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A discrete spectral evolution model is presented suitable for the propagation of
multi-directional wave fields over weakly two-dimensional topography. A coupled
set of amplitude evolution equations is derived that includes the combined effects
of wave-wave and wave-bottom interactions in deep-intermediate water depth. A
heuristic extension to shallow water is given that describes quadratic wave-wave
interactions without restriction on the resonance mismatch. Comparisons to ex-
perimental data demonstrate that the model accurately describes the effects of: 1)
wave refraction and diffraction by topography with considerable two-dimensional
features, and 2) harmonic generation in focal regions. A full account of the theory,
including cubic wave-wave interactions and a rigorous treatment of the shallow
water limit is given in Janssen et al. (2004).

1. Introduction

Waves advancing into shallow coastal areas and on beaches transform owing
primarily to refraction (see e.g. Munk & Traylor , 1947) and near-resonant,
quadratic, wave-wave interactions involving triplets of wave components.
Super-harmonic interactions transform near-symmetrical waves to the char-
acteristic skewed, pitched-forward shapes of waves observed on beaches and
cause the occurrence of multi-crest wave trains behind submerged obstacles
(see e.g. Byrne, 1969). Sub-harmonic interactions induce radiation of long
wave motion in the nearshore region, generally referred to by the collective
name ’'surf beat’, coined by its pioneering observer Munk (1949). These
effects are recognized as major factors in the study of nearshore morpho-
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logical evolution (e.g. Boczar-Karakiewiczji & Davidson-Arnott, 1987) and
of paramount importance in the design of coastal structures and harbors.

Great advances have been made in modeling nonlinear surface waves in
coastal areas using coupled amplitude evolution equations. These models
are either based on Boussinesq theory (e.g. Freilich & Guza, 1984; Mad-
sen & Sgrensen, 1993; Herbers & Burton, 1997) or fully dispersive theory,
suitable for uni- or multi-directional waves over alongshore-uniform topo-
graphy (e.g. Agnon et ol., 1993; Sheremet, 1996; Eldeberky & Madsen,
1999) and small-angle wave propagation over two-dimensional topography
(e.g. Kaihatu & Kirby, 1995; Tang & Ouellet, 1997). In general, the models
based on fully-dispersive theory include full dispersion in the linear terms
and the nonlinear interaction coefficient but retain the premise of near-
resonance. The latter restriction was removed by Bredmose et al. (2002)
who apply suitable boundary conditions on a general solution to the Laplace
equation in the form of infinite expansions of trigonometric functions (see
also Madsen & Schiffer, 1998; Rayleigh, 1876) for unidirectional waves over
one-dimensional bathymetry. Based on a WKB expansion and fully disper-
sive theory, Janssen et al. (2004) (JHB hereafter) derive an evolution equa-
tion for multi-directional waves over a weakly two-dimensional topography
(see also Suh et al., 1990) that allows for arbitrary resonance mismatch in
the quadratic interactions and includes cubic wave-nonlinearities.

The present work presents an outline of the derivation detailed in JHB.
In contrast to JHB we will 1) consider solely periodic wave motion, 2) omit
most of the algebraic details, and 3) do not consider cubic wave-wave inter-
actions. The approach in dealing with two-dimensional bathymetry follows
closely the work by Suh et al. (1990) but differs from the outset due to the
fact that: 1) we apply an alternative scaling so that the effects of quadratic
(rather than the cubic) wave-wave interactions take place at the order of
the bottom slopes, 2) the present model includes multi-frequency (irregu-
lar) wave fields and attendant harmonic generation in shallow water; on a
more detailed level the derivation differs due to an alternative treatment of
intermediate results, which is not discussed further here but addressed in
JHB.

In §2 we discuss the general theory, the treatment of the two-dimensional
bathymetry and wave field decomposition. The main result, a transport
equation for the (complex) amplitudes of a wave field propagating over
2D bathymetry, including the effects of quadratic interactions for arbitrary
resonance mismatch is presented in §3. A comparison to experimental data
is included in §4 and the main findings and conclusions are given in §5.



COASTAL ENGINEERING 2004 121

2. Theoretical approach

The starting point of our derivation is the governing set of equations for
irrotational flow of an incompressible, inviscid fluid:

Vi® 4+ &, =0, YzeD (1a)

®,+Vh-V& =0, z = —h(z,y) (1b)

i+ g%+ L{VEP+ ()} =0, =yl (o)
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Here @ is a velocity potential function, g denotes gravitational accele-
ration, V = (9,, 8y), where 8; is a shorthand for partial differentiation with
respect to the subscript and the operator £ = [§; + ;V® - V + 5&,0,]. We
use a Cartesian frame of reference with its origin at the undisturbed free
surface of the fluid; z and y denote the two horizontal coordinates and z
corresponds to the vertical coordinate, positive pointing upward. The con-
dition (1c) follows from combining the kinematic and dynamic free surface
boundary conditions while assuming a constant atmospheric pressure (see
e.g. Phillips, 1977, §3.1).

2.1. Wave field decomposition for weak 2DH approximation

We consider the description of weakly nonlinear surface waves over weakly
two-dimensional bathymetry; the latter is considered one-dimensional to
leading order with slow variations in its principal direction superposed by
a two-dimensional perturbation, written as:

h(x) = h(z) — h(x). (2)

Without loss of generality, we let the principal and lateral direction co-
incide with z and ¥y respectively and since we are particularly interested
in the description of waves propagating into a shallow coastal area from
intermediate water depth, we refer to = as the cross-shore and y as the
alongshore direction. In (2), h(z) represents a laterally averaged depth and
h=h— h, the two dimensional residue.

The magnitude of the residual depth, h is governed by

O =0(z) K1 3)

=
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The spatial variation of the bathymetry is small over distances O(k;") ~
ko being a characteristic wavenumber of the wave motion — which is made
explicit by the parameter

Ozh Ozh, 0y h

0() = 0(52) = 07 = 0 < 1. @
The nonlinearity of the wave field is governed by the small parameter e,
where € = ao/L, < 1; here ag and L, denote a characteristic amplitude of
the surface elevation and a representative vertical length scale respectively.
The relative magnitudes of these small parameters are taken as

O(e) = O(B) = O(¥*) (5)

The amplitude of the topography () is introduced here at a lower or-
der than the nonlinearity (¢) to accurately resolve wave propagation over
shallow submerged bathymetry features such as banks and shoals that are
common in many coastal areas. Further, the scaling of eqs. (4) and (5)
implies that the characteristic length scale of the 2D topography is long
compared with the surface wavenumber, which excludes the modeling of
back-scattering of waves (induced by bottom undulations of about half the
surface wavelength), consistent with earlier studies of wave scattering from
natural continental shelf topography (Ardhuin & Herbers, 2002).

The set (1) is solved by applying a perturbation expansion of the surface
elevation and velocity potential in terms of the small parameter v. The
(leading-order) alongshore-uniform bottom supports an angular spectrum
decomposition of the wave fleld as described in detail by Suh et al. (1990);
accordingly we write the free wave field as a summation of plane waves:

38N o o (n,1)
[7,(1)} 2" >y [ (m)} (6)

n=2 P=—00 g=—00

where {qb(n 1), ,(,ffjl)} are complex amplitudes of free wave components of
order 4™ with angular frequency w, = pw and alongshore wavenumber
Ag = g, with w and A representing the discrete frequency and alongshore
wavenumber spacing. Note that the expansion parameter is v (not €) to
prevent fractional powers and the summation over n accordingly starts at
2 (not at 1); it should be kept in mind though that O(y?) = O(e).

The E, 4 capture the rapid phase variations according to

z

T
Epq =expliXpql, Xpa= / kpq - dx —wpt = / p,q dT + Agy — wyt,
(M
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where s, = 4/kZ — A2 and k, is related to the angular frequency, wp,

through the linear dispersion relation w? = gk, tanh (kph). In addition
to the free wave components which evolve due to (near-)secular wave-wave
and wave-bottom interactions, we also consider bound waves resulting from
non-resonant quadratic interactions, which require a special treatment in
the shallow water limit where the mismatch from resonance vanishes. The
total wave field can be expressed as:

i) b ¢§n’1) 2 §n2+2’2)
l:n jl = Z ’Yn Z (n11) El + 'Y Z (1’1+2,2) EI,Z +H.B.C..
n=2 Vi 1 Vi,V2 1,2
8)

Here H.B.C. denotes Higher-order Bound Components (of sixth and higher
order in «) that will not be considered in our analysis. For notational con-
venience we introduced E; 3 = Ey E» and we combined the summation over
frequencies and alongshore wavenumber by a summation over all permu-
tations of the vector, vi = {A1,w;}; the numerical subscripts refer to the
vector, v correspondingly subscripted. To quantify the mismatch from ex-
act quadratic resonance we consider a normalized cross-shore wavenumber
difference as in

¥y + My — 149

9)
Whereas the traditional Stokes expansion is valid only in deep-intermediate
water depths where g = O(1) , an alternative treatment of bound waves
is presented here which extends the validity to relatively shallow water
where p is of the same order as the nonlinearity parameter € (or O(u) =
O(~?) in the present scheme), which corresponds to the classic Boussinesq
approximation.

Hi42

3. The amplitude evolution model

Based on the assumptions outlined in §3 and by introducing multiple scales
(see e.g. Liu & Dingemans, 1989; Suh et al., 1990) a cascade of solutions
to the boundary value problem (1) in increasing order of 7 can be ob-
tained, where the effects of the weak two-dimensionality and nonlinearity
are incorporated as modulations of the complex spectral amplitudes. Note
that the lateral variations of the wave field and water depth are captured
in z-dependent Fourier coefficients; as a consequence, the two-dimensional
wave field evolution is described by a set of ordinary differential equations
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in z. The details of the expansion, including quadratic near-resonances,
are presented in JHB. Here we simply state the resulting evolution equa-
tion and give a heuristic derivation to include quadratic near-resonances in
the shallow water limit.

3.1. Deep to intermediate water depth, O(n) = O(1)

To O(v*), a one-dimensional evolution equation for the spatial variations
of the spectral amplitudes, sz’l), results,

w w d, Vi
T = 4™, o= (e FE),
which is accurate over distances O(kg'~?). Here d, is a shorthand for £

and V3 = 22C,,1 is the cross-shore component of the group speed vector in

the linear approximation. The forcing terms éiwb) and §§Wbb) incorporate
quadratic and cubic interactions of the surface waves with the residual
depth; both are linear in the surface elevation while linear and quadratic

in the bottom perturbation, respectively. Explicit expressions of §§Wb)
bb)
&

and
are given in the Appendix A; differences with expressions in Suh et
al. (1990) are addressed in JHB.

Since the linear dispersion relation does not support secular forcing
terms due to quadratic wave-wave interactions (e.g. Phillips, 1977), these
interactions generally result in components with bounded O(7*) (in the
present scaling) amplitudes that are phase coupled to the primary waves.
The component amplitudes, (1(‘,12;2), read
(4,2) _ %sz’l)c(z,l) (1)

1,2 2 s

which agrees with expressions in Hasselmann (1962) and where

A w?
2y g = b (Dl,2+9 1’2721,2), Arg=kioTyp— —2, (12)
wiWso w g

The interaction coefficients are given in Appendix B and we use the short-
hands

kio=|ki +ka|, wi2=wita=ws +we, Ti2=rtanhkih. (13)

3.2. A heuristic extension to shallow water, O(u) = O(y?)

As the water depth decreases such that O(u) — O(v?) the denomina-
tor in (11) becomes O(y?) and the notion of quadratic wave-wave inter-
actions resulting in bound components of higher order no longer holds.
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Instead these interactions approach resonance with concomitant leading-
order, cross-spectral energy transfers over distances O(ky'7?). A formal
extension of the perturbation expansion to include this transition from
bound wave motion to near-resonant quadratic wave-wave interactions is
described in JHB. Here we consider a more heuristic approach: Note that
as O(u) — O(~?) the distinction between free and bound components is no
longer obvious as the quadratic wave-wave forcing terms become secular.
Therefore we anticipate that — in that limit — the amplitude Cf?z’z) under-
goes modulations due to the interaction with the topography described by
7-1+2{C1(?2'2)} = 5&2) + fﬂgb) with the forcing terms being equal to those
in the RHS of (10) but with ({*") consistently replaced by ¢{3”. We
incorporate the bound wave components as modulations of the free wave
amplitudes and introduce a composite amplitude

G=7PY 49 Y (5P B (14)

vatvz=vy
with Ey 5,1 = EyE3E;. Applying the operator 71{} on {; yields
TGy =8 + 8™ +iyt S MallPEasn. (15

Va+Vvg=vi
_ . wh) 2(wbb)
Here Ay 3 = 35 + 363 — 3943 and the forcing terms &7 and §; are equal
to those in the RHS of (10) but with d2,1) replaced by (3. The last term

in the RHS of (15) incorporates the modulations due to quadratic wave
interactions. Upon further replacing (éif) in that term by the expression

(11) and the product '74C§2’1)§§2’1) by 6263, which is consistent to the order
retained in the equations, we obtain the transport equation:

de V1 2 w , A s
va2+vz=vy ?

Equation (16) is the final result of the present analysis; the first two forc-
ing terms on the RHS describe the effects of the two-dimensional topo-
graphy; the last foring term incorporates quadratic wave nonlinearity for
arbitrary resonance mismatch and is accurate from deep-intermediate wa-
ter depth (Stokes limit) to shallow water (Boussinesq limit). Even though
the model describes wave evolution in two dimensions, it should be noted
that (16) is a coupled set of ordinary differential equations. This approach
has the advantage over traditional refraction-diffraction models (that solve
a two-dimensional transport equation) that numerical implementations are
relatively simple. The reduction from a partial to an ordinary differential
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equation comes at the expense of additional quadratic and cubic forcing
terms that incorporate the effects of weak lateral depth variations through
the scattering of energy between alongshore wavenumber components.

For one-dimensional wave propagation (16) is equivalent to equation
(19) in Bredmose et al. (2002) (note that the operator H(hoV,kpho) in
Bredmose et al. is equivalent to ig—‘;fg). For near-resonant quadratic
wave-wave interactions (implying A; o = 297 wi42Vi42A12 + O(4?)) over
alongshore-uniform topography (16) reduces to the deterministic expres-
sions in Sheremet (1996) and Eldeberky & Madsen (1999) while in shallow
water (Boussinesq limit) it is equivalent to Herbers & Burton (1997).

4. Comparison to experimental data

In this section we compare the numerical evaluation of expression (16) to ex-
perimental data, both to verify the accuracy of the weak-2D approximation
and the combined effect of propagation over two-dimensional topography
with harmonic generation in shallow water. In the numerical simulations
we compute the evolution of three frequency components (primary, first and
second harmonic). The numerical integration of (16) is performed using a
standard, fourth-order, fixed step-size, Runge-Kutta scheme, with spatial
step size Az = 0.05m. We consider only propagating modes and neglect
evanescent mode motion.

4.1. Wave focusing over a circular shoal

The experimental set-up reported by Chawla et al. (1996) is shown in Figure
1. It consists of a circular shoal placed on an otherwise horizontal bottom.
The water depth in the horizontal area around the shoal is 0.45 m while at
the center of the shoal it measures 0.08 m. Wave gauges are aligned with
the transects A — A’ through G — G’. The incident wave field propagates
in positive z direction (see Figure 1), with frequency f = 1.0Hz and wave
height H = 0.0233m. The wave field experiences strong two-dimensional
effects induced by the topography, including a strong focal region behind
the shoal where combined effects of refraction and diffraction are important.
Nonlinearity for this case is very weak.

A comparison between model results (viz. eq. (16)) and observations
along four transects (A — A’, B— B, C — C'" and D — D') is shown in
Figure 2. The wave height variations along A — A’ are accurately predicted
by the model, including the strong increase over the shoal and decrease
for z > 10m. Not all the details of the lateral wave height variation are
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Figure 1. Depth contours wave basin reported in Chawla et al. (1996). Wave gauges
are aligned with transects A — A’ through G — G’ indicated in figure.
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Figure 2. Comparison computed and observed normalized wave height along transects.
Solid line and circles denote model result and observations by Chawla et al. (1996)
respectively.
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resolved along C — C' and D — D' but overall the simulations are in good
agreement with the observations.

4.2. Harmonic generation over a conver beach

Whalin (1971) performed experiments on an alongshore convex-shaped
beach. Here we compare model predictions to observations of a periodic
wave field normally incident with frequency f = 0.5Hz and wave height
H = 0.0212m. To illustrate the nature of the wave transformation on the
topography, Figure 3 shows a snapshot of a simulated surface elevation for
this case, superposed on the bathymetry. Water depth varies from 0.45m
to 0.15 m and waves enter from the deeper end of the tank. The experimen-
tal set-up includes a focal region where the combined effects of refraction,
diffraction and strong enhancement of harmonics are important.

Figure 3. Snapshot of simulated surface elevation of a wave field with frequency f =
0.5Hz and wave height H = 0.0212 m propagating over bathymetry reported by Whalin
(1971). Waves propagate from left to right.

Figure 4 shows the comparison between observations and model predic-
tions of the spatial evolution of amplitudes of the primary, first and second
harmonics. The discrepancies noted for the first and second harmonics be-
tween £ = 5m and z = 10 m are likely due to the presence of spurious wave
motion in the observations (e.g. due to inaccuracies in the wave genera-
tion, see Whalin, 1971) not present in the simulation; the enhancement of
these harmonics in the nearshore region is accurately predicted. Overall,
apart from the computed oscillations of the primary harmonic, which is not
present in the observations (a similar discrepancy was invariably found by
other authors, see e.g. Kaihatu & Kirby, 1995; Tang & Ouellet, 1997), the
model predictions compare very favorably to the observed evolution of the
harmonics.
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Figure 4. Evolution absolute values wave amplitudes for wave propagation over
bathymetry reported by Whalin (1971); f = 0.5Hz and H = 0.0212m. Top, middle
and bottom panel show comparison for primary, first and second harmonic respectively.
Circles denote observed values, solid line represents model result.

5. Conclusions

A discrete spectral model for wave propagation over weakly two-
dimensional topography is presented. The model accounts for the com-
bined effects of shoaling, refraction, diffraction and quadratic nonlinear
interactions for arbitrary resonance mismatch. The evolution of the spec-
tral amplitudes is described by a coupled set of first-order, ordinary differ-
ential equations. Comparison of simulations to experimental data shows
that: 1) the model is capable of accurately predicting wave field evolution
over two-dimensional topography, 2) enhancement of harmonics over two-
dimensional topography is in good agreement with observed evolution of
harmonic amplitudes.
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Appendix A. Forcing terms lateral depth variations

The forcing terms on the transport equation in (10) read
(wb) . P 2 (2,1)
=i (-1 g (KGR GMY)
_gl{hz,“f2<2 ’1)} - gl{ﬁyai)@éz’l)}]
q =i(1-17)

(A.la)

26«)1V1

Ch 3( —T12) kip, T? —
2Cg,1 kl T1 2 b + (1 - T12) g2{h7 C3 }}
(A.1b)

* gl {Ea

Here Ty = tanhkih, Cy = —L and
2 - 2
") Cor | gh (2
(1 (h) > k1 +w1 (iﬁ) ] (4.2)

gi{a, bj} = fi{af_l{bjei'p"}}e_"’/" (A.3)
with F; and F~! denoting the i*" component of the Discrete Fourier Trans-
form (DFT) with respect to the lateral coordinate and the Inverse DFT
respectively, the 1; = f * »;dx’. Note that a is a function of the lateral
coordinate.

1
P =
179y

The operator

Appendix B. Quadratic wave-wave interaction coefficients

1 w?
D1,2 = —-2- I:wlk% < szz) +w2k2 (1 — gkl T1>

-2 (w1 + W2) (kikosT1 T2 — Ky - kg):| (B.1)

1
— [wiwse (k1T + ko T) + g (k1k2Ti T2 — kg - ko)] (B.2)
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