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ABSTRACT

Triple collocation is a powerful method to estimate the rms error in each of three collocated datasets,
provided the errors are not correlated. Wave height analyses from the operational European Centre for
Medium-Range Weather Forecasts (ECMWF) wave forecasting system over a 4-yr period are compared
with independent buoy data and dependent European Remote Sensing Satellite-2 (ERS-2) altimeter wave
height data, which have been used in the wave analysis. To apply the triple-collocation method, a fourth,
independent dataset is obtained from a wave model hindcast without assimilation of altimeter wave ob-
servations. The seasonal dependence of the respective errors is discussed and, while in agreement with the
properties of the analysis scheme, the wave height analysis is found to have the smallest error.

In this comparison the altimeter wave height data have been obtained from an average over N individual
observations. By comparing model wave height with the altimeter superobservations for different values of
N, alternative estimates of altimeter and model error are obtained. There is only agreement with the
estimates from the triple collocation when the correlation between individual altimeter observations is
taken into account.

The collocation method is also applied to estimate the error in Environmental Satellite (ENVISAT ),
ERS-2 altimeter, buoy, model first-guess, and analyzed wave heights. It is shown that there is a high
correlation between ENVISAT and ERS-2 wave height error, while the quality of ENVISAT altimeter wave
height is high.

1. Introduction

Satellite observations have resulted in considerable
improvements to weather and wave forecasting. Be-
cause these observations have such a large potential
value, it is important to validate them. A common pro-
cedure to do this is as follows. As soon as a satellite is
launched and the instruments on board are performing
in a stable manner, the observed products are com-
pared with analyzed fields to check on gross errors and,
if needed, to retune geophysical algorithms. The advan-
tages of a comparison against analyses are that the
quality of an analysis is fairly well known and in a rela-
tively short period many collocations between observed
quantities and the analyzed counterparts are available.
Thus, a rapid assessment of the quality of satellite ob-
servations may be given. Also, the collocation between
analysis and observations is of vital importance to de-
velop geophysical algorithms such as the C-band Geo-

physical Model function version 4 (CMOD4; Stoffelen
and Anderson 1997) and the National Aeronautics
and Space Administration (NASA) Scatterometer
(NSCAT; Wentz and Smith 1999) for C- and Ku-band
scatterometers. Nevertheless, a check against in situ ob-
servations is an important addition to the quality assur-
ance of satellite products, although the number of col-
locations is lower by typically two orders of magnitude.

However, when comparing several types of data it is
desirable to have an idea about the size of the errors.
Note that these errors consist of several components.
The instrumental measurement error usually only gives
a small contribution to the total error. More significant
are representativeness errors and errors caused by the
finite distance and the time between two observations.

For example, when calibrating one instrument
against another it is important to know their error be-
cause the calibration constants depend on them. The
example of linear regression is discussed by Marsden
(1999) and Tolman (1998).

Furthermore, data assimilation requires knowledge
of the weights given to the data and the first-guess (FG)
field. These weights depend on the ratio between the
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first-guess and observation errors. In wave forecasting
these errors are usually not known, and one assumes, as
in the optimum interpolation (OI) scheme of the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF) wave forecasting system, that the errors are
equal. Hence, first guesses and observations get equal
weight during the analysis.

The need for estimates of errors of different data
sources was realized by Stoffelen (1998). He proposed
the use of a triple-collocation method to calibrate ob-
servations of winds from a scatterometer using winds
from buoys, model analysis, and the European Remote
Sensing Satellite (ERS)-1 scatterometer. In his ap-
proach it was assumed that error and truth were not
correlated. In a similar vein, Caires and Sterl (2003)
applied a triple-collocation method to estimate and
calibrate analyzed winds and wave heights from the
40-yr ECMWF Re-Analysis (ERA-40) analysis effort.
Quilfen et al. (2001) followed a different approach, pro-
posed by Freilich and Vanhoff (1999), to estimate and
calibrate ERS scatterometer wind measurements over
the period from 1992 to 1998. However, in this meth-
odology the true wind speed was assumed to be Weibull
distributed and the datasets were not independent be-
cause, through the data assimilation, the analyzed wind
depends on both buoy and scatterometer winds. In a
somewhat different context, Tokmakian and Challenor
(1999) estimated errors in model and ERS-2 and Ocean
Topography Experiment (TOPEX)/Poseidon satellite
mean sea level anomalies using a method that only as-
sumes that there is no correlation between the respec-
tive errors. However, a calibration is then not possible.

It is straightforward to show that with three datasets
that have uncorrelated errors, the error of each data
type can be estimated from the variances and covari-
ances of the datasets. However, unless additional as-
sumptions are being made, it is not possible to perform
a calibration among the datasets, simply because there
are not enough equations. A possible way out of this
dilemma is to use a minimization procedure. We there-
fore propose the following method to estimate errors
and to calibrate datasets. We assume that the errors are
not correlated and that the errors of the three datasets
are estimated using the triple-collocation method.
Given these estimated errors, calibration is then per-
formed using the neutral regression approach of Dem-
ing (Mandel 1964; Marsden 1999), which is based on the
minimization of the error in both variates. Using the
calibrated datasets a new estimate of the errors may be
obtained, resulting in new calibration constants. Thus,
an iteration procedure is started and continued until
convergence of the results is obtained. This is discussed
in some detail in section 2.

In section 3 we apply this approach to the estimation
of the wave height error of the ECMWF wave analysis.
Operationally, we have available joint estimates of the
true state from buoys,1 the ERS-2 altimeter, and the
wave analysis. However, these data sources are not in-
dependent because the wave analysis uses altimeter
data. One would expect, and this is common practice in
meteorological data assimilation, that the first-guess
field and altimeter observations may be regarded as
independent. But, we argue and show that this is not an
appropriate assumption in the case of ERS-2 altimeter
data. For this reason we generated a fourth indepen-
dent dataset by rerunning the wave forecasting system
with ECMWF-analyzed winds, but without the assimi-
lation of ERS-2 wave height data (this is called a hind-
cast). With four datasets, in which there is one inde-
pendent triplet, all relevant variances and error covari-
ances may be obtained. Monthly root-mean-square
(rms) errors are obtained over a 4-yr period, and we
discuss seasonal variations in the errors and calibration
constants for buoys, ERS-2 satellite, and wave analysis.
The buoy errors are found to be the largest, followed by
the altimeter error, while the wave analysis has the
smallest error. This last finding follows from the prop-
erties of the OI scheme, which results in analysis errors
being the smaller of the first-guess and observation er-
rors. That buoy errors are the largest may perhaps
come as a surprise. It is believed that a considerable
part of the buoy error is related to the representative-
ness error, but there are also issues with quality control.
By inspecting buoy time series and comparing them
with wave heights from the wave analysis, a number of
buoys of questionable quality could be identified. Using
the collocation data with stricter quality control the re-
sulting buoy error was reduced by 10%, while altimeter
and analysis error were hardly affected. Irrespective of
the quality control procedure, which is based on the
consistency and visual inspection of the time series, we
suspect that buoy data of questionable quality might
have infiltrated our dataset. Nevertheless, it was de-
cided that the collocation dataset, obtained by applying
the stricter quality control, should be used because it
gave the best results for the buoy errors.

In a collocation study, the representativeness error is

1 In situ hourly wave observations are available via the Global
Telecommunication System (GTS). They come mostly from
moored buoys and platforms. A small number of observations is
also available from ships. In this study we have limited our dataset
to buoys and platforms, but the bulk of the data comes from
buoys. Most of the buoys are in the Northern Hemisphere, and,
therefore, the collocation study only concerns properties of the
sea state in the Northern Hemisphere.
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a serious issue that needs to be addressed. Usually, in-
struments and the model refer to different scales of the
truth, and in order to reduce problems with represen-
tativeness, averaging the observations toward the scales
as seen by the model is required. Superobservations for
buoys are obtained by time averaging 5-hourly obser-
vations. The altimeter superobservations are obtained
from an average of N individual observations, where
for ERS-2 N � 8. It is, of course, of interest to investi-
gate the dependence of the comparison results between
the model and altimeter superobservations as a func-
tion of N. It turns out that this then gives another esti-
mate for the model and altimeter errors. Agreement
with the results from the triple collocation is only ob-
tained when correlation between the individual altim-
eter measurements is taken into account. For ERS-2,
we typically find a correlation length scale of 70 km, in
agreement with the practice to smooth the tracking re-
sults over 10 consecutive observations.

Finally, on 1 March 2002 the Environmental Satellite
(ENVISAT) was launched and maneuvered into almost
the same polar orbit as that of ERS-2. As a conse-
quence, there are five collocated datasets, namely, from
the ENVISAT and ERS-2 altimeters, from buoys, the
model’s first guess, and analysis. Note that during the
initial phase of the ENVISAT mission ENVISAT data
are not assimilated, because first the quality of the new
data needs to be monitored. It is shown that there are
correlations between ENVISAT and ERS-2 altimeter
wave height errors because results from a triple collo-
cation of ENVISAT, ERS-2, and buoys are not consis-
tent with results from a triple collocation of ENVISAT,
the model first guess, and buoy data. When correlated
errors are taken into account, we find that the relative
errors in wave height are respectively 6%, 6.5%, 8%,
and 5% for ENVISAT, ERS-2, buoys, and wave analy-
sis. The errors for the ERS-2, buoy, and analysis are in
fair agreement with the operational results.

A preliminary account of this work may be found in
Janssen (2004).

2. On error estimation

In this section a description is given of the method
used to determine the respective errors from three in-
dependent estimates of the truth and to calibrate the
data by minimization. Note that it is essential that as-
sumptions have to be made regarding the relation be-
tween the model and observations on the one hand, and
the truth on the other. At the same time this gives an
implicit definition of the error. Because of an assumed
relation between observation and truth, it follows that
in case this relation is incorrect; the error has both a

systematic and random component. Therefore, the as-
sumption of uncorrelated errors is by no means evident,
and should, if possible, be tested.

Suppose we have three estimates of the truth, de-
noted by X, Y, and Z, obtained from observations or
from simulations of the truth by means of a forecasting
system. In the following all these estimates of the truth
will be referred to as measurements. Furthermore, it is
assumed that the measurements depend on the truth T
in a linear fashion,

X � �XT � eX,

X � �YT � eY, �1�

Z � �ZT � eZ,

where eX, eY, and eZ denote the residual errors in the
measurements X, Y, and Z; while �X, �Y, and �Z are the
linear calibration constants. Because we are estimating
wave height, which is a quantity that is positive definite,
no intercept is included in the model for the measure-
ments. A finite intercept (such as that used by Caires
and Sterl 2003) gives rise to negative values of either
the mean value of the truth or of the measurement,
which is physically impossible because of the definition
of significant wave height and the way in which it is
measured.

It is emphasized that the linear dependence of the
measurement on the truth is an assumption that needs
not to be true and, therefore, one cannot assume that
the errors are purely random. For example, if there is
actually a nonlinear relation between measurement and
the truth but the linear calibration model (1) would be
taken instead, the error will have a random and a sys-
tematic component. Furthermore, if two types of mea-
surements have a similar nonlinear relation with the
truth, then in the context of the linear model (1) there
is now the possibility of correlated errors. This may be
the case when intercomparing two altimeters that share
the same measurement principle.

Let us now assume that the linear model (1) is valid
and that the measurement results X, Y, and Z have
uncorrelated errors,

�eXeY� � �eXeZ� � �eYeZ� � 0, �2�

where the angle brackets denote the average over a
sufficiently large sample. To eliminate the calibration
constants we introduce the new variables X� � X/�X,
e�X� � eX/�X, etc., so that

X� � T � eX�,

Y� � T � eY�, �3�

Z� � T � eZ�,
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and the primed observations have uncorrelated errors
as well. Now we eliminate the truth to obtain

X� 	 Y� � eX� 	 eY�,

X� 	 Z� � eX� 	 eZ�, �4�

Y� 	 Z� � eY� 	 eZ�.

Then, multiplying the first with the second equation of
(4) and utilizing the assumption of independent errors
[(2)], one immediately obtains the variance of error in
X� in terms of the variance of X� and the covariances of
X� and Y�, X� and Z�, and Y� and Z�. In a similar
manner, by multiplying the first with the third equation
of (4), one obtains the variance of error in Y�, while the
variance of error in Z� is obtained by multiplying the
second and the third equation. Hence,

�eX�
2 � � ��X� 	 Y���X� 	 Z���,

�eY�
2 � � ��Y� 	 X���Y� 	 Z���, �5�

�eZ�
2 � � ��Z� 	 X���Z� 	 Y���.

Therefore, if the errors are uncorrelated, only three
collocated datasets are needed to estimate the variance
of the error in each of them.

The next step is to perform a calibration of the mea-
surements. Because the truth is not known, only two of
the three calibration constants can be obtained. There-
fore, we arbitrarily choose X as the reference; we have
the freedom to do this because results on the errors do
not depend on this choice. Because the errors in the
measurements are now known, the calibration con-
stants for Y and Z may be obtained using neutral re-
gression (Marsden 1999). As a result, the regression
constant for Y becomes

�Y � �	B � 
�B2 	 4AC���2A, �6�

where A � ��XY�, � � �e2
X�/�e2

Y�, B � �X2� 	 ��Y2�,
and C � 	�XY�. Replacing Y with Z in Eq. (6) then
gives the regression constant for Z.

Having performed the calibration of Y and Z it is
clear that the work is not finished yet because this cali-
bration will affect the estimation of the errors in X, Y,
and Z, and hence the calibration constants, etc. There-
fore, we adopted the following iteration procedure. We
start with the initial guess �Y � 1, �Z � 1; we scale Y
and Z with �Y and �Z, respectively; and we determine
the errors using Eq. (5). A first estimate for the cali-
bration constants follows then from Eq. (6). In the next
step we scale Y and Z with the newly found estimates
for �Y and �Z, determine the errors and the regression
constant using (5)–(6), and we continue until conver-
gence is achieved. By comparing results from a differ-

ent number of iterations it was found that after 10 it-
erations an accuracy of four significant digits was
achieved.

Note that only a relative calibration is possible. Nev-
ertheless, results on errors do not depend on the chosen
reference standard. This was checked by choosing Y
instead of X as a reference standard; errors were iden-
tical up to four significant digits and, as expected, the
calibration constant of X was the inverse of the calibra-
tion constant of Y when X was chosen as a reference.

In the remainder of this paper we use the triple-
collocation scheme [(5)–(6)] as a basic tool to try to
understand relations and errors among collocated
datasets. In section 3 we apply this approach to the
estimation of wave height error in the ECMWF wave
analysis, in buoys, and in ERS-2 wave heights over a
4-yr period; while in section 4 we use wave height re-
sults obtained during the ENVISAT–ERS-2 tandem
mission and apply the triple-collocation approach to
show that there are significant correlations between the
altimeters from ERS-2 and ENVISAT.

3. On errors in the operational ECMWF
wave analysis

Operationally, joint estimates of the true state from
buoys, the ERS-2 altimeter (as they arrive in near–real
time through the GTS), and the wave analysis are avail-
able, but these data sources are not independent be-
cause the wave analysis uses altimeter data. Therefore,
another dataset is needed, which is independent from
the observations. A possible choice would be to use the
first-guess field as an independent dataset. It is com-
mon practice in data assimilation to regard the first-
guess field and observations as independent, because
these observations have not yet been used in the analy-
sis and forecasting scheme. This is plausible when an
instrument has only random errors, but it may be prob-
lematic in the case of systematic errors in the observa-
tions. For example, it is well known that the so-called
fast-delivery significant wave heights from the ERS-2
altimeter have a systematic error for low wave heights,
simply because this altimeter does not produce wave
heights lower than about 60 cm. This is illustrated in
Fig. 1 where over a 4-yr period a comparison is shown
between wave height data from the ERS-2 altimeter
superobservations and buoy data. Note the overestima-
tion of wave height by the altimeter for wave heights
below 1.5 m.

Suppose these erroneous low wave height data were
assimilated in the model. Because low wave heights
usually correspond to swell conditions and swell has a
long memory, it is likely that the following first-guess
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field is contaminated by the wrong data. Hence, first-
guess and altimeter data might have correlated errors.

For this reason, we generated a fourth independent
dataset by running the wave forecasting system with
6-hourly ECMWF-analyzed winds over the 4-yr period
of January 2000 until December 2003 (after a 2-month
warm-up period to eliminate any altimeter impacts).
No ERS-2 altimeter data were assimilated so that the
hindcast results are independent of altimeter and buoy
wave height data. From the operational results and the
hindcast the following collocated dataset was gener-
ated: X � hindcast, Y � altimeter, Z � buoy, V � first
guess, and W � analysis. We adopt model (1) for these
datasets. Noting that the buoy data are not used in the
analysis, we allow for error correlations between X and
V, X and W, Y and V, Y and W, and finally between V
and W. In other words, the covariances

�eX�eV��, �eX�eW��, �eY�eV��, �eY�eW��, �eV�eW�� �7�

are finite. Here, a prime again denotes scaling with the
slope �. Together with five error variances this gives 10
unknowns, while by correlating the differences X� 	 Y�,
X� 	 Z�, X� 	 V�, X� 	 W�, etc., there are 4 � 3 � 2 �
1 � 10 equations, so that all the unknowns may be
determined. Other choices of finite covariances in (7)
do not have any physical support. To test this, we
falsely assumed that there is no correlation between
altimeter and first-guess errors, while allowing a finite
correlation between the hindcast and altimeter errors.

This resulted in a negligibly small (and even negative
for a few months) correlation between the hindcast and
altimeter errors.

This large set of equations may be solved in a
straightforward manner by realizing that the first three
measurements are independent; hence, the triple-
collocation technique may be applied and their errors
follow from Eq. (5). The errors for the remaining mea-
surement types, which have correlated errors with each
other and the altimeter and hindcast, follow from two
steps. For example, the variance of the analysis error
follows by correlating W� 	 Y� and W� 	 Z�. Using (7)
we find

�eW�
2 � � �eY�eW�� � ��W� 	 Y���W� 	 Z���, �8�

and the correlation between W and Y follows from cor-
relating X� 	 W� and Z� 	 Y�. Hence,

�eY�eW�� � ��X� 	 W���Z� 	 Y���. �9�

The error and correlation with the altimeter for the
first-guess V follows from (8)–(9) by replacing W
with V.

Before we present results on error estimation, it is
important to discuss the collocation method. First, each
estimate represents a different aspect of the truth. The
global ECMWF wave prediction system has a spatial
resolution of 55 km, and is forced by atmospheric winds
that before 21 November 2000 had a spatial resolution
of 65 km, but after that date increased to 40 km. How-

FIG. 1. Comparison of altimeter wave height data with buoy data for the period from 1 Jan 2000 until
December 2003.

SEPTEMBER 2007 J A N S S E N E T A L . 1669



ever, horizontal diffusion in the atmospheric model re-
duces activity at the short scales considerably, and also
the first-order advection scheme in the wave model
may give rise to smoother wave fields. Hence, in prac-
tice the model wave height fields only properly repre-
sent spatial scales larger than about 100 km. The ERS-2
altimeter measures significant wave height every 7 km,
while buoys typically produce hourly measurements
that are 20-min averages. Clearly, instruments and the
model refer to different scales of the truth, and in order
to reduce problems with representativeness, averaging
of the observations toward the scales as seen by the
model is required. Superobservations for buoys are ob-
tained by time averaging 5-hourly observations follow-
ing the quality control procedure of Bidlot et al. (2002),
except that the time window is centered on the altim-
eter superobservations time. The altimeter superobser-
vations are obtained from an average of N individual
observations, where operationally N � 8. In addition,
an along-track quality control is also used to remove all
spurious altimeter observations.

Second, each estimate refers to a slightly different
location within 200 km and time within 2 h. To alleviate
this problem, the wave model field is linearly interpo-
lated in space and time toward the altimeter and buoy
observations. Hence, we deal with two model counter-
parts—one referring to the altimeter observation, de-
noted by Xalt, etc., and one referring to the buoy ob-
servation, denoted by Xbuoy, etc. In this collocation
study the model value is taken as the mean of Xalt and
Xbuoy. Nevertheless, a collocation error between the
altimeter and buoy remains. Using the difference Xalt 	
Xbuoy, the collocation error can be estimated, however.
To ensure that the error estimation is not affected by
the collocation error, only collocations satisfying a rela-
tive difference of at most 5% are considered. This cor-
responds to a relative collocation error, defined as the
rms difference normalized with the average model
wave height of 1%–2%. Because of this restriction, the
number of collocations reduces by 50% from about
30 000 to 16 000.

a. Results

Results over the period from January 2000 until No-
vember 2003 of monthly relative error (obtained from a
3-monthly running average) for first-guess, analyzed,
ERS-2 altimeter, and buoy wave height are shown in
Fig. 2. Here, the relative error is defined as the ratio of
rms error to the mean wave height. This ratio is usually
called the scatter index (SI). It is striking that these
errors are relatively small, with the buoy errors being
the largest while the analysis errors are the smallest.
The high-quality analysis is a consequence of the prop-

erties of the OI scheme that is used to produce the wave
analysis.

To see this we discuss the well-known case of the
assimilation of a single measurement. Results can be
generalized straightforwardly to the case of the assimi-
lation of many observations. Let us denote the analysis
by A, the observation by O, the first guess by F, and
their corresponding errors by eA, eO, and eF. According
to OI, the analysis is given by a linear combination of
model first guess and observation,

A � wO � �1 	 w�F, �10�

and the weight w is chosen in such a way that the analy-
sis error is minimal. By subtracting the truth and as-
suming no systematic errors, hence the error model (1)
with � � 1 is adopted, the analysis error becomes

eA � weO � �1 	 w�eF, �11�

and assuming that there is no correlation between the
first-guess and observation errors, �eOeF� � 0, the
mean-square analysis error becomes

�eA
2 � � w2�eO

2 � � �1 	 w�2�eF
2�. �12�

The analysis scheme is optimal when the mean-square
analysis error is minimal. By differentiating the mean-
square error with respect to the weight, one finds for w
at the minimum

w �
�eF

2�

��eO
2 � � �eF

2��
, �13�

while the analysis error in terms of observation and
first-guess error becomes

1

�eA
2 �

�
1

�eO
2 �

�
1

�eF
2�

. �14�

FIG. 2. Monthly relative error of first-guess (FG), analyzed
(AN), ERS-2 altimeter (Alt), and buoy wave height. Maximum
relative collocation difference is 5%. For comparison the analysis
error according to a local OI scheme is shown as well.
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Therefore, the analysis error is the smaller of the ob-
servation and first-guess error.

Note that the result in (14) is based on the assump-
tion that there is no bias and no correlation between
first-guess and observation errors, while it is also as-
sumed that observation error and first-guess errors are
known. We will see in a moment that the bias is rela-
tively small (at least with respect to the buoys). Also,
the correlation between first-guess and observation er-
ror is at most 20%. However, the reason for the present
study is to obtain information on the first-guess and
observation errors, and therefore in the ECMWF wave
analysis scheme these errors are not known. Instead,
for wave heights larger than 1.5 m, observations and the
first guess are given equal weight, therefore w � 0.5,
while for wave heights below 1.5 m the weight w is
reduced because of the known problems with the altim-
eter (cf. Fig. 1). In other words, the analysis error is
given by Eq. (12), and the results of this expression are
plotted in Fig. 2. The errors from the local OI scheme
are slightly larger than the analysis error as obtained
through the triple-collocation method. This is most
likely caused by the fact that the actual analysis is not
local, that is, the quality of the analyzed wave height
benefits from remote observations as well.

By comparing Eq. (12) with given weight, say w �
0.5, and Eq. (14), the importance of knowing �e2

F� and
�e2

O� becomes apparent. This is most easily seen by tak-
ing the extreme case of large observation error. In the
OI scheme with weights given by Eq. (13) the observa-
tions get zero weight, and hence the analysis error is
given by the first-guess error. In contrast, in the usual
application of OI with given weights the analysis error
is dominated by the observation error. Evidently, (14)
with the choice of weight (13) is optimal, while (12)
with constant weight is not.

Let us now study some further results of our statis-
tical analysis. In Fig. 3 monthly time series of the cali-
bration constant � for first-guess, analyzed, and altim-
eter wave heights are shown. As a reference we have
chosen the in situ buoy wave height data. The largest
correction is required for the first-guess wave height,
but over this 4-yr period improvements are clearly vis-
ible. This change is most likely to be caused by the
introduction of the Tl 511 atmospheric model, together
with a doubling of the angular resolution of the wave
spectrum on 21 November 2000. In particular, the in-
creased spatial resolution has resulted in stronger sur-
face winds, giving higher wave heights. The smallest
correction, of the order of 4%, is needed for the ERS-2
altimeter wave height data. In an operational wave
forecasting system, such as the one at ECMWF, nor-
mally fast-delivery products from the European Space

Agency (ESA) are assimilated. The fast-delivery wave
heights are usually about 7%–8% lower than the buoy
wave heights (Janssen 2000). However, at ECMWF, the
fast-delivery wave height data are corrected for the
non-Gaussian nature of the ocean surface, resulting in
increased wave height by 3%–4% (Janssen 2000).

As noted before, in analysis schemes it is usually as-
sumed that first guesses and observations have uncor-
related errors. With the present collocation study it is
possible to estimate the correlations [cf. Eq. (9)]. In Fig.
4 monthly time series of the correlation between first-
guess and altimeter errors is shown, and as a reference
the correlation between first-guess and hindcast errors
is also shown. Note that, in particular, during the North-
ern Hemisphere (NH) summer months when low wave
heights and therefore swells prevail, there is a consid-
erable correlation between the first guess and altimeter.

Last, it is noted that, with the exception of the first-
guess error, there is a clear seasonal cycle in the statis-
tical results. One needs to keep in mind that, because of
the location of the buoy measurements, the present col-
location study is restricted to the NH only. Typically,
the relative error or scatter index is the largest during

FIG. 3. Monthly calibration constants � for altimeter, first-guess,
and analyzed wave height over the period from January 2000 until
November 2003. Reference is the buoy wave height.

FIG. 4. Monthly correlation between first-guess and altimeter
wave heights errors as compared to the correlation between first-
guess and hindcast errors.
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the NH summertime when, on average, wave height is
low. This can be understood for the altimeter data (and,
as a consequence, for the analysis) because of the al-
ready mentioned problems at low wave height. How-
ever, it is not clear why buoy data have larger relative
errors during the summertime compared to wintertime.
Nevertheless, one would expect the large buoys to have
problems with estimating small wave heights.

b. Correlation between individual altimeter
observations

An important issue to address is how the statistical
results given in the previous section depend on the pro-
cedure to obtain, for example, the altimeter superob-
servations. Recall that individual altimeter wave height
observations are obtained every 7 km and that opera-
tionally a superobservation involves an average over
N � 8 observations. Hence, formally, the altimeter su-
perobservations refer to a smaller spatial scale (56 km)
than the model analysis or first guess (�100 km).
Therefore, the statistical results could depend on the
number N of observations used to make the superob-
servation, but it turns out that the dependence of results
on N is weaker than expected.

Assume for the moment that the individual altimeter
observations are independent from each other; that is,
there is no correlation between the errors. Also, assume
that first-guess and altimeter wave height errors are not
correlated (this can be achieved by choosing a winter
month, cf. Fig. 4). Let  be the rms error resulting from
the comparison of first-guess and altimeter wave
height, then

�2 � �eF
2� �

1
N

�a
2, �15�

where �e2
F� is the variance of the first-guess error, while

a is the error of an individual altimeter wave height
measurement. Note that �e2

A� � 2
a/N in case the indi-

vidual altimeter observations errors are uncorrelated.
Therefore, Eq. (15) suggests a sensitive dependence

of the rms error  on the number of observations used
in the averaging. At the same time, it was realized that
Eq. (15) suggests another method to estimate first-
guess error and the altimeter error: do the comparison
between first-guess and altimeter data for different N
and plot the results for 2 as function of 1/N. The in-
tercept at 1/N � 0 then gives the first-guess error while
the slope gives the error of the individual altimeter
measurement. We therefore redid the intercomparison
between the first-guess and altimeter wave height data
for the month of December 2001 for different values of

N. For the global area the rms error as function of 1/N
was determined. The results of this exercise are shown
in Fig. 5. In contrast to expectation, the error variance
2 is not increasing linearly with 1/N, and there are
clear signs of saturation when only a few observations
are used in the averaging. This is an indication that the
error in the individual altimeter observations is spa-
tially correlated.

Let us explore the consequences of spatially corre-
lated errors. Consider a superobservation Asup defined
as the spatial average of a number of N individual ob-
servations ai taken at location i, or,

Asup �
1
N �

i

ai. �16�

Suppose that each individual observation obeys the
error model (1) with � � 1. Then the variance of the
error in the superobservation becomes, in general,

�eA
2 � �

1

N2 �
i,j

�eai
eaj

�. �17�

In the special case for which the individual observations
have no spatial correlation, the correlation matrix
�eai

eaj
� has only diagonal elements, which all equal to 2

a,
where a is the error of the individual observation. In
that event the sum in Eq. (17) equals N and the vari-
ance of error in the superobservation becomes �e2

A� �
2

a/N, in agreement with Eq. (15). Assuming a positive
definite correlation function, spatially correlated errors

FIG. 5. Comparison of ERS-2 altimeter superobservations with
the first-guess wave heights for December 2001 for the global
area. Dependence of the square of the rms error 2 on the inverse
of the number N of observations used in the altimeter superob-
servations. If individual altimeter observations are independent, a
linear dependence is expected.
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will give rise to a sum that is larger than N and there-
fore, as expected, the effective number of degrees of
freedom will be less than N.

To make progress, a simple correlation model will be
adopted. Initially, we tried a Markovian model, which
corresponds to a correlation function that decays expo-
nentially with distance. This model worked fairly well
but was deficient in cases of small and large numbers of
observations involved in the superobservation. Better
results were obtained with a correlation model that re-
sembles a Gaussian

�eai
eaj

� � �a
2c�i	j�2, �18�

where c is the constant correlation coefficient between
two neighboring observations. The corresponding cor-
relation length scale lc, defined as the distance over
which the correlation drops to e	1, is then given by l2

c �
	1/ log(c). Substitution of (18) in (17) gives

�eA
2 � �

�a
2

N2 �N � 2�N 	 1�c � 2�N 	 2�c4 � · · ·�.

�19�

After some rearrangement the final result becomes

�eA
2 � �

�a
2

N
, �20�

where N is the effective number of degrees of freedom,

1
N

�
1
N �1 � 2�

l�1

N �1 	
l

N�cl2�, �21�

which in case of positive correlation is less than the
number of observations N used in the averaging.
Hence, in case of correlated errors Eq. (15) is re-
placed by

�2 � �eF
2� �

1
N

�a
2. �22�

One still needs to determine the correlation coefficient
c. This was done by trial and error, insisting that in
agreement with (22) a linear relation exists between 2

and the inverse of the effective number of degrees of
freedom 1/N . Best results are obtained with a corre-
lation coefficient c of 0.99; in other words, the spatial
correlation scale is about 70 km (lc � 10 observations).
Results for this choice of correlation coefficient are
shown in Fig. 6. Fitting the results with a linear function
it is then found that with a mean wave height of 2.5 m
the first-guess SI is 0.11, which is in fair agreement with
the result from the quintuple-collocation study of the
previous section that gave a first-guess SI of about 0.094
for December 2001. The SI for the individual ERS-2

altimeter measurements is found to be 0.067. In the
quintuple-collocation study the altimeter superobserva-
tion consisted of an average of N � 8 individual obser-
vations. With a correlation of 0.99 the effective number
of degrees of freedom N becomes about 1.10, giving an
SI of the altimeter superobservation of 0.064, which
compares favorably with the result from the quintuple
study where an SI of 0.065 was found. Note that results
for the SI of the altimeter superobservation are fairly
insensitive to the averaging number N. In view of
matching spatial scales with the model it would have
been more appropriate to use N � 15 in the averaging
of the altimeter data. However, this only decreases the
SI of the altimeter superobservation from 0.064 to
0.058. There is no need to emphasize that this weak
dependence on N is caused by the significant spatial
correlation between individual altimeter observations.

It is important to try to understand why there is such
a large spatial correlation between errors in the indi-
vidual ERS-2 altimeter observations. To be able to
make a wave height observation an altimeter needs to
track the ocean surface. In the case of the ERS-2 altim-
eter, the tracking results are smoothed over 10 indi-
vidual observations. This results in spatially correlated
errors in significant wave height and makes it plausible
as to why we find a correlation scale of about 70 km. It
would be desirable to test whether indeed the smooth-
ing of the tracker results causes spatial error correlation
by varying the length of the smoothing filter. Now, the
altimeter on board Jason does not average the tracker
results but averages wave height results over five indi-

FIG. 6. The same as in Fig. 5, but as a function of the effective
number of degrees of freedom N , where a correlation of 0.99 is
taken between neighboring altimeter observations. A best fit
gives a scatter index of 11% for first guess and 6.7% for the
individual altimeter observations.
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vidual observations. Jean-Michel Lefèvre (2002, per-
sonal communication) studied results from the colloca-
tion between Jason altimeter wave height data and
ECMWF wave height analysis, and he plotted the de-
pendence of the variance of the total error 2 as func-
tion of the effective number of degrees of freedom N .
In the case of Jason, he found a spatial correlation scale
of about 30 km (five observations).

It is concluded that the present method and the
triple-collocation technique give consistent results for
first-guess and altimeter superobservations, provided a
significant spatial correlation between the errors of in-
dividual altimeter observations is taken into account.
The reason for the correlation is most likely the
smoothing of the results, because the correlation scales
for ERS-2 and Jason are found to correspond with the
length of the smoothing filter.

4. Validation of ENVISAT altimeter wave height
data

On 1 March 2002 the ESA launched ENVISAT,
which carries on board nine instruments, two of which
are relevant for understanding ocean waves, namely,
the RA-2 altimeter and the advanced synthetic aper-
ture radar (ASAR). We discuss herein the quality of
the altimeter wave height results. The RA-2 altimeter is
a dual-frequency altimeter, but only Ku-band results
will be studied.

ENVISAT was maneuvered in such a manner that it
has an almost identical orbit as the ERS-2 satellite. The
time difference between observations from the two sat-
ellites is, therefore, only 20 min. Hence, this provides
a unique opportunity for validation, because we have
five collocated datasets available, namely, from the
ENVISAT and ERS-2 altimeter, from buoys, from
model first guess and analysis (quintuple collocation).
The period is from 18 July until 20 October 2003. Dur-
ing this period ERS-2 data were assimilated into the
ECMWF wave forecasting system, but ENVISAT data
were not because their quality was being monitored and
assessed. In June 2003 the tape drives on ERS-2 packed
in and observations could not be stored on board any
more. Only when ERS-2 is in view of a ground station

it is possible to transmit observed data to earth. From
then onward, ERS-2 has only provided observations for
part of the North Atlantic area and for the west coast of
North America. Fortunately, because many buoys are
located in these areas the number of collocations during
the summer period in 2003 did not reduce dramatically
(except for a period of 3 weeks after the incident), so
that it was still possible to do a valid calibration study.
However, ERS-2 lost global coverage, which prompted
ECMWF to commence with the assimilation of
ENVISAT data in October 2003. Clearly, after this date
the calibration method described below cannot be ap-
plied because of correlations between the ENVISAT
data and the first-guess wave height data.

Let us first discuss how it was realized that errors in
ENVISAT and ERS-2 altimeter are correlated. Be-
cause there are five collocated datasets available there
are several opportunities to apply the triple-collocation
method. For example, one might assume that the errors
in ENVISAT and ERS-2 altimeter wave height are
not correlated and that they are not correlated with
the buoy errors. Other possibilities are the triplet
ENVISAT, buoy, and first guess, and the triplet
ENVISAT, buoy, and analysis. All of these triplets have
ENVISAT and buoy wave height data in common. Re-
sults of the three triple-collocation exercises are given
in Table 1. It is evident from Table 1 that, in particular,
the results for the relative error in the ENVISAT al-
timeter wave height data are not consistent. Also, the
relative error in the ERS-2 wave height data is much
smaller than found during the 4-yr period analyzed in
the previous section.

The inconsistency in Table 1 is plausible when it
is realized that our assumption of uncorrelated
ENVISAT and ERS-2 errors might be incorrect.
Clearly, additional information is needed to determine
correlations between the errors of different observa-
tions. With five collocated datasets and assumptions on
which observation type is correlated it is just possible to
obtain all relevant variances and covariances. To this
end it is assumed that buoy errors are not correlated
with errors of any other observation type. We have
seen in the previous section that first-guess and ERS-2
errors are correlated because of the systematic prob-

TABLE 1. Scatter index results of several triple collocations obtained during the ENVISAT commissioning phase for wave height
larger than 1 m. Here, N denotes the number of collocations.

N ENVISAT ERS-2 First guess Analysis Buoy

ENVISAT–ERS-2–buoy 6062 2.5% 3.2% — — 9.9%
ENVISAT–first guess–buoy 6062 6.1% — 9.7% — 8.2%
ENVISAT–analysis–buoy 6062 5.4% — — 4.0% 8.6%
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lems in the ERS-2 altimeter at low wave height. But, it
is unlikely that the first-guess error is correlated with
the ENVISAT error because the ENVISAT altimeter
does not suffer from the ERS-2 problems at low wave
height. We therefore assume that the triplet ENVISAT,
buoy, and model first guess is independent, and there-
fore their errors can be determined by means of the
triple-collocation method.

Furthermore, correlation between ENVISAT and
ERS-2 errors is allowed. This implies that ENVISAT
and analysis errors are correlated as well, because due
to the assimilation, analysis and ERS-2 errors are cor-
related. Last, first-guess and analysis error are evidently
correlated. As a result we have 10 unknowns, namely, 5
variances and 5 covariances, and just as in the previous
section there are 10 equations. Hence, the problem is
solvable.

The collocation dataset is obtained with the same
procedure as the operational dataset from the previous
section, except that the ENVISAT superobservations
are averaged over 11 individual observations. Only re-
sults for wave heights larger than 1 m are presented so
that ERS-2 altimeter wave height data will not be pe-
nalized because of the low wave height problems.
When correlated errors are taken into account we find
that for the whole period the relative errors in wave
height are 6.1%, 6.4%, 8.2%, and 4.9% for, respec-
tively, ENVISAT, ERS-2, buoys, and wave analysis.
The results for the correlations are, in descending or-
der, ENVISAT and ERS-2 � 79%, first guess and
analysis � 73%, analysis and ERS-2 � 39%, analysis
and ENVISAT � 26%, and first guess and ERS-2 �
3%. Note the high correlation between ENVISAT and
ERS-2 altimeter wave height errors. A likely reason for
the high correlation is that both instruments share the
same measurement principle, although the ENVISAT
altimeter has an improved treatment of the wave form.

However, a thorough study is required to understand
better the systematic part of the altimeter wave height
error.

Last, in Fig. 7 we show monthly time series of
ENVISAT, first-guess, analysis, ERS-2, and buoy rela-
tive wave height error. It confirms that errors for ERS-
2, the first guess, and analysis are consistent with the
findings of the previous section. It also shows the high
quality of the ENVISAT altimeter wave height results.
In Fig. 8 the monthly time series for the slopes of
ENVISAT, ERS-2, first guess, and analysis are shown.
In agreement with the operational results, slopes for
ERS-2, first guess, and analysis are less than unity when
compared with the buoys, and hence, according to this
standard, are underestimating wave height. In contrast,
the ENVISAT altimeter wave heights are higher by
about 2% on average.

Note that compared to the study in the previous sec-
tion there are two important differences. First, in the
ENVISAT study only wave heights larger than 1 m
were considered, and as a consequence the seasonal
cycle in the ERS-2 and buoy wave heights is reduced
(cf. Figs. 7 and 2). Second, because in the early period
only a limited number of ENVISAT wave height ob-
servations were received in near–real time, the number
of collocations per month is at least smaller by a factor
of 2 compared to the study of section 3. This has af-
fected in particular the buoy error.2 Compared to the
altimeter and the model wave height error, the buoy
error is sensitive to details such as the number of col-
locations and geographical location. It should be real-
ized that the buoy network is not homogeneous be-

2 This was checked by redoing the calibration study of the pre-
vious section for those collocations that were present in the
ENVISAT study only. The buoy error was reduced by about 20%
and became similar to the one found in the ENVISAT study.

FIG. 7. Monthly relative error of ENVISAT, first-guess, ana-
lyzed, ERS-2 altimeter, and buoy wave height over the period
from August 2002 until September 2003. The maximum relative
collocation difference is 5%.

FIG. 8. Monthly calibration constants � for ENVISAT and
ERS-2 altimeter, first-guess, and analyzed wave height over the
period from August 2002 until September 2003. Reference is the
buoy wave height.
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cause there are different type of buoys depending on
the location and buoy network operator. Different
buoy types have different error characteristics.

To conclude, we have studied the accuracy of
ENVISAT altimeter wave height. The impression is
that the quality of these data is high. In addition, it has
been shown that there is a significant correlation
between the errors of the ENVISAT and ERS-2
altimeters, presumably because they share the same
measurement principle. This requires a study of the
systematic error of these altimeters, but it should be
emphasized that the error level is small and therefore
the systematic error is only a minor problem.

5. Conclusions

We have used a triple-collocation method to estimate
the rms error of collocated wave height datasets, and
we have combined this with a neutral regression ap-
proach to obtain a relative calibration of the datasets.
The basic assumption of this method is that the three
datasets have uncorrelated errors.

We have applied this approach to the estimation of
wave height error in the ECMWF operationally ana-
lyzed and first-guess wave fields and in buoy and ERS-2
altimeter wave height observations, while we also ap-
plied this approach to results from the ENVISAT–
ERS-2 tandem mission.

At this time the wave analysis at ECMWF uses
ERS-2 altimeter data and therefore an additional
dataset is required, which is independent of the obser-
vations. This was provided by a hindcast with the wave
model over a 4-yr period, rather than by the first-guess
fields, because a correlation with the altimeter data was
suspected. Results from the application of the triple-
collocation method show that there is indeed a corre-
lation between first-guess error and ERS-2 altimeter
wave height error of at most 20%. Time series of the
monthly errors show that the relative error is typically
between 5% and 10%, which may be regarded as small.
We also studied the dependence of the statistical results
on the number N of individual altimeter observations
involved in the altimeter superobservation. This re-
sulted in an alternative method to estimate the first-
guess error and altimeter error. Results are consistent
with the triple-collocation method, provided that one
assumes a considerable correlation between the indi-
vidual altimeter observations. This correlation is plau-
sible when it is realized that ERS-2 altimeter tracker
results are smoothed over 10 consecutive observations.
For Jason, wave height results are smoothed over five
observations and as a consequence the correlation
length scale for Jason altimeter wave height is half of

the one from ERS-2 (J.-M. Lefèvre 2002, personal com-
munication).

Results from the ENVISAT–ERS-2 tandem mission
do suggest that the ENVISAT altimeter wave heights
are of high quality. It is also found that there is a high
correlation between the ENVISAT and ERS-2 altim-
eter wave height errors.

Finally, although the triple-collocation method is a
powerful tool it should be realized that one cannot ap-
ply this approach blindly. It is important to point out
that this method may only be applied when datasets
may be regarded as independent. Otherwise, inconsis-
tencies may result, as is evident when the method was
applied to the ENVISAT–ERS-2 tandem mission. But,
the restriction to independent datasets is not a weak-
ness of the triple-collocation method, rather it is a
strong point; because of the inconsistencies in results it
was realized that there was a correlation between
ENVISAT and ERS-2 altimeter wave height error.
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