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[1] The cross-shore propagation of group-bound long waves is investigated. A detailed
laboratory data set from Boers [1996] is analyzed using primarily the cross-correlation
function for a sequence of closely spaced cross-shore locations, thus visualizing the
propagation of the short-wave envelope and attendant low-frequency motion in detail. The
results confirm the previously observed lag of the forced subharmonics behind the
short-wave envelope that increases with decreasing water depth. The forced subharmonics
are found to be released and reflected at the shoreline and to propagate in offshore
direction as free waves. A theoretical, linear model for the forced wave evolution accurate
to first order in the relative bottom slope is presented; it predicts a bottom-slope
induced, spatially varying phase shift between the short-wave envelope and forced waves
which is in good agreement with the observations. The phase shift has dynamical
consequences since it allows energy transfer between the short-wave groups and the
forced low-frequency response. INDEX TERMS: 4560 Oceanography: Physical: Surface waves and

tides (1255); 4203 Oceanography: General: Analytical modeling; 4546 Oceanography: Physical: Nearshore

processes; 4599 Oceanography: Physical: General or miscellaneous; KEYWORDS: forced wave motion, wave-

group forced waves, bottom-induced phase shift, observations of forced waves over variable depth
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1. Introduction

[2] In coastal areas, the presence of wave motion in the
infragravity band (typically, 0.004–0.04 Hz) is an impor-
tant factor in the design of coastal structures and the
evolution of coastal morphology. The slow modulation
of the water depth may significantly affect the design wave
height for structural design and represent an important
factor in bar formation. Harbors and large-vessel mooring
systems may experience resonance in the infragravity
band; consideration of infragravity forcing may be norma-
tive to their design.
[3] Munk [1949] was the first to report low-frequency

motion observed well outside the surf zone. He suggested it
was caused by the variability of mass transport by the
incident waves into the surf zone, and named it ‘‘surf beat.’’
Tucker [1950] cross-correlated the short-wave envelope
with the local low-frequency motion, one thousand yards
offshore. The most outstanding feature in this correlation
function was a negative peak at a lag approximately equal to
the sum of the travel times of a wave group traveling to the
shoreline and of a free wave, reflected from the shoreline,
returning to the position of observation. Tucker confirmed

the linear relation between swell amplitude and low-fre-
quency amplitude reported by Munk.
[4] Although Tucker [1950] argued that the varying mass

transport with groups of high and low waves might cause
the generation of low-frequency motion, he was unable to
relate this to the observed correlation. Groups of higher
waves were expected to induce an enhanced shore-directed
mass transport, which is incompatible with the observed
negative correlation. Also, the quadratic dependence of
mass transport on wave height seemed inconsistent with
the observed linear relation.
[5] By solving the field equations and boundary condi-

tions of the water wave problem accurate up to second
order, Biésel [1952] and later Longuet-Higgins and Stewart
[1962] showed that modulation of the wave height at the
timescale of the wave groups causes a variation in the water
level, usually referred to as ‘‘bound’’ or ‘‘forced’’ long
waves, such that the water level is depressed under groups
of high waves, the mass transport being negative there.
Longuet-Higgins and Stewart explain the generation of these
bound waves in terms of the variation of the radiation
stresses on the time and length scales of the short-wave
groups. The model derived by Longuet-Higgins and Stewart
provides a mechanism consistent with the observed negative
correlation. It predicts a quadratic proportionality between
the amplitude of the incident primary waves and subhar-
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monic response with increasing response amplitude for
decreasing water depth. Longuet-Higgins and Stewart
argued (similar to an argument used by Tucker [1950]) that,
since waves of smaller amplitude are allowed to propagate
into shallower water, and thus are amplified more strongly,
we might expect the relation between swell and low
frequency to be at least weaker than quadratic (and thus
closer to the observed linear one).
[6] The expression for the equilibrium bound wave

amplitude in shallow water derived by Longuet-Higgins
and Stewart [1962] can be expanded in a Taylor series for
k(1)h (k(1) representing a characteristic wavenumber of the
primary waves). To a first-order approximation, assuming
conservative shoaling for the primary waves, this yields a
forced wave amplitude variation proportional to h�5/2. The
latter limit is often interpreted as a shoaling law for forced
waves over a sloping bottom, although it is based on the
equilibrium response in constant depth. Note that Longuet-
Higgins and Stewart do have reservations concerning the
limited validity of this equilibrium solution over sloping
bottoms.
[7] Assuming the surf zone wave height to be a function

of local depth alone, a modulated incident wave train gives
rise to excursions of the initial point of wave breaking at the
time and length scale of the wave modulation. Symonds et
al. [1982] show for a weakly modulated incident wave train
that this results in radiation of free waves away from the
region of initial breaking. Symonds and Bowen [1984]
extend this model to include a barred depth profile shore-
ward of the breaking region, allowing a half-wave reso-
nance in that region; in particular they investigate the
coincidence of this resonance condition with that of the
quarter-wave resonance of the moving breakpoint mecha-
nism. Both models neglect incident forced low-frequency
wave motion, but they are linear in the description of
the low-frequency motion, which allows superposition of
solutions.
[8] Schäffer [1993] presents a semi-analytical model that

combines long-wave generation due to variations in the
initial breakpoint position with local forcing due to modu-
lations of the primary waves both inshore (partial transmis-
sion of modulation) and offshore of the breakpoint for a
plane sloping beach. Several numerical models, capable of
modeling the forcing of subharmonic wave motion by
considering spatial gradients in the radiation stress function,
were developed and reported [e.g., Van Leeuwen and
Battjes, 1990; Van Leeuwen, 1992; List, 1992; Roelvink,
1993; Van Dongeren and Svendsen, 2000; Reniers et al.,
2002].
[9] Laboratory experiments performed by Kostense

[1984] on a relatively steep beach (1:20) showed some
qualitative but poor quantitative agreement with predictions
of the Symonds et al. [1982] model. Mansard and Barthel
[1984] report observations that suggest a domination of
locally forced waves accompanying (but lagging) the short-
wave groups while propagating over a sloping bathymetry.
Baldock et al. [2000] performed laboratory experiments on a
steep beach (1:10), and their observations of low-frequency
motion were mainly attributed to the time variation of the
initial breakpoint [see also Baldock and Huntley, 2002].
[10] In the field, the generation and propagation of low-

frequency motion in the nearshore region is complicated

due to the two-dimensional nature of the wave field and
bed topography. Refractive trapping of long waves may
occur, resulting in edge waves [e.g., Gallagher, 1971;
Bowen and Guza, 1978]. Field observations [e.g., Elgar
et al., 1992; Okihiro et al., 1992; Herbers et al., 1994;
Ruessink, 1998] suggest that low-frequency motion, as
present in the observations, is usually a combination of
locally generated free and forced components. Also, these
observations support an increasing dominance of forced
waves (relative to the total infragravity wave field) with
more energetic seas and swell.
[11] The effects of a varying bathymetry on the sub-

harmonic response, in particular the radiation of free
waves away from a local region of varying depth, is
studied by Molin [1982] for normal wave incidence and
deep water conditions for the primary (forcing) waves.
This is extended by Mei and Benmoussa [1984] for
obliquely incident waves and intermediate water depth
for the forcing waves (k(1)h = O(1)), based on a WKB
expansion described by Chu and Mei [1970]. Part of this
is re-examined by Liu [1989].
[12] Bowers [1992] and Van Leeuwen [1992] analytically

express the effect of the depth gradient on the local, forced
response as a perturbation of the flat bottom situation. The
inclusion of depth variations appears to give rise to a
spatially varying phase shift between the local response
and the forcing short-wave groups; it provides a theoretical
explanation for the changing phase relation observed in the
laboratory [e.g., Mansard and Barthel, 1984; Van Leeuwen,
1992; Janssen et al., 2000], in the field [e.g., Elgar and
Guza, 1985; List, 1992; Masselink, 1995], and in numerical
studies [e.g., List, 1992; Herbers and Burton, 1997].
[13] A phase shift between the primary wave envelope

and forced subharmonics (away from the p radians phase
difference) has important consequences for the evolution of
the system of primary waves and locked subharmonics
since it is a necessary condition for net energy exchanges
to occur. This aspect has received little attention so far
[see, e.g., Van Dongeren, 1997; Van Dongeren et al.,
2002]. The present work is aimed at improving our
understanding and modeling of the relation between
the short-wave envelope over a sloping bottom and the
induced low-frequency motion, with emphasis on the phase
lag. We will analyze a laboratory data set reported by
Boers [1996] with an exceptionally high spatial resolution.
Wave gauge data are analyzed utilizing the cross-correlation
function. The high resolution of the experimental data
allows a detailed visualization of the spatial evolution
of this cross-correlation function, which appears to be
particularly well suited for a qualitative analysis of the
propagation of the short-wave envelope, the low-frequency
motion, and their relation. The observed changing phase
relation between the forced low-frequency motion and the
short-wave envelope for a 1-D situation is explained and
satisfactorily predicted on the basis of a perturbation
expansion of the linearized shallow-water equations for
waves over a sloping bottom.
[14] In section 2 we describe the experimental set-up used

by Boers [1996] along with our analysis techniques. The
results are presented and discussed in section 3. The
mathematical model is presented in section 4 where, also,
the results for the bottom slope-induced phase shift between
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response and forcing are compared to the observations. We
conclude with a discussion in section 5 and conclusions in
section 6.

2. Experimental Arrangement and Method of
Analysis

[15] In this section we describe the experimental arrange-
ment used by Boers [1996] and our method of analysis.

2.1. Experimental Set-Up

[16] Boers [1996] conducted experiments in a 40-m-long,
0.8-m-wide wave flume of the Fluid Mechanics Laboratory,
Department of Civil Engineering and Geosciences at Delft
University of Technology. The flume was equipped with a
hydraulically driven, piston-type wave generator. The
bottom profile used in the experiments, molded in sand
with a smooth concrete surface, is shown in Figure 1
(a model of a barred sandy beach to fit the purposes of
Boers’ experiments). The origin of the x axis is at the
beginning of the slope, where, also, the wave gauge nearest
to the wave board was positioned. The mean position of
the wave generator is at x = � 4.5 m relative to this origin.
The dots at SWL and the marks along the x axis indicate
the 70 wave gauge positions with corresponding x positions
xi, i 2 {1..70}. As can be seen from this figure the
spatial resolution is highest (0.2 m) in the nearshore region
(19 m � x � 28.5 m).
[17] The control signal for the wave board was a relatively

short duration, irregular wave signal repeated several times.
The wave signal cycle periods, together with significant
wave height, Hs, and peak period, Tp, for the three experi-
ments considered here, are shown in Table 1; it can be seen
that the duration of the signal is approximately 75 times the
peak period of the signal. Experiments 1A and 1B both have
peak periods of approximately 2 s, while the peak period of
experiment 1C is considerably higher (3.3 s). In terms of
wave steepness, experiment 1B is an extreme in the set
of experiments followed in decreasing order by 1A and 1C.
To avoid confusion, we use the labels of the experiments as
given by Boers [1996], but since the phenomena we want to
emphasize are most eminent in experiment 1C (low wave
steepness), we focus on those results and refer to 1A and 1B
mainly where these show significant differences.
[18] The wave board control signal was accurate up to

second order in wave steepness [Klopman and Van Leeuwen,

1992] to suppress generation of spurious higher and lower
harmonics; active reflection compensation (ARC) was in
operation to minimize re-reflections at the wave board.
However, in view of restrictions imposed by the limited
excursion of the wave board, the signals used in the ARC
were high-pass filtered at fp/5 for experiment 1B and at fp/10
for experiments 1A and 1C. The deterministic wave board
control signal was used for multiple repetitions of runs with
identical input signals so as to cover a wide cross-shore
interval with high spatial resolution (70 positions) using a
limited number of wave gauges. Surface elevation records
were typically 30 min long and acquired at 20 Hz.

2.2. Method of Analysis

[19] We separate recorded surface elevation signals h(t)
into low-frequency (lf) and high-frequency (hf) compo-
nents, denoted by hlf (t) and hhf (t), respectively. The
superscripts lf and hf relate to frequency ranges fn, n 2
{1..p/2 � 1} and n 2 { p/2..2p}, respectively, where p
denotes the counter corresponding to the peak frequency, fp.
[20] Since we are interested in the variation of wave

amplitude on the timescale of the wave groups, we define
an hf-envelope function over the observed time series
hhf(t) as

A tð Þj j ¼ hhf tð Þ þ i� hhf
� ��� ��lf ; ð1Þ

where � {} denotes the Hilbert transform operator. This
operator applies a frequency independent phase shift of p/2
to the signal it operates on [e.g., Bendat and Piersol, 1986;
Lancaster and Šalkauskas, 1996]. For the case where the
original signal represents a relatively narrow band process,
the time series of this absolute value, jA(t)j, can be
interpreted as the envelope of the original signal. An
example of an envelope function obtained through the
operation of equation (1) is shown in Figure 2.
[21] The basis of our analysis is the well-known cross-

correlation function. The high spatial resolution of the
experimental data allows a presentation of the sequence of
correlation functions as quasi-continuous in space. In this
section we introduce the different cross-correlations used in
this paper and the corresponding notation. For any two real
signals V(t) and Y(t) of a random, stationary process with
zero mean, a correlation function can be defined [e.g.,
Bendat and Piersol, 1986; Oppenheim and Schafer, 1989] as

RVY tð Þ ¼ V tð ÞY t þ tð Þh i
sVsY

; ð2Þ

where h..i denotes a time averaging operator and t denotes a
time shift. The sV and sY are standard deviations of V(t) and
Y(t), respectively, and �1 � RVY � 1. We apply the cross-
correlation technique to various combinations of signals and
positions and use a corresponding notation to distinguish

Figure 1. Beach profile, positive x direction from left to
right. Dots at SWL and x axis ticks indicate wave gauge
positions.

Table 1. Experimental Program, Wave Height, and Peak Period as

Observed at x = 0 m, Taken From Boers [1996]

Name Hs, m Tp, s Cycle Period, s

1A 0.16 2.05 157.079
1B 0.21 2.03 157.079
1C 0.10 3.33 245.441
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between them. The set RVY (t, xi) denotes the collection of
cross-correlation functions obtained by cross-correlating the
signals V(t) and Y(t), which are simultaneously observed at
xi, i 2 {1..70}. For example, the cross-correlation between
the lf-signal, hlf (t), and the squared envelope signal, jA(t)j2,
as observed at xi, i 2 {1..70}, is denoted by RhA (t, xi), in
which the subscripts h and A correspond to hlf (t) and
jA(t)j2, respectively. Alternatively, the set RVY (t, xi; xr)
denotes the collection of cross-correlation functions
obtained by cross-correlating signals V(t) observed at xi,
i 2 {1..70} and Y(t) as observed simultaneously at a fixed
reference position xr. Note that xr is related to the second
subscript on R.
[22] The values of each of these correlation functions

have been plotted in the (x, t)-plane at the discrete values of
x and t where they are available. The high resolution in
space and time allows these function values to be presented
on a quasi-continuous basis, made visible by a color scale,
indicating regions of constant values of R in the (x, t)-plane.
Inspection of the ‘‘continuum’’ of cross-correlation values
in the (x, t)-plane allows recognition of ridges and troughs
of significant positive or negative correlation. Since a
consistent pattern in the (x, t)-plane of the cross-correlation
function is likely to be caused by a physical phenomenon,
rather than by noise, this quasi-continuous presentation
supports the identification of significant peaks and dips that
may not be recognized as such when studying the individual
correlation functions.

3. Results and Discussions

[23] Prior to relating the lf-waves to the squared envelope,
we present the results for the cross-correlation functions for
each of these signals separately, to investigate their propa-
gation and transformation through the flume.

3.1. Short-Wave Envelope Evolution

[24] Figure 3 shows the cross-correlation between the
squared envelope signal, jA(t)j2, obtained from time series

of experiment 1C at each individual position and as observed
at Station 1 (x = 0 m), denoted as RAA (t, xi; xr = 0 m). In the
figure the cross-lines at the vertical axis indicate wave gauge
positions whereas the solid white line presents t = 0 s.
[25] The presence of a single dominating bar of positive

correlation in Figure 3 indicates that the squared envelope
propagates shoreward, is destroyed in the process of breaking
of the hf-waves, and is not reflected in offshore direction,
which confirms the usual assumption. The dashedmarker line
in the figures indicates time lag values for a signal propagat-
ing at the (linear theory) group velocity, Cgp , corresponding
to the peak frequency, fp (steady set-up was measured
and local water depth was corrected accordingly for all
numerical comparisons to observed time lags). The computed
lags agree very well with the observed lags of maximum
correlation, thus confirming thatCgp is a good approximation
of the actual celerity of the squared envelope, CA.
[26] The hf-envelope propagates in onshore direction

and undergoes only minor changes (dispersion effects)
up to the breaker bar near x = 21 m, where the maximum
value of the cross-correlation function decreases rapidly.
The hf-envelope is either destroyed in the breaking process
over the bar or transformed significantly. The negative
correlation observed shoreward of x = 25 m in the
continuation of the main correlation bar, indicates an
inversion of the groupiness. The latter implies that on
average the highest wave before breaking is the lowest
after breaking, as inferred by Schäffer [1993] and in
agreement with observations reported by Veeramony and
Svendsen [1996].
[27] Figure 4 shows similar results, RAA(t, xi; xr = 0 m),

for experiment 1B, again with the reference station at x = 0
m. This experiment is an extreme in the sets of experiments
(steep waves). The higher wave steepness clearly reduces
the length of the bar of high positive correlation compared
to the milder case of experiment 1C. Wave breaking was
observed to occur throughout the flume (M. Boers, personal
communication, 2000), apparently inducing a rapid trans-

Figure 2. Example of wave envelope, jA(t)j, obtained
through application of the Hilbert transform operator on hhf.
Thin line: short-wave surface elevation, hhf. Thick solid line:
short-wave envelope, jA(t)j, computed as in equation (1).

Figure 3. Cross-correlation functions of the squared short-
wave envelope, RAA(t, xi; xr = 0 m), for experiment 1C.
Dashed marker line indicates time lag values for signal
propagating at group speed, Cg, corresponding to fp.
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formation of the hf-envelope even prior to reaching the
actual surf zone. We hypothesize that this also explains that
no inversion of groupiness is observable when cross-corre-
lating with the most offshore station.

3.2. Evolution of Low-Frequency Waves

[28] In Figures 5a and 5b the values of the cross-corre-
lation function of the lf-surface elevation, Rhh(t, xi; xr), for
experiment 1C are shown. The reference locations are xr =
0 m and xr = 19.2 m for Figures 5a and 5b, respectively. In
both figures a comparison is made with computed time lag
values for an incident signal propagating with Cgp, reflected
at the still-water line at x = 30 m and propagating in offshore
direction at the free shallow water wave celerity

ffiffiffiffiffi
gh

p
ð Þ.

Note that the curves are not symmetric, due to the fact that
the groups of primary waves propagate at Cgp (for fp), which
is less than the long-wave velocity, except for the limit of
shallow water. Note also the mismatch between the bar of
positive correlation with positive gradient (dx/dt) and the
computed time lag values for the incident signal. The
gradient of the bar corresponding to the observed lf-signal
is slightly smaller than that corresponding to Cgp, indicating
that, at least for some regions, the actual celerity of the
lf-signal, Clf, is smaller than Cgp. In both figures it can be
seen that

ffiffiffiffiffi
gh

p
is a good approximation for the propagation

velocity of the outgoing lf-waves.
[29] The fact that in Figures 5a and 5b the ridges of high

correlation extend from x = 0 m all the way to the most
shoreward station (x = 28.5 m), whereas no ridges appear
to originate from x � 21 m (near the breaker bar in the
bottom profile), indicates absence of significant reflection or
radiation of lf-energy at the breaker bar. This signifies that
the outgoing lf-motion predominantly consists of shoreline
reflections of incident wave motion. Its distinctness justifies
the notion of reflection at a discrete location (coinciding
with the shoreline).
[30] In Figure 5a we notice two asymmetric inverted

‘‘V’’-like patterns centered around t = 0 s (notice that
the reference station is at x = 0 m). Although this may

seem a contradiction of causality, a closer analysis
reveals otherwise. Consider a wave pulse propagating
in positive x direction, partly reflected at x = 30 m,
say. Figure 6a shows the (artificial) time records at x = 0 m
and x = 18 m (solid and dashed lines, respectively).
Figure 6b shows their cross-correlation. The strongest
correlation occurs for such (positive) lag or time shift
that the incident wave signals basically overlap (indicated
as region 1 in Figure 6b). Likewise, a significant but
weaker correlation occurs for such (negative) shift
(Figure 6b, region 2) that the reflected signals at the
two positions overlap. However, since the returning
signal is a reflection of the incident one, these, too, are
correlated for those shifts for which they overlap, giving
rise to two more peaks of significant correlation (regions 3

Figure 4. Cross-correlation functions of the squared short-
wave envelope, RAA(t, xi; xr = 0 m), for experiment 1B.
Dashed marker line indicates time lag values for signal
propagating at group speed, Cg, corresponding to fp.

Figure 5. Correlation functions of the low-frequency
motion, Rhh(t, xi; xr), as observed in experiment 1C. Lines
with circular markers indicate time lag values for signal
propagating in shoreward direction at group speed, Cgp

(for fp). Lines with square markers indicate time lag values
corresponding to signal reflected at x = 30 m propagating in
offshore direction at

ffiffiffiffiffi
gh

p
. (a) Reference position xr = 0 m.

(b) Reference position xr = 19.2 m.
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and 4). Altogether, we have four lag intervals of signif-
icant correlation, of which two coincide at zero lag (auto-
correlation) if xi = xr (= 0 m in Figure 5a), which
explains the pattern seen in Figure 5a.
[31] Figure 5b shows Rhh(t, xi; xr = 19.2 m), which is

similar to Figure 5a for a reference position much closer to
shore. A single asymmetric, inverted ‘‘V’’-like pattern is
predominant here, in contrast to Figure 5a. Around x = xr =
19.2 m the dominant pattern (around t = 0 s) is the bar
of positive correlation and positive gradient (dx/dt), which
is interpreted as an indication of a dominance of incident
lf-wave motion in the total lf-signal around this position. The
near-vanishing of the second asymmetric, inverted ‘‘V’’
(relative to Figure 5a) can be deduced from foregoing
explanations in conjunction with Figure 6, given the dom-
inance of the incident lf-motion in the nearshore region.
[32] It is noticeable in Figure 5b that at positions farther

offshore, the bar of positive correlation and negative

gradient (the utmost right bar in Figure 5b) grows more
distinct. This bar corresponds to the correlation between
the incident lf-motion observed at x = xr = 19.2 m and the
outgoing lf-waves observed at xi, i 2 {1..70}. The increasing
dominance of this bar suggests that the relative contribution
of the outgoing lf-motion to the total lf-variance increases
farther offshore. This requires the incident and outgoing
waves to grow/decay with different rates. We return to this
below (section 6).

3.3. Relation Between Low-Frequency Motion
and Envelope

[33] Here we investigate the local relation between the
squared hf-envelope and the lf-motion and its spatial evo-
lution. However, understanding of the behavior of the
signals separately, as discussed above, is crucial in the
interpretation of the results.
[34] Figure 7a shows the cross-correlations RhA(t, xi)

between the observed lf-motion and squared envelope at
identical positions (no fixed reference location). A ridge of
strong negative correlation can be observed from x = 0 m
up to x = 25 m at near-zero time lag, which is in
agreement with the theoretical prediction of a forced wave
accompanying the short-wave groups. However, if we
follow this ridge of negative correlation from x = 0 m
towards x � 22 m, we notice that its center is shifted
increasingly toward positive time lag with decreasing
water depth; this indicates a lagging of the lf-motion
behind the squared envelope. The latter observation is
consistent with trends visible in Figures 3 and 5 and in
agreement with previous field and laboratory observations
[e.g., Elgar and Guza, 1985; List, 1992; Masselink, 1995;
Mansard and Barthel, 1984; Van Leeuwen, 1992; Janssen
et al., 2000] where a similar evolution of the phase lag
between forcing groups and lf-response was observed
outside the surf zone.
[35] Moving farther toward the shoreline along t = 0 s in

Figure 7a, we note that close to shore the relation is
essentially inverted compared to the offshore situation.
Offshore, the lf-motion is negatively correlated with the
short-wave groups at zero time lag while in the nearshore
region the correlation at zero lag is dominantly positive. We
mainly ascribe this to depth modulation by the lf-motion in
the nearshore region; the depth-saturated short-waves are
allowed to enter the shallow region on the crest of the lf-
motion, thus causing a positive correlation. The relation
between short-waves and lf-motion in the nearshore region
may, to a lesser extent, also be affected by the inversion of
groupiness in the breaking process and the slope-induced
phase lag of the forced subharmonics behind the short-wave
envelope already present outside the surf zone.
[36] In Figure 7a a comparison is made with computed

time lag values corresponding to the summed travel times
for a signal propagating from position xi with Cgp in
onshore direction, reflected at x = 30 m and returning to
xi with the free long-wave celerity (as Tucker [1950] did
for a single position). Along this line (square marker line
in Figure 7a), offshore from the location where x � 21 m,
we observe strong negative correlation. This indicates that
the lf-motion propagating in offshore direction is indeed
free (corresponding time lags) and negatively correlated to
the incident wave groups. This is consistent with the

Figure 6. Numerical example to elucidate appearance of
‘‘doubled’’ cross-correlation peaks (and thus ridges in x � t
presentation). (a) Thick, solid line represents an incident
pulse with compact support and its partial reflection at
x = 30 m (the pulse at t � 140 s) as observed at location
x = 0 m; the dashed line represents a similar observation
at x = 18 m. (b) Cross-correlation function between signals
is shown in top panel.
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release of the incident bound waves, as the short-waves are
breaking, and the subsequent reflection at the shoreline.
Notice that there are no indications of lf-motion being
reflected or generated at the breaker bar near x = 21 m as
would be predicted by the model of Symonds et al. [1982].
This theory predicts values of outgoing waves, induced by
the breaking of weakly modulated bichromatic primary
waves on a plane slope, that vary with the normalized surf
zone width. Since the present analysis involves a fully
modulated random wave field, we refrain from attempting

to verify the applicability of this theory to our data, even
in the extended version for a barred beach by Symonds
and Bowen [1984].
[37] Inspection of the numerical values of the cross-

correlation function for x � 20 m shows that the bar close
to t = 0 s (incident waves) is dominant (larger absolute
values of the cross-correlation) compared to the bar
corresponding to the reflected waves at all positions.
However, the reflected waves become increasingly impor-
tant with increasing distance offshore; in the present set-up
they are almost of equal magnitude at the most offshore
position of observation (x = 0 m). If this trend would extend
farther offshore this could explain the observed domination
of lf-waves propagating in offshore direction reported by
Tucker [1950] without contradicting the observed incident
lf-motion dominance closer to the surf zone. A similar
spatial variability of the relative importance of outgoing
waves is reported by Sheremet et al. [2002].
[38] Figure 7a may obscure the fate of the incident lf-

motion in the area of significant short-wave breaking, since
the breaking deforms the short-wave envelope to such
extent that the lf-motion is no longer correlated to the local
squared envelope. However, if the lf-motion remains rela-
tively unperturbed, apart from being released, we may
expect it to remain correlated to the squared envelope as
observed offshore. In Figure 7b we show the result of cross-
correlating the local lf surface elevation with the squared
envelope observed at x = 0 m, RhA(t, xi; xr = 0 m), for
experiment 1C. We observe that in this diagram the bar of
negative correlation indeed extends all the way to the most
shoreward station (x = 28.5 m). This clearly indicates
that the lf-waves, initially forced, persist through the zone
where the short waves break, are released there, and
propagate to the shoreline where they are reflected. In the
surf zone, at slightly smaller lags than the bar of negative
correlation, a bar of positive correlation is seen to appear.
This is similar to observations reported by List [1992] and
Masselink [1995]. It can be argued that this positive ridge is
related to lf-motion generated in the breaking process
(which is qualitatively consistent in terms of correlation
and time lags). However, List [1992] found a similar
positive peak even in the absence of breakpoint-generated
waves. We hypothesize that these positive correlations are
caused by the presence of free waves, positively correlated
to, and preceding, the short-wave envelope, generated and
radiated away while the system of primary wave groups and
locally forced subharmonics propagates over an area of
variable depth [e.g., Molin, 1982; Mei and Benmoussa,
1984; Liu, 1989; Dingemans et al., 1991].

4. Mathematical Model

[39] The evolution of the cross-correlation function
between the squared hf-envelope and lf-motion showed a
change of phase relation between these signals while
propagating over an uneven bottom well before significant
wave breaking occurs. Phase shifts between forcing and
response away from p, not predicted by Stokes second-order
theory for a flat bottom [e.g., Biésel, 1952; Longuet-Higgins
and Stewart, 1962; Hasselmann, 1962], were previously
reported from field observations [e.g., Elgar and Guza,
1985; List, 1992; Masselink, 1995] and in the laboratory

Figure 7. Cross-correlation functions between squared
short-wave envelope, jA(t)j2, and low-frequency motion, hlf

(t), as observed in experiment 1C. (a) Signals at same
position (RhA(t, xi)); line with circular markers indicates
time lag values computed with AER model (x4); line with
square markers indicates summed travel times for incident
signal with celerity Cgp (for fp) reflected at the shoreline (x =
30 m) and propagating seaward at celerity

ffiffiffiffiffi
gh

p
. (b) Cross-

correlation squared short-wave envelope at x = 0 m with hlf

(t) at all available positions (RhA(t, xi; xr = 0 m)); line with
circular markers indicates time lag values for incident signal
propagating at Cg (for fp); line with square markers indicates
time lag values for outgoing signal reflected at x = 30 m
propagating at

ffiffiffiffiffi
gh

p
.
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[e.g., Mansard and Barthel, 1984; Van Leeuwen, 1992;
Janssen et al., 2000].
[40] Bowers [1992] and Van Leeuwen [1992] have shown

analytically that the varying depth induces a phase shift
between the primary wave envelope and low-frequency
response while propagating over a varying depth. The
present work is in line with Van Leeuwen’s [1992] approach
with the exception that consistent use of multiple scales in
the spatial variable leads us to include the spatial variation
of the lf-amplitude, the latter being neglected by Van
Leeuwen. The result is a linear evolution model for ampli-
tude and phase of the lf-motion to first order in bottom
slope.
[41] The analysis in this section is aimed at modeling the

spatially varying phase shift between the short-wave enve-
lope and incident forced subharmonics while propagating
over an uneven bottom prior to breaking. The description is
limited to the shoaling region of the primary waves and the
accompanying incident locked harmonics; no provisions
were made to include low-frequency motion induced by
time variation of the initial breakpoint [Symonds et al.,
1982; Symonds and Bowen, 1984]. However, since the
model is linear in the description of the low-frequency
motion, solutions may be superposed.
[42] We consider a narrow-band primary wave motion

expressed as a wave train modulated by a slowly varying
amplitude as in

h 1ð Þ x; tð Þ ¼ 1

2
A x; tð Þ exp i y0 xð Þ � w0tð Þ½ � þ *; ð3Þ

where * denotes the complex conjugate of the preceding
term and the amplitude, A(x, t), can be written as

A x; tð Þ ¼
XU
n¼L

an xð Þ exp � i yn xð Þ � y0 xð Þ � wn � w0ð Þt þ fnð Þ½ �:

ð4Þ

Here an(x), wn and fn represent the real amplitude, angular
frequency, and initial phase for frequency component n of
the primary wave motion, respectively. The L and U denote
lower and upper frequency cut-off for the primary wave
motion, which are assumed centered around, and in the
vicinity of, some fixed frequency w0. The spatial derivative
of the phase function defines a local wavenumber as in

@yn xð Þ
@x

¼ kn xð Þ � k0 xð Þ þ @k

@w

� �
0

wn � w0ð Þ

þO wn � w0ð Þ2
� 	

: ð5Þ

The k0 and w0 are related through the linear dispersion
relation, w0

2 = gk0 tanh k0h. In the following we will make
use of

�wn;m

�fn;m

�kn;m

24 35 ¼
wn � wm

fn � fm

kn � km

24 35; Cg0 xð Þ ¼ @w
@k

� �
0

: ð6Þ

For sufficiently small �kn, mh, the subharmonic wave
motion can be regarded as a slow modulation of depth

and current. To describe this slow variation, we consider the
depth-integrated and time-averaged (over the timescale of
the short waves) equations of conservation of mass and
momentum [e.g., Phillips, 1977, section 3.5; Dingemans,
1997, section 2.9]. If we limit ourselves to a 1DH situation,
the linearized, combined set of equations for the lf surface
elevation reads [e.g., Mei and Benmoussa, 1984; Schäffer,
1993]

@

@x
gh

@

@x
h 2ð Þ x; tð Þ

� �
� @2

@t2
h 2ð Þ x; tð Þ ¼ � 1

r
@2

@x2
S x; tð Þ; ð7Þ

where h denotes water depth and h(2)(x, t) the subharmonic
surface elevation response as a function of x and t.
Gravitational acceleration is denoted by g. The S in the
RHS of equation (7) denotes the radiation stress function
which, from linear Stokes theory, may be expressed as

S x; tð Þ ¼ 1

2
rg A x; tð Þj j2 2Cg0

C0

� 1

2

� �
; ð8Þ

where Cg0 and C0 represent group and phase velocity,
respectively, both in the linear approximation, corresponding
to w0.
[43] In our evaluation of equation (7) we will consider a

low-frequency response in the form of a summation of
waves as in

h 2ð Þ x; tð Þ ¼
XU�L

m¼1

1

2
Zm xð Þ exp �iwmt½ � þ *; ð9Þ

omitting the steady-state (zeroth harmonic) part of the
response.
[44] Upon using equations (4), (8), and (9), we can

express equation (7) for a frequency wm as

ghZm;xx þ ghxZm;x þ w2
mZm ¼ Fm xð Þ exp i

Z
km xð Þ dx

� �� �
xx

;

ð10Þ

where x as a subscript denotes differentiation with respect to
the spatial variable, km(x) � wm/Cg0(x), and Fm(x) is a
complex forcing amplitude:

Fm xð Þ ¼ �g
2Cg0

C0

� 1

2

� �XU�m

n¼L

amþnan exp i�fn;n�m

� �
: ð11Þ

We will omit frequency counters for convenience with the
understanding that the following relations are considered for
each frequency wm with m 2 {1..(U � L)}.
[45] The spatial variability of the forcing wavenumber,

k(x), and amplitude, R(x), is governed by the variations in
water depth. The latter is assumed small over a typical
wavelength, and its order of magnitude is expressed by the
ordering parameter

b ¼ O
hx

kh

� �
� 1: ð12Þ

The variations related to this slow variation of the medium
can be made explicit by introduction of a slow space scale
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X = bx. Furthermore, we expect both forcing and response
to be functions with fast phase variations and slowly
varying wavenumber and amplitude, suggesting a form of
the solution as in

Z Xð Þ ¼ T Xð Þ exp i

Z
k Xð Þb�1 dX

� �
: ð13Þ

Note that slow variations of amplitude and corrections to the
phase function are incorporated in the complex amplitude T.
The spatially varying phase shift between short-wave
envelope and the low-frequency motion is recognized as

ys ¼ arg
T

F

� �
: ð14Þ

Since the minus sign in the RHS of equation (7) is
incorporated in the definition of F a non-zero ys corresponds
to a deviation from the p radians phase difference between
short-wave envelope and low-frequency response as pre-
dicted by second-order Stokes theory. If, to a first
approximation, we discard terms of O(b2), insertion of
equation (13) into equation (10) yields

mT � ib
1

hk2T
khT2
� �

X
� 1

ghk2F
kF2
� �

X

� �
¼ F

gh
þ O b2

� �
; ð15Þ

where

m ¼ 1�
C2
g0

gh

 !
: ð16Þ

Physically, m, represents a departure from resonance. The
treatment of the problem greatly depends on the ratio bm�1.
The off-resonant case (bm�1 = O(b)) can be treated as a local
response on a horizontal bottom with a small correction due
to the inhomogeneity of the medium of order b. Clearly this
approach breaks down for the near-resonant case for which
bm�1! O(1). In the latter case, equation (15) can be restated
as an evolution equation for the forced wave. We will work
out both approaches separately and compare results.

4.1. Local Response Corrections, BM��1 = O(B)

[46] To leading order, the response is given by

T 0ð Þ ¼ F

ghm
; ð17Þ

which is the well-known solution for a forced subharmonic in
shallow water propagating over a horizontal bottom as
derived by Longuet-Higgins and Stewart [1962]. The
bracketed superscript on T denotes the order (in terms of b)
of the highest order terms included in the response. Including
terms ofO(b) while substituting the leading order response in
equation (15) yields

T 1ð Þ ¼ F

ghm 1� im�1Q X ; T 0ð Þ; T
0ð Þ

x

� 	� 	 ; ð18Þ

in which

Q ¼ 1

k
2Fx

F
1� mð Þ � Cg0;x

Cg0

1� mð Þ þ hx

h
þ 2mx

m

� �� �
: ð19Þ

In equation (19) the ordering parameter b is omitted and we
returned to the single-scale (physical) spatial variable, x.
From equations (14) and (18) we can write

T ¼ F

ghm
exp iys½ � þ O b2

� �
; ð20Þ

where

ys ¼
Q

m
þ O b2

� �
: ð21Þ

Our expressions (19) and (21) can readily be evaluated, either
by working out the terms containing the spatial derivatives or
by numerically approximating them. The former approach is
simplified considerably if we consider the case of a
conservative bichromatic wave field with closely neighbor-
ing frequencies w1 and w2 as small perturbations around a
mean frequency, w0. For this special case we can express the
phase shift, ys, analytically as

ys ¼
hx

kh
f k0hð Þ þ O b2

� �
; ð22Þ

with f (k0h) given in Appendix A. The expression (22) is a
first-order approximation (in terms of depth variations) to the
phase variation implied by equation (10) for the case bm�1 =
O(b).

4.2. Near-Resonance, BM��1 = O(1)

[47] In this case the perturbation approach breaks down
and we restate equation (15) as

bTX þ i
km
2
T ¼� b

kX
2k

þ hX

2h

� �
T þ F

2gh
ikþ 2bFX

F
þ bkX

k

� �
þ O b2

� �
; ð23Þ

which can be written as a coupled set of evolution equations
for the lf-amplitude, jZj = jTj, and phase shift, ys = arg
(TF�1), in the physical spatial variable x:

Zj jx¼
Cg0;x

2Cg0

� hx

2h

� �
Zj j þ Fj j

2gh

� k sin ysð Þ þ 2Fx

F
� Cg0;x

Cg0

� �
cos ysð Þ

� �
; ð24Þ

and

ys;x ¼ � km
2
þ Fj jk
2gh Zj j cos ysð Þð � 1

k
2Fx

F
� Cg0;x

Cg0

� �
sin ysð ÞÞ:

ð25Þ

The latter equations represent a first-order approximation
(in terms of b) both in the off-resonant region (bm�1 = O(b))
and in the region where the forcing problem is considered
near-resonant (bm�1 = O(1)). For hx ! 0 we have b! 0 and
in this limit, the set of equations (24)–(25) has steady
solutions with ys = 0 and jZj = jFj(ghm)�1.
[48] Validity demands the forced wave to remain of

second order in magnitude as implicitly assumed by
considering the evolution of the forced wave alone. The
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effect of its evolution on the evolution of the primary
waves is assumed small and is therefore neglected.

4.3. Model Intercomparison

[49] To verify our approximations we compare them to the
exact solution to equation (10) for a plane slope, obtained
through variation of parameters [e.g., Van Leeuwen, 1992;
Schäffer, 1993], written as

Z ¼ i
pH 1ð Þ

0 zð Þ
2ghx

C1 �
Z x

H
2ð Þ

0 z0ð Þ d
2

dx2
bS x0ð Þ dx0

� �
þ i

pH 2ð Þ
0 zð Þ
2ghx

C2 þ
Z x

H
1ð Þ

0 z0ð Þ d2

dx02
bS x0ð Þ dx0

� �
; ð26Þ

where H0
(1), H0

(2) are zeroth-order Hankel functions of the
first and second kind, respectively, and z = 2wx(gh)�1/2. The
C1 andC2 are integration constants and Ŝ(x) = F exp[i

R
k dx].

The result of the numerical evaluation of equation (26) is
referred to as exact linear response (ELR) and is taken as the
reference solution to which the more approximate solutions
are compared. The flat bottom response (equation (17)) as
derived by Longuet-Higgins and Stewart [1962] will be
referred to as local equilibrium response (LER). The local
response correction and the coupled evolution equations are
referred to as local equilibrium response correction (LERC)
(equation (18)), and amplitude evolution response (AER)
(equations (24)–(25)), respectively. The LERC model
solution is taken as a boundary condition, at water
sufficiently deep such that bm�1 = O(b), for the numerical
integration of the AER model. This integration is performed
using a fourth-order, fixed step size, Runge-Kutta scheme.
[50] Figure 8 shows results for a bichromatic case with

interacting frequencies {w1, w2} = {2.8, 3.6} rad/s and
bottom slope hx = 0.025. A comparison between the ELR
result and the approximate solutions for the phase shift,
ys/p, as a function of kh, is shown in Figure 8a. It can be
seen that the LERC model is capable of correctly repro-
ducing the small phase shifts occurring for larger kh; in
shallower water (O(m) ! O(b)) the phase shift increases
and clearly this perturbation approach can no longer be
valid. From the same figure it can be seen that the AER
model results are in very good agreement with the ELR
solution for the range of kh shown.
[51] It is common practice to express spatial variations of

the lf-amplitude in terms of the water depth as jhlfj � h�a,
where a = 1/4 and a = 5/2 correspond to Green’s law and
the shallow water limit of equation (17) (assuming conser-
vative shoaling for the primary waves), respectively. In
Figure 8b, a is shown as a function of k h for the LER,
AER, and ELR models. It can be seen that the limit to which
equation (17) tends is quite different from the one attained
by the ELR model in shallow water. Spatial growth rates in
shallow water for the latter are considerably smaller than
suggested by the limit of equation (17). Growth rates
produced by the approximating AER model are in excellent
agreement with the ELR result.
[52] Note that we show a single case here and that, although

we present the results in non-dimensional quantities, the
results are not invariant to variations in hx, �w and w0.

4.4. Comparison With Observations

[53] Comparisons between observed and computed
(through evaluation of equations (24) and (25)) time lags

for experiments 1A and 1C are shown in Figures 9a and 9b,
respectively. For experiment 1C, the computed time lags are
also shown in Figure 7a (line with circular markers). In
Figures 9a and 9b the observed time lags (dotted line,
square markers) correspond to the local minimum of the
cross-correlation function nearest to t = 0 s for each
position. The comparison is made for 0 m � x � 20 m,
since farther inshore the bar of negative correlation is no
longer very distinct (for experiment 1A), and other physical
processes than those accounted for in the linearized models
are expected to become increasingly important.
[54] The numerical evaluations of equations (24)–(25)

shown in Figures 9a and 9b are computed for the actual
bottom profile with its boundary at the wave paddle (x =
�4.5 m). The primary wave field is approximated as a
bichromatic one, with its angular frequencies w0 and �w
defined as 2p times the centroid frequency of the hf and lf

Figure 8. Comparison approximating models to ELR
result. Bottom slope, hx = 0.025 and interacting (angular)
frequencies are {w1, w2} = {2.8, 3.6} rad/s. (a) Phase shift,
ys/p, as a function of kh(k = �w/Cg0). (b) Shoaling
exponent a.
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ranges of the spectrum (i.e., w0 = 2p(m1/m0)
hf and �w =

2p(m1/m0)
lf, where mi denotes the ith moment of the

frequency spectrum) resulting in {w0, �w} = {3.0, 0.95}
rad/s and {w0, �w} = {2.4, 0.65} rad/s for experiments 1A
and 1C, respectively. The observed spatial variation of the
squared time-averaged hf-envelope was used as input for
the spatial variation of the forcing amplitude. The computed
phase shifts are related to time lag through t = ys/�w. It can
be seen from Figures 9a and 9b that the computed time lags
are in good qualitative agreement with the observed lags.
[55] In Figure 9a, for x < 10 m, we notice some wiggles in

the observed time lag values, which are not reproduced. In
Figure 9b the negative time lags for x < 8 m are not found
in the numerical results. These mismatches may be caused
by the presence of spurious free waves generated at the

paddle, re-reflections or other differences in upwave bound-
aries that were not included in our present evaluation.

5. Discussion

[56] The bottom-slope induced phase lag of the forced lf-
response with reference to the squared envelope, away from
the equilibrium value of an exact opposite-phase relationship
(p radians), has important dynamical consequences because
it allows net work to be done on the lf-motion by the grouped
short waves. Not only would this allow an increase of
incident lf-energy flux while propagating in onshore direc-
tion, but would likewise result in a corresponding decrease
of the incident primary wave energy flux.
[57] In the surf zone, only weak modulation (forcing)

persists; combined with the increasing importance of dissi-
pative processes, lf-energy fluxes decrease. Reflected lf-
motion propagates in seaward direction, and in absence of
forcing (and outside the dissipative region) its energy flux
remains practically constant, which under the previously
mentioned conditions yields Green’s law for its amplitude
decay. This variation in shoaling rates can result in a
domination of the lf-wave field by incident waves in the
nearshore region while farther offshore the relative magni-
tude of the reflected waves increases [e.g., Sheremet et al.,
2002] and eventually they become dominant [e.g., Tucker,
1950]. This inferred spatial variability of shoaling rates can
explain the observed variability in intensity of the cross-
correlation bars observed in Figure 5b.
[58] The occurrence of an energy transfer between short

waves and forced lf-response has similar implications (but of
opposite sign) for the energy balance for shoaling short
waves, but this has not been taken into account so far. Nor
has it ever been missed in comparison with observations.
However, it should be noted that the lf-amplitudes in the
shoaling zone are typically an order of magnitude smaller
than those of the short waves, say 10%, so that anO(1) change
in the lf-energy then corresponds to only an imperceptible
O(10�2) sink in the short-wave energy balance. Needless to
say, this approximation fails in very shallow water such as in
the swash zone, where the lf-motion often is dominant.

6. Conclusions

[59] A detailed analysis has been made of a data set for
one-dimensional shoaling and breaking random surface
waves on a slope, and the attendant forced and free low-
frequency motions. The high cross-shore resolution allowed
a quasi-continuous space-time visualization of the propaga-
tion of the incident short-wave envelope as well as the
incident (bound) and outgoing lf-waves, with a spatial detail
that has not been available before. The results largely
confirm and support existing notions concerning the propa-
gation characteristics of the system of primary waves and
forced subharmonics, as summarized below:
[60] 1. The cross-correlations of the hf-envelope signal

observed at a fixed position with the hf-envelope signal at
all other positions, confirm that the envelope propagates at a
celerity close to Cgp (corresponding to fp in the linear
approximation); an inversion of groupiness of the hf-waves
as they transit through the region of strong initial breaking is
observed (i.e., on average the higher waves prior to break-

Figure 9. Comparison between observed time lag (corre-
sponding to minimum of correlation function) and time lag
computed with AER model. The primary wave field is
approximated by a bichromatic one. (a) Experiment 1A,
{w1, �w} = {3.0, 0.95}. (b) Experiment 1C, {w1, �w} =
{2.4, 0.65}.
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ing become the lower waves after breaking); no indication
of reflection of hf-waves either on the slope (e.g., at the bar)
or at the waterline is found.
[61] 2. The cross-correlations of the lf-wave signal

observed at Station 1 (x = 0 m) with the lf-wave signal at
all other positions show that incident lf-waves on average
(over the length of the flume) propagate with celerity
slightly smaller than Cgp; the lf-waves undergo significant
and distinct reflection at the shoreline and after reflection
propagate in offshore direction with celerity

ffiffiffiffiffi
gh

p
. No

indication of significant radiation of low-frequency waves
from the region of initial breaking or the breaker bar was
found; reflections of lf-motion at the breaker bar and the
generation of lf-wave motion due to time variations of the
initial breakpoint were apparently not effective.
[62] 3. The cross-correlations of lf-wave signal and

squared short-wave envelope signal at the same positions
show a shoreward increasing phase lag of the forced
subharmonics behind the short-wave envelope while prop-
agating over the sloping bottom. In the region of initial
breaking the correlation at near-zero time lag is inverted
from predominantly negative outside the surf zone to
distinctly positive in the nearshore region; the inversion is
mainly ascribed to depth modulation of the water depth
through the presence of the low-frequency motion. Sub-
harmonics that initially accompany the incident short-wave
groups are released in the breaking process, reflected at the
shoreline and subsequently propagate in offshore direction
as free waves.
[63] A linear model is derived for the evolution of the

forced subharmonics to first order in the relative bottom
slope. The theoretically predicted phase lag is in fair agree-
ment with the observed values. The corresponding theoret-
ical amplitude evolution indicates that for the near-resonant
lf-response over a sloping bottom, the local equilibrium
response as derived by Longuet-Higgins and Stewart
[1962] is not a proper approximation. It is generally not
correct to interpret its asymptotic amplitude variation with
depth, h�5/2 (in the limit of small k0h), as indicative of the
shoaling amplification of bound lf-waves.
[64] The variability in shoaling rates for incident (forced)

lf-wave motion, incident free and outgoing free waves with
inclusion of an area of possible dissipation (surf zone), can
result in a domination of incident wave motion in the
nearshore region and an increasing relative importance of
outgoing waves farther offshore.

Appendix A: Analytical Expression Phase Shift

[65] Consider the case bm�1 = O(b), b � 1 and a primary
wave field consisting of a bichromatic wave field with
interacting frequencies w1 and w2 as small perturbations
around a mean frequency, w0. The phase shift, ys, can be
expressed as

ys ¼
Q

m
þ O b2

� �
; ðA1Þ

where

Q ¼ 1

k
2Fx

F
1� mð Þ � Cg0;x

Cg0

1� mð Þ þ hx

h
þ 2mx

m

� �� �
: ðA2Þ

In the following, we will use q � k0h, T � tanh (k0h) for
brevity and define

g1 �
T þ q 1� T2ð Þð Þ2

4qT
;

g2 � 1� T2ð Þ 1� qTð Þ;

g3 � T þ 2q 1� T2ð Þ;

g4 � � q

2T
1� T2
� �

T3
�

þ 2T 1� T2ð Þ þ q 1� T2ð Þ2
i
: ðA3Þ

We have the identities

m ¼ 1� g1;
mx
m
¼ hx

h

g1 � g2ð Þ
1� g1ð Þ ;

Cg0;x

Cg0

¼ hx

h

g2

2g1
: ðA4Þ

If we take the primary wave field to be conservative we can
further state

Fx

F
¼ hx

h

g4

g3g1
: ðA5Þ

Insertion of the latter expressions into equation (A1) yields,
for the phase shift,

ys ¼
hx

kh
f k0hð Þ þ O b2

� �
; ðA6Þ

where

f k0hð Þ ¼ � 1

2 1� g1ð Þ

� 2þ g2 þ 4
g1 � g2ð Þg3 � g4 1� g1ð Þ

g3 1� g1ð Þ

� �� �
: ðA7Þ

Notation

A(x, t) short-wave envelope, (m);
h(x, t) surface elevation, (m);

h(1)(x, t) primary wave surface elevation, (m);
h(2)(x, t) second-order surface elevation, (m);
hlf(x, t) low-frequency surface elevation, (m);
hhf(x, t) high-frequency surface elevation, (m);
S(x, t) radiation stress function corresponding to primary

wave field, (kg/s2);
Ŝn(x) complexamplitudecorrespondingtonth frequency

component of minus the radiation stress function
per unit density, (m3/s2);

Fn(x) slowly varying complex amplitude corresponding
to nth frequency component of minus the
radiation stress function per unit density, (m3/s2);

an(x) real amplitude corresponding to nth frequency
component of primary wave motion, (m);

Zn(x) complexamplitudecorrespondingtonth frequency
component of second-order surface elevation, (m);

Tn(x) slowly varying complex amplitude corresponding
to nth frequency component of second-order
surface elevation, (m);
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wn angular frequency of nth frequency component,
(1/s);

w0 center angular frequency defining bichromatic
wave field description, (1/s);

fp peak frequency, (1/s);
yn(x) space dependent part of phase function of nth

frequency component of primary wave motion,
(�);

y0(x) space dependent part of phase function of
harmonic component corresponding to w0, (�);

ys(x) slowly varying phase shift between forced
subharmonics and forcing envelope, (�);

kn(x) wavenumber of nth frequency component of
primary wave motion, (1/m);

k0(x) wavenumber of harmonic component corre-
sponding to w0, (1/m);

k(1)(x) characteristic wavenumber of primary wave
motion, (1/m);

k(x) wavenumber of forced subharmonics, (1/m);
Clf(x) actual velocity of observed low-frequency wave

field, (m/s);
CA(x) actual velocity of observed short-wave envelope,

(m/s);
C0(x) phase velocity corresponding to center angular

frequency, w0, (m/s);
Cgp(x) group velocity corresponding to peak frequency,

(m/s);
Cg0(x) group velocity corresponding to center angular

frequency, w0, (m/s);
fn initial phase of nth frequency component of

primary wave motion, (�);
H0

(1) zeroth-order Hankel function of first kind;
H0

(2) zeroth-order Hankel function of second kind;
g gravitational acceleration, (m/s2);
m resonant departure parameter, (�);
x cross-shore coordinate, positive onshore, (m);
X slowly scale cross-shore coordinate, positive

onshore, (m);
b relative bottom slope, (�);

�wn,m difference angular frequency, wn � wm, (1/s);
�fn,m difference initial phase, fn � fm, (�);
�kn,m difference wavenumber, kn � km, (1/m);

t time, (s);
t time lag, (s);

RVY(t) normalized cross-correlation function between
signals V and Y, (�);

Ci ith integration constant, (m2/s2).
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