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[1] We present a stochastic model for the evolution of random ocean surface waves in
coastal waters with complex seafloor topography. First, we derive a deterministic coupled-
mode model based on a forward scattering approximation of the nonlinear mild slope
equation; this model describes the evolution of random, directionally spread waves over
fully two-dimensional topography, while accounting for wide angle refraction/diffraction,
and quadratic nonlinear coupling. On the basis of the deterministic evolution equations,
we derive transport equations for the wave statistical moments. This stochastic model
evolves the complete wave cross-correlation matrix and thus resolves spatially coherent
wave interference patterns induced by topographic scattering as well as nonlinear
energy transfers to higher and lower frequencies. In this paper we focus on the linear
aspects of the interaction with seafloor topography. Comparison to analytic solutions and
laboratory observations confirms that (1) the forward scattering approximation is suitable
for realistic two-dimensional topography, and (2) the combined effects of wide angle
refraction and diffraction are accurately captured by the stochastic model.
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1. Introduction

[2] As ocean surface waves propagate across continental
shelves into coastal areas, their evolution is strongly affect-
ed by the diminishing depth. Waves are refracted by the
bottom topography, nonlinear effects result in the amplifi-
cation of harmonics and radiation of long waves (‘‘surf-
beat’’), and the breaking of the waves in the surf zone
cascades the energy from the ordered wave motion to small-
scale turbulence and heat. Apart from wave breaking in the
surf zone, these linear and nonlinear processes are fairly
well understood, and incorporated in numerous determinis-
tic shallow water wave models [see, e.g., Freilich and Guza,
1984; Kirby, 1995; Kaihatu and Kirby, 1995; Wei et al.,
1995; Dingemans, 1997; Madsen and Schäffer, 1999;
Bredmose et al., 2004, 2005; Janssen et al., 2006].
[3] However, for many science and engineering applica-

tions, such as the design of marine structures and the study
of coastal sediment transport, the forcing by random ocean
waves is represented by statistical averages of wave spectra
and integral parameters (e.g., significant wave height, peak
period). Such statistics can be estimated through Monte
Carlo simulations with a deterministic model. However, this
approach is numerically intensive and often prohibitive on
larger scales of application due to the large number of

realizations required, and the need to resolve intrawave
spatial and temporal scales. Hence large-scale oceanic wave
models are inherently stochastic [e.g., Komen et al., 1994],
generally based on the radiative transfer equation [e.g.,
Hasselmann, 1968; Willebrand, 1975], which transports
the spectral distribution of wave action (or energy) through
a slowly varying medium. Modern (third generation) imple-
mentations of such models [e.g., The WAMDI Group, 1988;
Tolman, 1991; Komen et al., 1994; Booij et al., 1999;
Janssen, 2004] include parameterized forcing (source)
terms to account for the effects of, e.g., wind generation,
wave breaking, and wave-wave interactions. This class of
models is routinely applied to predict and hindcast wind-
generated ocean wave fields on regional and global scales,
with considerable success.
[4] The underlying premise of the radiative transfer

equation is that the wave field’s spectral constituents are
slowly varying and mutually independent, implying a quasi-
homogeneous and Gaussian sea state. However, nature
provides many examples where these assumptions are
violated: for instance, the crescent-shaped (horseshoe)
waves appearing when the wind starts to blow over the
ocean’s surface [e.g., Su, 1982; Fuhrman et al., 2004], the
characteristic saw-tooth wave shapes seen at the onset of
wave breaking just outside the surf zone [e.g., Elgar and
Guza, 1985], the interference patterns observed in the focal
region of a lens-like topographical feature [e.g., Berkhoff et
al., 1982; O’Reilly and Guza, 1991], and wave diffraction
patterns around breakwater tips and harbor mouths [e.g.,
Penney and Price, 1952]. Less conspicuous, inhomogeneity
and nonnormality affect deep-water wave (in)stability pro-
cesses [e.g., Alber, 1978; Crawford et al., 1980; Yuen and
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Lake, 1975], and the occurrence of extremely large
(‘‘rogue’’) waves on the ocean [e.g., Janssen, 2003]. The
assumption of a quasi-homogeneous, Gaussian wave field is
particularly restrictive in shallow water, where topography-
induced refraction and the shoaling amplification of
nonlinearity often result in strongly inhomogeneous and
non-Gaussian wave statistics, which in turn affects the
wave-induced coastal circulation and (sediment) transport
processes [e.g., Hoefel and Elgar, 2003]. Shallow-water
stochastic models include extensions to higher-order statis-
tics to account for non-Gaussianity [Herbers and Burton,
1997; Agnon and Sheremet, 1997; Eldeberky and Madsen,
1999; Herbers et al., 2003] but so far these models have
been restricted to laterally homogeneous wave fields evolv-
ing across parallel depth contours. Here we derive a
stochastic model that includes two-dimensional seafloor
topography and accounts for both non-Gaussianity and
spatial heterogeneity of the wave field.
[5] Our starting point is a deterministic model based on a

forward scattering approximation of the nonlinear mild-
slope equation (section 2). We derive a set of transport
equations for the statistical moments and verify the repre-
sentation of wave-bottom interaction through comparison of
model predictions to laboratory observations of waves
traversing a topographical lens (section 3). In section 4
we relate the model to the concepts of geometrical optics
and the radiative transfer equation, and we demonstrate its
wide angle diffraction capability. Although our derivation
includes quadratic nonlinearity, our discussion of the sto-
chastic model focuses on the interaction with the topography;
nonlinearity and associated closure issues will be addressed
in a subsequent paper. Our main findings are summarized in
section 5.

2. A Deterministic Forward Scattering
Approximation

[6] We consider the propagation of waves on the surface
of an inviscid and incompressible fluid and adopt a con-
ventional Cartesian description with the origin of the
reference frame at the undisturbed free surface of the fluid.
We let z denote the vertical, positive pointing upward, and
x = (x, y) the horizontal dimensions. Since we are
interested in random (but stationary) wave fields, we write
the associated velocity potential function F(x, z, t) and
surface elevation h(x, t) as a Fourier sum

F x; z; tð Þ
h x; tð Þ

� �
¼
X1

p1¼�1

f1 x; zð Þ
z1 xð Þ

� �
exp �iw1t½ �; ð1Þ

where w1 = wp1
= p1Dw with Dw the discrete angular

frequency spacing. The numerical subscript on wave-related
variables is introduced for convenience; for example, f1 is
short for fw1

.
[7] To obtain transport equations for the evolution of the

wave variables in space, we simplify the boundary value
problem [see, e.g., Chu and Mei, 1970; Liu and Dingemans,
1989; Janssen et al., 2006] by assuming a weakly nonlinear
wave field and (spatially) slowly varying sea floor topog-
raphy. The nonlinearity is characterized by the (small) wave
steepness � = a0k0� 1 and the slow depth variability by the

nondimensional bottom slope b = jrh0j/(k0h0)� 1; here k0
and a0 are a representative wave number and amplitude of
the wave field, respectively, and h0 and jrh0j denote a
characteristic water depth and bottom gradient. We assume
O(�) � O(b), omit terms of higher order than O(�2), and
from the outset we assume that the lowest-order wave-wave
(quadratic) interactions are near resonant (we will return to
the implications of this assumption below). The evolution of
the lowest-order wave field is governed by a solvability
condition that takes the form of the mild slope equation
(MSE) with a quadratic nonlinear coupling term [see also,
e.g., Kaihatu and Kirby, 1995; Janssen, 2006]

rrr281 þ k2181 ¼ i
X
w1;w2

W238283
bdw1;23: ð2Þ

where bd1;23w = bd(w2 + w3 � w1) and bd is a discrete Dirac delta
or unit impulse function [see, e.g., Oppenheim and Schafer,
1989]. The wave number k1 is given by the linear dispersion
relation for progressive gravity waves w1

2 = gk1 tanh k1h; the
variable 81 = P1f1jz=0 where P1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C1Cg;1

p
, with C1 and

Cg,1 the phase and group speed corresponding to frequency
w1 (in the linear approximation). In (2), the coupling
coefficient in the nonlinear term is given by

W23 ¼
1

2P2þ3P2P3

w2k
2
3 1� T2

3

� �
þ w3k

2
2 1� T2

2

� �	
þ 2 w2 þ w3ð Þk2k3 sgn w2w3ð Þ � T2T3ð Þ� ð3Þ

where Ti = tanh kih and sgn denotes the signum function.
Consistent with the assumption of quadratic near-resonance
the coupling coefficient (3) is based on a small-crossing angle
approximation such that r82 � r83 � �sgn(w2w3)k2k38283.
[8] The nonlinear mild-slope equation (2) is an elliptic

equation and represents an isotropic description of the wave
evolution, i.e., waves are allowed to propagate in all
directions of the horizontal plane. In the following we take
into account that backscattering from seafloor topography
and reflection from shore are usually weak at wind-wave
and swell frequencies [see, e.g., Elgar et al., 1994; Ardhuin
and Herbers, 2002]. We apply a forward scattering approx-
imation to (2) and consider waves propagating in the half-
plane of positive x; we will refer to x and y as the principal
and lateral direction, respectively. Moreover, since we are
interested primarily in waves propagating across the conti-
nental shelf toward the coast, we let x and y coincide with
the cross- and alongshore directions, respectively. In this
approximation the MSE (equation (2)) can be written as (see
Appendix B)

@x81 xð Þ ¼ ie@1 � 1

2e@1 @e@1
@x

� �
81 xð Þ þ

X
w1;w2

W23

2e@1 82 xð Þ83 xð Þbdw1;23
ð4Þ

where e@1 = sgn(w1)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ @2

y

q
. For a plane wave over a

laterally uniform bottom, e@ is the principal (x-component)
wave number, and the linear part of (4) represents a WKB-
type solution, which accounts for the slowly varying depth
in the principal direction. For more general wave fields over
two-dimensional topography we can solve the transport
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equation (4) as a set of ordinary differential equations
utilizing the Fourier transform pair with respect to the lateral
space variable y

81 xð Þ ¼
X1

q1¼�1
81
1 xð Þexp il1y½ �; ð5Þ

81
1 xð Þ ¼ 1

Ly

Z Ly=2

�Ly=2
81 xð Þexp �il1y½ � dy: ð6Þ

Here Ly is the lateral dimension of the domain, and l1 =
q1Dl = q12p/Ly. The numerical superscript is used to
indicate the lateral wave number component (this conven-
tion will be used throughout). For instance, 81

1 is shorthand
notation for 8w1

l1 and represents the spectral amplitude of
component (w1, l1). Applying the lateral transform (6) to
the transport equation (4), while replacing the @y by il1,
yields the amplitude evolution equation

d81
1

dx
¼ Gl1;2 N 1

1 xð Þ82
1

n o
þ Gl1;23

X
w2 ;w3

W23

2@11
82
28

3
3
bdw1;23

( )
; ð7Þ

with

N 1
1 xð Þ ¼ i@11 xð Þ � 1

2@11 xð Þ
d@11 xð Þ
dx

ð8Þ

where @1
1 = sgn(w1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � l2

1

q
. The operator G is defined in

Appendix A and symbolically denotes the (discrete) back
and forth transformation between the (lateral) wave number
and the physical domain such that the interactions are
evaluated as products in (lateral) space rather than
convolutions in the wave number domain.
[9] The set of transport equations (7) constitutes a deter-

ministic model that evolves the angular spectrum compo-
nents across the computational domain while accounting for
topographical scattering and quadratic nonlinear effects.
Although wide angle diffraction is accounted for, the
forward scattering approximation limits the model to
propagating modes traveling into the half plane of positive
x, thus neglecting back-scattered wave components.
Moreover, the model does not include evanescent modes
(jl1j > k1) that, although potentially important locally on
(very) steep slopes and near model boundaries [e.g., Stamnes,
1986; Janssen et al., 2006], are generally of limited impor-
tance in the far field of topographical scatterers [e.g., Magne
et al., 2007].
[10] The assumption of forward propagating waves in

equation (7) requires that variations in water depth over a
typical wavelength are small (b � 1). The two-dimension-
ality of the slowly varying depth appears in the slow lateral
variation of the (principal) wave number (and its cross-shore
gradient), and is incorporated through a convolution across
the lateral wave number components. For weak lateral depth
variability, the present model reduces to earlier angular-
spectrum models [Dalrymple et al., 1989; Suh et al., 1990;
Janssen et al., 2006]; if instead thewave aperture is limited and
a small-angle (parabolic) approximation is invoked, equation

(7) reduces to the model by Kaihatu and Kirby [1995] or
wider-angle approximations thereof [Kaihatu, 2001].
[11] Equation (7) describes the evolution of the (trans-

formed) velocity potential amplitude at z = 0. In terms of the
(transformed) free-surface amplitudes A1

1 such that

h x; y; tð Þ ¼
X
q1 ;p1

A1
1 xð Þ

P1 x; yð Þ exp i l1y� w1tð Þ½ � ð9Þ

the evolution can be expressed as

dA1
1

dx
¼ eGl1;2 N 1

1A
2
1

n o
� ieGl1;23 X

w2;w3

gw1W23

2@11w2w3

A2
2A

3
3
bdw1;23

( )
: ð10Þ

where we used the dynamic free surface boundary condition
in the linear approximation

A1
1 ¼ i

w1

g
81
1: ð11Þ

The use of a linear approximation in transforming the
potential to the surface elevation function discards (quad-
ratically forced) nonlinear contributions. These local bound-
wave corrections contribute to the surface elevation but are
without dynamical consequences for the wave evolution
[Janssen et al., 2006] and their omission is consistent with
the present approximation. After all, the nonlinear MSE
(equation (2)), the starting point of our analysis, is a
solvability condition, valid on the premise that the nonlinear
forcing is near-secular: bound-wave corrections are thus
neglected from the outset. If higher-order nonlinearity is
pursued, accurate representation of nonsecular terms at
second order is essential [Janssen et al., 2006], but for the
second-order nonlinear dynamics such terms are generally
negligible [Bredmose et al., 2005].
[12] We verify the two-dimensional capability of the

deterministic forward-scattering model (10) with laboratory
observations by Chawla [1995]. This particular topography
is strongly two-dimensional, consisting of a circular shoal
placed on a horizontal bottom (Figure 1), with depth
varying from 45 cm away from the shoal to 8 cm at the
shoal center (x = 5 m, y = 8.98 m). The incident wave field
is monochromatic with 1.0 s period and 1.165 cm ampli-
tude. We compare observed and predicted wave heights
(Figure 2) along transects indicated in Figure 1. The spatial
domain is discretized with Dy = 20 cm and Dx = 20 cm; the
frequency array consists of the primary frequency (1 Hz)
and its first harmonic.
[13] Although the topographic scattering is quite severe,

and some wave energy is likely back-refracted [Chawla,
1995], the predictions are in excellent agreement with
observations at all instrument locations (Figure 2). Inclusion
of nonlinearity improves predictions inside the refractive
focus region.

3. A Coupled-Mode Stochastic Model

[14] To describe the evolution of wave statistics in near-
shore regions, including the surf zone, we derive transport
equations for the statistical moments of the sea surface
elevation based on the results of section 2. First, we add a
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linear damping term to the transport equation (10) to param-
eterize energy loss due to depth-induced wave breaking

dA1
1

dx
¼ eGl1;2 N 1

1 �D1 xð Þ
� �

A2
1

n o
� ieGl1;23 X

w2 ;w3

gw1W23

2@11w2w3

A2
2A

3
3
bdw1;23

( )
:

ð12Þ

Explicit expressions for the damping term D1 [Janssen and
Battjes, 2007] are given in Appendix C. We multiply (12)
by (A1

2)* (with * denoting the complex conjugate), add
A1
1dx(A1

2)*, and ensemble average the result. Upon letting
Dl, Dw ! 0, we obtain the transport equation

dE121
dx

¼ eGl1;3 N 1
1 �D1

� �
E321

n o
þ eGl2;3 N 2

1 �D1

� �
E311

n o� �*
� i eGl1;34 Z Z

dw1;23 dw2dw3

gw1W23

2@11w2w3

C34223

� ��
� eGl2;34 Z Z

dw1;23 dw2dw3

gw1W23

2@21w2w3

C34123

� �*� ��
; ð13Þ

where d1;23
w = d(w2 + w3 � w1) and d is a Dirac delta

function. The operator eG in (13) denotes the back and forth
transformation between the lateral physical and wave
number domains; it is defined in Appendix A and is
equivalent to G, but operates on continuous spectral
variables. The variables E and C in (13) are defined as

E121 xð Þ ¼ E w1;l1;l2; xð Þ ¼ lim
Dl;Dw!0

A1
1 A2

1

� �*D E
Dl2Dw

; ð14Þ

C12312 xð Þ ¼ C w1;w2;l1;l2;l3; xð Þ ¼ lim
Dl;Dw!0

A1
1A

2
2 A3

1þ2ð Þ

� �*� �
Dl3Dw2

ð15Þ

where hi denotes the ensemble average. We will refer to
these quantities as the mutual spectrum and mutual
bispectrum respectively to distinguish them from conven-

Figure 1. Plan view experimental setup [Chawla, 1995];
solid lines indicate depth contours (unit meter); dashed lines
indicate instrumented transects.

Figure 2. Comparison of predicted and observed [Chawla, 1995] normalized wave heights for normally
incident monochromatic waves with height H0 = 2.3 cm and 1.0 s period. Thick solid lines represent
nonlinear model predictions (equation (7)); dashed lines are linear predictions (same equation without
nonlinear coupling).
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tional spectra and bi-spectra. The sum of the wave number
components lj in (14) and (15) does not generally add up to
zero, allowing for the mutual coupling (in the statistical
sense) between crossing waves, induced by the seafloor
scattering.
[15] The transport equation (13) is the main result of this

section. It governs the transformation of the mutual spec-
trum E along the principal direction (x), whereas the
statistical variability in the lateral direction is captured by
the two-dimensionality of E112 in wave number space.
Evaluation of the nonlinear contribution to the spectral
evolution requires an estimate of the bispectrum C12123;
this may be obtained either directly from measurements
[Herbers et al., 2000], or by solving an additional evolution
equation for the third-order statistics [Herbers et al., 2003;
Janssen, 2006]. The extension to higher-order statistics, and
the associated closure issues, will be discussed in a subse-
quent paper.
[16] The local wave variance can be expressed as

h2 t; x; yð Þ
� �
¼
Z Z

P�2w

Z
E w;lþ l0=2;l� l0=2; xð Þexp il0y½ � dl0

� �
dldw

ð16Þ

where l = (l1 + l2)/2, and l0 = l1 � l2. The expression
(16) includes potentially rapid spatial variations in the wave
variance associated with correlations between wave com-
ponents propagating at large mutual angles. Such cross-
mode coupling, which occurs for example in the refractive

focus of topographical features, is neglected in conventional
stochastic spectral models (see section 4).
[17] In the linear approximation, the stochastic model

(equation (13)) is closed, i.e., no additional (closure)
approximations were introduced. Consequently, the stochas-
tic model inherits the complete linear refraction and diffrac-
tion characteristics embedded in the deterministic model
(equation (10)). This implies that for sufficiently large
ensembles, Monte Carlo simulations with the linear deter-
ministic model converge to predictions by the (linear)
stochastic model (equation (13) without the nonlinear and
dissipation terms). In particular, for monochromatic, unidi-
rectionally incident waves, the relative spatial distribution of
wave variance is determined entirely by the interaction with
the (deterministic) topography, and does not depend on the
initial conditions. Therefore for such cases, the linear
stochastic and deterministic model, differing only in the
statistical averaging operation, predict the exact same nor-
malized wave height.
[18] We have verified numerically both the convergence

of Monte Carlo simulations, and the exact equivalence of
the deterministic and stochastic model for monochromatic,
unidirectional incident waves (not shown, see Janssen
[2006]). In particular, we have verified, as a validation of
the numerical implementation, that the linear stochastic
model prediction for the laboratory case of Figures 1 and
2 is identical (not shown) to the (linear) deterministic model
result shown in Figure 2.
[19] To further verify the representation of topography-

induced wave field inhomogeneity, we compare predictions
of the linear stochastic model to another set of laboratory
observations of wave evolution over a submerged shoal,
including random, directionally spread incident waves
[Vincent and Briggs, 1989]. The bottom consists of an elliptic
shoal, with its crest 15.24 cm below still-water level, placed
on an otherwise uniform depth of h = 45.72 cm (Figure 3).
Further details are found in the work of Vincent and Briggs
[1989].
[20] The computational domain measures Lx = 20 m by

Ly = 30 m in principal and lateral direction, respectively.
Consequently, the alongshore wave number spacing is
Dl = 2p/Ly = p/15 rad/m. The spatial domain is
discretized with Dx = 0.1 m, Dy = 0.24 m. Comparison
is made to wave heights observed along the instrumented
transects that are indicated in Figure 3.
[21] In our comparison we consider two cases: (1) a

monochromatic, unidirectional incident wave field, with
angular frequency w = 1.45p rad/s (Figure 4), and (2) a
random wave field (TMA spectrum) with moderate direc-
tional spreading (case N1 of Vincent and Briggs [1989]) and
peak frequency wp = 1.54p rad/s (Figure 5). The mono-
chromatic waves do not break, but for the random wave
case intermittent breaking was observed in the vicinity of
the mound [Vincent and Briggs, 1989]. We model the
monochromatic case with a single frequency; the random
wave frequency spectrum is discretized into 20 equidistant
positive frequencies, with Dw = 0.2p rad/s.
[22] From geometrical optics we anticipate that this

topography results in wave-ray convergence in the lee of
the mound, reminiscent of focusing of light by a burning
lens. For the unidirectional, monochromatic case (Figure 4),
which is the archetype of a fully coherent incident wave

Figure 3. (top) Plan view experimental setup [Vincent and
Briggs, 1989]. Depth contours (unit meter) are indicated by
solid lines; instrumented transects are indicated by dashed
lines. (bottom) Predicted normalized wave height for
monochromatic, unidirectional incident wave train (w =
1.45p rad) for the same area as shown in Figure 3, top.
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field, the crossing waves in the caustic region originate from
the same source, and their interference causes rapid modu-
lations in the wave field statistics. The stochastic model
accurately resolves the observed wave height variations
across the refractive zone (Figure 4). For random, direc-
tionally spread incident waves (Figure 5), the lateral wave
height variations are much more gradual. In effect, the
decrease in coherency of the incident waves ‘‘smoothes
out’’ the caustic in the convergence region (as also dis-
cussed in the work of Vincent and Briggs [1989]). Again,

also for this case, predicted wave heights are in good
agreement with observations although dissipation over the
shoal is apparently underestimated in the model.

4. Discussion

4.1. A Coupled-Mode Spectrum

[23] The mutual spectrum E(w, l1, l2, x) is a complete
representation of the lowest-order statistics of the wave
field, including the spatial heterogeneity associated with

Figure 4. Comparison of observed (circles) [Vincent and Briggs, 1989] and predicted (solid line) wave
heights; normally incident, monochromatic waves (w = 1.45p rad/s) (case M1 [Vincent and Briggs,
1989]).

Figure 5. Comparison of observed (circles) [Vincent and Briggs, 1989] and predicted (solid line) wave
heights; directionally spread, random incident waves (TMA spectrum), peak frequency wp = 1.54p rad/s
(case N1 [Vincent and Briggs, 1989]).
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caustics. However, since this representation is not ‘local’ in
the lateral sense, the geometrical interpretation is somewhat
obscured. A local spectrum can be obtained by taking the
inverse Fourier transform of the mutual spectrum E(w, l1,
l2, x) with respect to the difference wave number l1 � l2,
written here as

bE w;l; x; yð Þ ¼
Z
E w;lþ l0=2;l� l0=2; xð Þexp il0y½ � dl0

ð17Þ

where l = (l1 + l2)/2 and l0 = l1 � l2. The spectrum bE(w,
l, x, y) is a function both of the lateral wave number and the
lateral physical coordinate (in contrast to the mutual
spectrum E, which is three-dimensional in spectral space
and one-dimensional in physical space). This form of the
spectrum we will refer to as a coupled-mode (CM)
spectrum. The surface wave variance can be written as

h2 t; x; yð Þ
� �

¼
Z Z

S w;l; x; yð Þdldw; ð18Þ

where

S w;l; x; yð Þ ¼
bE w;l; x; yð Þ
P2 wð Þ

ð19Þ

The expression (18) suggests that S is a variance density
spectrum [e.g., Tolman, 1991; Komen et al., 1994; Booij et
al., 1999]. However, the resemblance is misleading.
Whereas a variance density must be positive, the CM
spectrum S can attain negative values without violating
causality. To substantiate this, consider for instance the
surface elevation associated with a bidirectional, mono-
chromatic wave field, written in discrete form as

h t; x; yð Þ ¼ zl1 xð Þexp il1y½ � þ zl2 xð Þexp il2y½ �
	 �

exp �iwt½ � þ *:

ð20Þ

with jl1j, jl2j < k(w) and l1 6¼ l2. The two-point correlation
of laterally separated surface observations can be written as

h t; x; yþ y0=2ð Þh t; x; y� y0=2ð Þh i

¼ jzl1 j2
D E

exp il1y
0½ � þ jzl2 j2

D E
exp il2y

0½ �

þ zl1 zl2
� �*� �

exp il0y½ �exp ily0½ � þ *

� �
ð21Þ

where again l = (l1 + l2)/2 and l0 = l1 � l2. Thus the
variance (y0 ! 0) consists of spatially invariant contribu-
tions (first two terms in the right-hand side of equation (21))
and modulations (last term in brackets of equation (21)),
associated with the coherence between zl1 and (zl2)*; the
latter contributions capture potentially fast modulations
associated with wave interference patterns. The CM
spectrum S thus contains both variance contributions of

the individual spectral components and variance modula-
tions associated with their mutual coupling; only when the
cross-mode coupling is negligible does it represent a
spectral variance distribution.
[24] A coupled-mode stochastic approach that includes

spatial inhomogeneity through cross-mode correlations
appears not to have been used before in the context of
shallow water gravity waves. However, it has been used to
study instability processes occurring in narrow-band ran-
dom wave fields in deep water [e.g., Alber, 1978; Crawford
et al., 1980; Yuen and Lake, 1975], and the occurrence of
rogue waves [Janssen, 2003]. In fact, across various
branches of science similar concepts have surfaced inde-
pendently, and under different names: for instance, the
Wigner distribution in quantum mechanics and optics
[e.g., Wigner, 1932; Mori et al., 1962; Wigner, 1971;
Bremmer, 1932; Bastiaans, 1979], the Wigner-Ville distri-
bution in signal analysis [e.g., Ville, 1948; Mallat, 1998],
and the concept of generalized radiance in radiometry [e.g.,
Walther, 1968, 1973; Marchand and Wolf, 1974; Wolf,
1978]. Historically, the CM spectrum can be regarded as a
manifestation of the Wigner distribution [Wigner, 1932].
However, since in the present context the CM spectrum is
in many ways a generalization of the widely used variance
density spectrum, we refer to it as a coupled-mode
spectrum to emphasize its physical significance rather than
its eponymy.

4.2. Radiative Transfer Equation

[25] Our stochastic model (equation (13)) transports the
mutual spectrum. Alternatively, it can be expressed in terms
of the CM spectrum directly. Thereto we apply an inverse
Fourier transform with respect to the difference wave
number l1 � l2 on the linear (conservative) part of (13),
which can be written as [e.g., Bremmer, 1932]

@xbE w;l; x; yð Þ ¼ i b@þ þ i
@xb@þ
2b@þ

� �
� b@� � i

@xb@�
2b@�

� �� �bE w;l; x; yð Þ

ð22Þ

where

b@s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 w; x; yþ s

i

2

@

@l

� �
þ 1

2

@

@y
þ sil

� �2
s

ð23Þ

and the sign index s = ±. If the surface wave field is spatially
incoherent (broad directional spreading), wave components
scattered at large angles generally originate from indepen-
dent sources, and are thus uncorrelated. For such cases only
near-collinear wave components remain correlated, such
that the CM spectrum is a slowly varying quantity. If we
then assume that k�1@y � O(�) � 1, Taylor expand (23)
around (y, l), we find

@

@x
� @@11
@l1

@

@y
þ @@11

@y

@

@l1

� �
V 1
1S w1;l1; x; yð Þ

� �
¼ 0: ð24Þ
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where V1
1 = (@1

1/k1)Cg,1. Equation (24) is a Liouville-type
equation and represents a forward-scattering approximation
of the radiative transfer equation, implying the conservation
of S11 in a slowly varying medium in the absence of time-
varying currents. In this approximation, the spectrum S11
regains its physical significance of a variance density
function, transported along the rays of geometrical optics.

4.3. Wide-Angle Diffraction

[26] Ocean waves generated by local storms are often
fairly broad-banded. This results in a smoothing out of
caustics such that the variations in the wave statistics are
gradual, and generally well described by the approximation
of geometrical optics [see, e.g., Magne et al., 2007].
However, as a result of dispersion, remotely generated swell
can be narrow-banded and its interaction with seafloor topog-
raphy can result in caustic regions where a diffraction theory
(equation (13)) is needed [e.g., O’Reilly and Guza, 1991].
[27] The diffraction capability of our stochastic model is

implicit in the comparison between observations and model
predictions in section 3. However, to illustrate the wide-
angle diffraction capability by means of a classical example,
we consider waves propagating through a gap in a thin,
rigid but absorbing barrier along the line x = 0. The gap
through which the waves can penetrate extends over �G1 <
y < G2. Waves originate from sources in the half plane x < 0,
in which region the spectrum is assumed homogeneous and
known. To determine the spectrum in the half plane x > 0

from the matching condition at x = 0 we use the physical
optics or Kirchhoff approximation

dF
dx

����
0þ
¼

dFi

dx

����
0�
; �G1 < y < G2

0; elsewhere;

8><>: ð25Þ

where x = 0± denotes locations just inside/outside the
domain x > 0; the subscript i on F in (25) designates the
incident wave field, which is assumed the same as when
the barrier would have been absent. We write the incident
potential function at x = 0� as

Fi 0
�; y; z; tð Þ ¼

X
l1;w1

�i g
w1

A1
1;i xð Þ
P1

cosh k1 zþ hð Þ
cosh k1h

� exp i l1y� w1tð Þ½ �;
dA1

1;i

dx
¼ i@11A

1
1;i; ð26Þ

From the matching condition at the gap (namely, (25)) we
obtain A1

1, from which we, by forming the statistical
moment hA1

1(A1
2)*i, obtain the mutual spectrum E112 at x =

0+. Since we assume a uniform depth, and omit dissipation
and nonlinear effects, the transport equation for E
(equation (13)) for x > 0 simplifies to

d

dx
E121 ¼ i @11 � @21

� �
E121 : ð27Þ

Figure 6. Contours of wave height (normalized by the offshore values) behind (top) semi-infinite
breakwater and (bottom) breakwater gap. Comparison between stochastic angular spectrum model
(equation (28), left) and analytic expression [Penney and Price, 1952] (right). The (x0, y0) are the
horizontal coordinates normalized with the wavelength. Normally incident monochromatic waves with
w = p rad/s and kh = 1.2. Contours are drawn between 0 and 1.5 at equidistant intervals of 0.15.
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so that the spectrum E112 in the region x > 0 can be
expressed analytically as

E w1;l1;l2; xð Þ ¼ E w1;l1;l2; x ¼ 0þð Þexp i @11 � @21
� �

x
	 �

¼ 1

p2

Z
dl3

@31
� �2
@11@

2
1

bE w1;l3; x ¼ 0�ð Þ

� sin l3 � l1ð ÞGmð Þ
l3 � l1ð Þ

sin l3 � l2ð ÞGmð Þ
l3 � l2ð Þ

� exp i @11 � @21
� �

xþ l1 � l2ð ÞGD
� �	 �

: ð28Þ

Here Gm = (G1 + G2)/2 and GD = (G1 � G2)/2. Thus for
linear waves across a barrier gap in a region of uniform
depth, the convolution in (28) relates the mutual spectrum
in the half plane of positive x to the incident wave
spectrum at 0�. This solution is not exact. Its approximate
nature, apart from the simplifications implied by the use of
an inviscid theory, originates from the use of geometrical
optics for the matching condition (25), and the neglect of
nonlinearity and evanescent modes [Stamnes, 1986].
[28] To validate this approximation we numerically

integrate the differential equation (27), using the initial
condition E(w1, l1, l2, x = 0+) obtained from the matching
condition (25), and compare to the analytical expressions
in the work of Penney and Price [1952], for a rigid,
absorbing barrier as assumed here. The numerical integra-
tion is performed for a discrete lateral wave number array

[�79. . . 79]Dl for l1 and l2 with Dl = k1/80, and a
spatial resolution Dx = Dy = 1 m. The comparisons
(Figures 6 and 7) are for monochromatic waves, normally
incident on a semi-infinite screen (G1 = Ly/2, G2 = 0, with
Ly the lateral extent of the domain), and a finite barrier gap
(G1 = G2 = 2.65 wavelengths � Ly). The agreement
between the numerical and analytical solution is excellent,
even at locations just a few wavelengths from the bound-
ary. This shows that, despite the approximations implied
by the use of the matching condition (25) and the transport
equation (27), diffraction effects on directional wave
spectra transmitted through a barrier gap are accurately
described in this manner.
[29] For the purpose of illustration we considered here a

classical pure diffraction problem with a well-known ana-
lytical solution [Sommerfeld, 1896]. However, the stochas-
tic modeling approach is of course suitable for typically
broadband incident wave spectra as commonly observed in
coastal areas. Moreover, by using the matching condition
(25) to initialize the more general transport equation (13),
we can evolve the transmitted spectrum over variable depth,
incorporating nonlinear effects and (parameterized) wave
breaking.

5. Conclusions

[30] On the basis of a deterministic, forward scattering
approximation of a nonlinear mild slope equation, we derived

Figure 7. Comparison of normalized wave height along lateral transects (left) x0 = 4 and (right) x0 = 15
behind the breakwater; solid lines represent analytic solution [Penney and Price, 1952], circles are
predictions stochastic model (equation (28)). The (x0, y0) are the horizontal coordinates normalized with
the wavelength. Normally incident monochromatic waves with w = p rad/s and kh = 1.2.
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a stochastic model for the evolution of random, directionally
spread ocean surface waves over two-dimensional sea floor
topography. In the present work we discuss the stochastic
representation of spatial coherence and intermode coupling
resulting from the interaction with the topography. We have
related the general representation of the lowest-order wave
statistics to the concepts of geometrical optics and physical
optics. Comparison to analytic expressions for diffraction,
and laboratory observations of waves over a topographical
lens, confirms that the effects of wide angle refraction and
diffraction for arbitrary coherency of the incident wave field
can be accurately captured by a coupled-mode representation
of the wave field statistics.

Appendix A: Transform Operators

[31] For convenience we make use of a shorthand nota-
tion to describe repeated back-and-forth Fourier transform
operations, which are used to evaluate spectral convolutions
as products in the physical domain.
[32] The discrete Fourier transformation and its inverse

are denoted by F{} and F�1{}, respectively, and defined as

F l1 f yð Þf g � 1

Ly

Z Ly=2

�Ly=2
f yð Þexp �il1y½ � dy ¼ Fl1

; ðA1Þ

F�1l1
Fl1
f g �

X1
q1¼�1

Fl1 exp il1y½ � ¼ f yð Þ: ðA2Þ

Here the f and F are dummy variables, y is the (continuous)
physical variable, and the discrete lateral wave number l1 =
q1Dl = 2q1p/Ly. The function f(y) is periodic with Ly, the
extent of the domain in physical (y) space.
[33] For continuous spectral variables (Dw, Dl ! 0) we

denote the integral transformation and its inverse by eF{}
and eF�1{}, respectively, which are defined as

eF l1
f yð Þf g � 1

2p

Z 1

�1
f yð Þexp �il1y½ � dy ¼ F l1ð Þ; ðA3Þ

eF�1l1
Fl1f g �

Z 1

�1
F l1ð Þexp il1y½ � dl1 ¼ f yð Þ; ðA4Þ

and are to be understood in the limit sense of generalized
Fourier transforms [see, e.g., Lighthill, 1958; Kinsman, 1965].
[34] The repeated back-and-forth transformation operat-

ing on discrete spectral variables is denoted by the operator
G1;2. . .Nl and defined as

Gl1;2...N f yð ÞG1
l2
. . .G

N�1ð Þ
lN

n o
¼ F l1 f yð ÞF�1l2

G1
l2

n o
. . .F�1lN

G
N�1ð Þ
lN

n on o
¼ F l1 f yð Þg1 yð Þ . . . g N�1ð Þ yð Þ

n o
; ðA5Þ

where the gi, i = 1. . . N are dummy variables and the
transformed (dummy) variables are denoted by capitals
subscripted by lj (as before).

[35] For continuous spectral variables this operation is
denoted by eG1;2. . .Nl and defined as

eGl1;2...N f yð ÞG1 l2ð Þ; . . . ;G N�1ð Þ lNð Þ
n o

¼ eF l1
f yð ÞeF�1l2 G1

l2

n o
. . . eF�1lN

G
N�1ð Þ
lN

n on o
¼ eF l1

f yð Þg1 yð Þ . . . g N�1ð Þ yð Þ
n o

: ðA6Þ

Appendix B: A Forward Scattering
Approximation

[36] To reduce the model (2) to a forward scattering
approximation, we introduce slow spatial variables

X ¼ �x; r ¼ rx þ �rX : ðB1Þ

and assume that

81 ¼ �e81 x;Xð Þ ðB2Þ

k1 ¼ k1 Xð Þ: ðB3Þ

Insertion of (B1), (B2), and (B3) into the solvability
condition (2) yields (to O(�2))

rrr2
xe81 þ k21e81 þ � rx � rX þrX � rx½ �e81

¼ i�
X
w1 ;w2

W23e82e83
bdw1;23 þ O �2

� �
: ðB4Þ

We introduce an angular-spectrum decomposition with
amplitudes that vary slowly in the lateral direction, written as

e81 x; y;X ; Yð Þ ¼
X1

q1¼�1
e8n1
1 x;X ;Yð Þexp in1y½ �; ðB5Þ

where n1 = q1Dn, with Dn the lateral wave number
interval of the fast scale. Physically, this decomposition
applies to a region large enough such that the Dn resolves
the directional wave field and small enough such that the
medium can be considered laterally homogeneous. Insert-
ing (B5) in the lowest-order part of (B4) yields

@2e8n1
1

@x2
¼ � k21 � n21

� �e8n1
1 : ðB6Þ

so that for the forward propagating wave components we
have

@e8n1
1

@x
¼ i@n11 e8n1

1 ðB7Þ

where @1
n1 = sgn(w1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n21

p
. The @1

n1 is a local,
principal (or cross-shore) wave number, which varies on
the slow space scales. Applying the same local decom-
position (B5) to the second-order part of (B4), using (B7),
and combining the first- and second-order results, yields

@e8n1
1

@x
þ �

@e8n1
1

@X
¼ i@n11 þ �

@@n11
@n1

@

@Y
� �

1

2@n11

@@n11
@X

� �e8n1
1

þ �
X
w1 ;w2
n2 ;n3

W23

2@n11
e8n2
2 e8n3

3
bdw1;23bdn1;23 ðB8Þ
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We combine the first two terms on the right-hand side as

i@n11 þ �
@@n11
@n1

@

@Y
¼ isgn w1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ in1 þ �

@

@Y

� �2
s

þ O �2
� �

:

ðB9Þ

Then, to return to physical variables and coordinates, we
apply the inverse transform with respect to n1, effectively
replacing in1 with @y, and absorb the small parameters, so
that the end result can be written as equation (4).

Appendix C: Wave Breaking Parameterization

[37] To parameterize the loss of wave energy in the
breaking process, we introduced a frequency-dependent
damping term D1 in equation (12), which results in a sink
term in our stochastic model (13). Here we derive an
expression for D1, based on the bulk energy dissipation
rate in a random wave field, D, for which we utilize the
expressions derived by Janssen and Battjes [2007].
[38] Since it is unknown how breaking affects the cross-

correlations between noncollinear wave components, we
assume, for our present purpose, slowly varying (e.g.,
quasi-homogeneous) wave statistics. In that approximation,
D1 is a rate of variance loss with a frequency dependent
weighting to accommodate the empirical observations that
energy is lost more strongly at higher frequencies [see, e.g.,
Chen et al., 1997; Herbers et al., 2000], which can be
expressed as

D1 xð Þ ¼
X
n

rnemn

jw1jn
 !

D xð Þ: ðC1Þ

Here the rn are weighting coefficients (0  rn  1 andP
n rn = 1), which can be varied to allow different

frequency weightings of the dissipation across the spectrum.
After Janssen and Battjes [2007], we write the bulk
variance dissipation rate D in (C1) as

D ¼ 3

2
ffiffiffi
p

p B
m1

ffiffiffiffiffiffiffiffi
2m0

p

h
1þ 4

3
ffiffiffi
p

p R3 þ 3

2
R

� �
exp �R2

	 �
� erf Rð Þ

� �
ðC2Þ

where R = gh/Hrms. The emn and mn in (C1) and (C2) are
spectral moments defined as

emn ¼
Z Z

jw1jnV 1
1S

1
1 dl1dw1;

mn ¼
Z Z

jw1jnS1
1 dl1dw1:

ðC3Þ

Finally, to complete the parametric representation of wave
breaking, we choose, based on a few trial runs [Janssen,
2006], r0 = 0.1, r2 = 0.9, and B = 1. After Baldock et al.
[1998] we set

g ¼ 0:39þ 0:56 tanh 33S0 ðC4Þ

where S0 denotes the deep-water wave steepness as defined
by Battjes and Stive [1985].
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Madsen, P. A., and H. A. Schäffer (1999), A review of Boussinesq-type
equations for gravity waves, in Advances in Coastal and Ocean Engineer-
ing, vol. 5, edited by P.-F. Liu, pp. 1–94, World Sci., Hackensack, N. J.

Magne, R., K. A. Belibassakis, T. H. C. Herbers, F. Ardhuin, W. C. O.
O’Reilly, and V. Rey (2007), Evolution of surface gravity waves over a
submarine canyon, J. Geophys. Res., 112, C01002, doi:10.1029/
2005JC003035.

Mallat, S. (1998), AWavelet Tour of Signal Processing, Elsevier, New York.
Marchand, E. W., and E. Wolf (1974), Radiometry with sources of any state
of coherence, J. Opt. Soc. Am., 64, 1219–1275.

Mori, H., I. Oppenheim, and J. Ross (1962), Some topics in quantum
statistics: The Wigner function and transport theory, in Studies in Statis-
tical Mechanics, vol. 1, pp. 213–298. Elsevier, New York.

Oppenheim, A. V., and R. W. Schafer (1989), Discrete-Time Signal Proces-
sing, Prentice-Hall, Upper Saddle River, N. J.

O’Reilly, W. C., and R. T. Guza (1991), Comparison of spectral refraction
and refraction-diffraction wave models, J. Wat. Port Coast. Ocean Eng.,
117, 119–215.

Penney, W. G., and A. T. Price (1952), The diffraction theory of sea waves
and the shelter afforded by breakwaters, Part I, Phil. Trans. R. Soc.
London, 244, 236–253.

Sommerfeld, A. (1896), Mathematische theorie der diffraktion, Math. Ann.,
47, 317–374.

Stamnes, J. J. (1986), Waves in Focal Regions: Propagation, Diffraction,
and Focusing of Light, Sound, and Water Waves, A. Hilger, Boston.

Su, M. Y. (1982), Three-dimensional deep-water waves. Part 1. Experimen-
tal measurement of skew and symmetric wave patterns, J. Fluid Mech.,
124, 73–108.

Suh, K. D., R. A. Dalrymple, and J. T. Kirby (1990), An angular spectrum
model for propagation of Stokes waves, J. Fluid Mech., 221, 205–232.

The WAMDI Group (1988), The wam model - a third-generation ocean
wave prediction model, J. Phys. Oceanogr., 18, 1775–1810.

Tolman, H. L. (1991), A third-generation model for wind waves on slowly
varying, unsteady and inhomogeneous depths and currents, J. Phys.
Oceanogr., 21, 782–797.
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