages of waves produced by winds. Winds with velocities greater than the
critical velocity there found will be capable of raising waves with any length in
either the z or the y direction within certain finite ranges. In general, all such
waves will be formed ; but the longer cnes travel more rapidly than the shorter
ones, and therefore the shortest waves are at the rear of the train produced
by a given puff of wind. This agrees with observation. Again, the values of
U that make 8 (14) an equality are the extreme possible values of U; and it
has been seen that the equality can hold only if «” is zero.  Thus both the
fastest and the slowest waves, relative to the water, that can be generated by a
given wind are two-dimensional. Three-dimensional waves will be formed,
but will travel with intermediate velocities. This, again, appears consistent
with observation. The swiftest wave in a storm is the swell, which is a two-
dimensional wave. (See Plate 4, fig. 1.)

The most striking feature about waves at sea, however, is their irregularity.
There is never any definite wave pattern, except in so far as the swell can be
traced through the shorter and slower waves. (See fig. 2.) As a rule, the
distance hetween consecutive maxima of elevation is of the same order of
magnitude in whatever direction it is measured. Such wave-systems will be
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called ¢ short-crested,” as distinguished from waves whose crests have lengths
many times the distance between consecutive crests; the latter type,
including as particular cases the swell and the first waves raised by a wind
just strong enough to raise waves at all, will be called * long-crested.”

In the case of a sudden gust with a velocity considerably more than the
critical velocity (say, 6 ft./sec.) the equation (14)shows easily that U may have
any value from about 1/26 of the critical wind velocity up to almost the actual
wind velocity. The wave-length corresponding to the former velocity is about
two centimetres. This is short enough to show that surface tension is not
negligible in this case. However, it is clear that such a wind will be able to
raise very short waves, and they will include short-crested waves. Now it can
be observed that when such a gust occurs the first eflect is to produce an
irregular pattern of short-crested waves, often short enough to be considered
capillary waves. This is to be expected, since it is for intermediate types of
wave that the rate of growth will be most rapid. After an interval of 10 to
30 seconds the long-crested waves may be seen emerging {rom the catspaw,
having meanwhile had time to grow. (See Plate 5, fig. 3.)

‘When the wind continues steadily for a long time, several other factors become
relevant. The swifter waves continually gain on the slower, so that at any
intermediate point of the wave train many different types of waves might be
expected to be superposed ; as indeed is the case. But a new feature appears :
the shorter waves are wholly obliterated. The theory of sheltering offers two
explanations of this fact, which probably co-operate in producing the change.
Inthedevelopment of the theory all terms depending on the squaresand products
of the deviations from steady motion have been ignored. It has, however, been
found that when a wave is actually formed its amplitude will increase exponen-
tially with the time, so that a stage must be reached when the neglect is no
longer justifiable. The nature of the change is well known. The form of the
waves ceases to be purely sinusoidal; the crests become sharper and the troughs
flatter than in a simple sine curve. (See fig. 4.) This is to be expected in
waves of considerable amplitude on water unaffected by air; the wind only
provides a mechanism that causes this stage to be attained.

There is a limit to the height that such waves can attain ; in a gravity wave
it is fixed by the fact that the crests become definitely angular, the angle
being 120°. Thus a wave of given length can never grow beyond a certan
height, this height being probably proportional to the wave-length. Further,
wind acting on a wave in this critical state will only cause water to be projected
from the crests, leaving the height unaltered. This is what actually ha ppens ;
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the crests do become sharp ridges, and the tops curl over, casting white foam
or spray on to the sheltered side of the wave. This effect is presumably
prominent in producing turbulence in the water.

When waves of different lengths are superposed, it will not in general be
possible to discuss them separately as if the equations of the problems were
linear. The linearity of equations 2 (16) is due to the selection from the
actual stresses across the boundary between the fluids of the harmonic con-
stituents with wave-lengths equal to those of the wave whose history we are
considering. Actually the complete expression of the stresses would require
the overtones of these constituents. When two non-commensurable wave-
lengths are combined the discussion becomes still more diffieult.

If, however, we return to the physical description of the sheltering effect,
it becomes possible to make some headway. A short wave superposed on a
long one will be of smaller height than the latter when both are fully developed.
Hence the short cne will be sheltered from the wind for the whole time except
when it is near the crest of the long one and on the exposed side. Its oppor-
tunities for growth are therefore very much less than if it were alone, while
the damping effect of viscosity will be at least as great. [urther, when it is
on the sheltered side of the crest of the long wave, the splashing of the water
from the crest ot the long wave will tend to Al up the trough of the short
one. On both grounds, therefore, it may be expected that the short wave
will die out ; its motion also will then malke a contribution to the turbulence
of the water.

The waves produced by a long-continued wind would therefore be expected
to consist mainly of large short-crested waves, combined with a fast-travelling
swell of long wave-length, which has not had time to develop a height great
enough to overshadow the larger short-crested waves. This is in qualitative
agreement with what is observed in mid-ocean.

There are, however, difficulties in the way of a quantitative comparison,
though quantitative tests may be sought in several directions. In the first
place, we may consider the total thrust of the wind in a horizontal direction
on the water. This should be equal to the skin friction as determined by
other means. Now the horizontal component in the a-direction of the pressure

of the wind on the surface is pzzgg approxiniately, and hence the thrust
x

2 [k 4%
within a wave-length is j sU"2p’ @C) dx. This can only be evaluated

0 Ky

when we have some knowledge of the relation of the height of the wave to
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its length ; but an estimate of this may be made from the fact that the angle
at the crest of a fully developed wave must be 120°. As an approximation
let us suppose that the section of the wave is an arc of a circle, so that we

can write
{=a(l—cos 0); (1)

%= @ sin 0, 2)
and the limits for 6 are 0 and n. Then the mean value of (0¢/0z)? is
1
2J sin 0 tan 0 49 = log, 3 — 1
0
— 0-0986. (3)

If then s’ be the coeflicient of skin iriction, the horizontal thrust of the wind
on the water surface will be §'p’V? per unit area, and if we take s to be 0-3

we have the relation
s'V2 = 0-029U"2. 4)

Now when waves are just on the verge of formation we have

U’ = 3V. (5)

wiro

Hence
s’ = 0-013. (6)

This value is much larger than has been found for the coefficient of skin
friction in fluids flowing over smooth solids, or even rough solids where the
roughnesses are irregular. Experiments have usually given numbers in the
neighbourhood of 0-002. Perhaps, however, it would be premature to say
that the above estimate cannot be right for the conditions it refers to, namely,
a wind just strong enough to raise waves at all, blowing over water for a time
long enough for them to develop fully. If the ordinary estimate for a smooth
surface is correct until waves start, as would be expected, it would not be
surprising if a sudden increase in the friction accompanied the formation of
the first waves. The point should be capable of experimental test in a wind
channel ; the stress to be sought is of the order of a gram weight per square
metre.

When the velocity is greater than has just been considered, the prevalent
waves travel with velocities greater than 4 V; if there is no scale effect tending
to alter s, as is probable, the anticipated value of s" would therefore be smaller.
Observations of the wind at sea have shown no reason to believe that it follows

VOL. CVII.—A. Q
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laws very different from those applicable on land, so that the true value of
s’ is probably not very different from 0-002. Substitution in (4) now gives
U’ =0-26V (7)

so that the waves that produce most of the resistance (that is, the largest
waves) should travel with about three-quarters of the velocity of the wind.
Cornish* makes the velocity of the waves, when well developed, about 80
to 90 per cent. of that of the wind; but as the wind was logged on the
Beaufort Scale an error of -7 per cent. in the wind could escape being logged,
merely on account of the coarseness of the scale. The agreement is therefore
as good as could be expected.

If now we return to 3 (9) we have for the condition that a wave of given
type may be able to grow at all

UE> %:f Ur, ®)
and if we apply 3 (8), taking
r=k./2, 9
as is roughly true, we have ,
v U (10)
8 ¢
giving with the value of U just found
v<{6:7 x 107°V3 (11)

in C.G.S. units.. If the sign of equality holds, the wave will be the longest
that can grow.

Now the damping of waves in mid-ocean must arise mainly from turbulence
rather than true viscosity, and independent determinations of turbulence in
water are available. From a comparison of the velocities of wind and ocean
currents I have foundf values of the eddy-viscosity in mid-ocean ranging
from 4 to 460 cm.?/sec. Durst.} by a similar method, but with much more
numerous and accurately comparable data, has recently carried out an
elaborate investigation, and finds that the eddy-viscosity in mid-ocean is well
represented by a formula which, when corrected for an arithmetical error, is

v=28x10"V2 (12)
His work amounts to a verification of this formula for values of V ranging from
200 to 1,200 cm. [sec. . For a wind of 10 m/s. this makes v equal to 800 cm.2/sec. ;
whereas formula (11) makes it less than 6-7 em.2/sec.

* Loc. cit., pp. 111-113.
+ ¢ Phil. Mag.,” vol. 39, pp. 578-586 (1920).
t <Q. J. R. Met. Soc.,’ vol. 50, pp. 113-119 (1924).
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We have here, therefore, a definite inconsistency, which becomes more
serious as the wind velocity is reduced.

A satisfactory explanation is not yet available. It might be suggested that
variation of turbulence with depth would provide a possible explanation, but
numerical comparison does not support this suggestion. If, for instance,
v is equal to 400 cm.2/sec., the current is reduced to e~ of its surface value at a
depth of 25 metres ; the motion due to a wave of length 200 metres is reduced
in a similar ratio at a depth of 32 metres. Thus there is no reason to expect
waves and currents to be very differently affected by any variation of
turbulence with depth.

Summary.

Kelvin’s theory of the formation of water waves by wind, which supposed
the motion in both air and water to be irrotational, has been found to lead to
several quantitative predictions that disagree with observation. = An alternative
theory is developed in the present paper. According to this theory, the wind
presses more strongly on the slopes of the waves facing it than on the sheltered
slopes, and it is when the resulting tendency of the waves to grow is just able
to overcome viscosity that waves are first formed. A numerical constant in
the theory can be adjusted to make the wind velocity required to produce
waves agree with observation; and when this is done the predicted wave-length
of the waves first formed agrees with observation without further assumption.
Several other facts of wave-formation are readily explained by the theory.

An attempt has been made to account for the skin friction of the wind over
the seas as the resultant drag due to the horizontal thrust of the wind on the
exposed sides of the waves. Agreement with the ordinarily accepted value
of the skin friction can be attained if the wave velocity is about three-quarters
of the wind velocity, which is in accordance with observation. The formation
of waves with such a velocity, however, appears to require values of the eddy-
viscosity much smaller than are indicated by observations of ocean currents ;
thus there is au outstanding discrepancy.

DESCRIPTION OF PLATES 4 AND 5.
PraTE 4.

F1e. 1.—Combination of two wind-formed swells in Newnham Millpond, Cambridge,
June 15, 1924. Notice the remarkable straightness of the crests of the longer swell,
in spite of the fact that the photograph covers in the middle distance approximately
} the diameter of the pond. (See p. 200.)

F1a. 2.—Short-crested waves in North Atlantic, July 31, 1924 (see p. 200). Swell is almost
imperceptible.

Q 2
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PrATE 5.

Fro. 3.—Long-crested waves emerging from the front of a catspaw. (Jesus Lock,
Cambridge, June 29, 1924.) (See p. 201.)

Fic. 4.—Effect of an increase in the wind-velocity on a swell already established. The
crests have become sharp and are curling over; the formation of new three-
dimensional disturbances is shown by the running together of the crests. (Newnham
Millpond, June 15, 1924.) (See p. 201.)

The Thermal and Electrical Conductivities of some Pure Metals.
By F. H. ScrorieLD, B.A., B.Sc.

(Communicated by Sir Joseph Petavel, F.R.S.—Received October 22, 1924.)

(Physics Department, the National Physical Laboratory.)

I.—INTRODUCTION.

The relation between the thermal and electrical conductivities of metals
has for a long time engaged the attention of physicists. As far back as 1853
Wiedemann and Franz* propounded the law to the effect that the ratio of the
two conductivities was the same for all metals. In 1872 Lorenzt, both on theo-
retical and experimental grounds, sought to establish that the above-mentioned
ratio was proportional to the absolute temperature. On the development of
the electron theory Drude, H. A. Lorentz, J. J. Thomson and others} have,
on the basis of various assumptions, arrived at the same conclusion as Lorenz.
Up to 1900, however, the experimental values were too uncertain to allow any
definite confirmation of the theory. In that year Jaeger and Diesselhorst§
published the result of their investigation, which gave directly the ratio of the
conductivities for a number of metals and alloys over the range 18° to 100° C.
Lees|| has since, by an independent method, confirmed the values of Jaeger and
Diesselhorst for a number of metals at 18° C. and has carried the investigation

# < Ann, der Phys.,” vol. 89, p. 497 (1853).

+ ¢ Ann. der Phys.,” vol. 147, p. 429 (1872).

1 For a critical review of the most recent theories, see Meissner, ¢ Jahrbuch der Radio-
aktivitit und Elektronik,” vol. 17, p. 260 (1920).

§ < Abh. der Phys.-Tech. Reichsanstalt,” vol. 3, p. 282 (1900).

|| ¢Phil. Trans.,” A, vol. 208, p. 381 (1908).



