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Modification of the Surface Elevation Probability Distribution 
in Ocean Swell by Nonlinear Spectral Broadening 
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In this paper we investigate the effect of the Benjamin-Feir instability on the surface elevation 
probability distribution. A uniform wave train is unstable to modulational perturbations, giving rise to 
sidebands in the spectrum of the surface elevation (hence a broadening of the spectrum). Since these 
sidebands are phase-locked, one should therefore expect deviations from the Gaussian probability 
distribution. To calculate the surface elevation probability distribution, we assume that the end state of 
the instability is given by a stable cnoidal wave solution. The present effect could play a role in nature; 
especially, it may be relevant for the description of swell. 

l. INTRODUCTION 

It is well known that ocean waves can propagate over 
large distances. Early investigations [Munk et al., 1959; 
Snodgrass et al., 1966] demonstrated the possibility to relate 
the observed swell to remote source regions, sometimes 
more than half a global circumference away. The observed 
swell spectra turned out to be quite narrow (see also Harris 
et al. [1973]; Thompson and Smith [1974]). This narrowness, 
and the slow migration of the swell frequency with time, 
agreed nicely with expectations based on the dispersive 
character of deep water waves and the peakedness of wind 
sea spectra during wave growth under the influence of wind. 

A striking feature of time records of swell is the occur- 
rence of wave groups. The standard stochastic description of 
sea waves is based on the assumption that there is a large 
number of different Fourier modes with independent phases. 
This immediately leads to a Gaussian distribution for the 
surface elevation. Further, it can be shown [Longuet-Hig- 
gins, 1957] that the wave envelope function satisfies a 
Rayleigh distribution. This in turn determines, at least in 
case of a narrow spectrum, the wave height distribution and 
the statistics of the length of wave groups. (A wave group is 
defined by the requirement that successive maxima exceed a 
certain level). This idea was worked out further by Ewing 
[1973]. He showed how the average group length can be 
related to the spectral width. Naturally, narrow spectra 
imply long wave groups. Wave groups have been studied 
extensively because of their practical importance. A review 
was recently given by Rye [1980]. In general, there is a 
reasonable agreement between theory and observations, 
although studies have been reported [Goda, 1976] which 
seem to indicate a tendency for wave groups to be longer 
than expected. This is sometimes tentatively ascribed to 
phase relations between the individual waves, which would 
be the result of nonlinear interaction. 

The effect of the nonlinear interactions on the probability 
distribution of sea waves has been studied by several people. 
The classical calculation was made by Longuet-Higgins 
[1963]. He showed how the upside-down asymmetry of 
deterministic sea waves had its counterpart in Gram-Char- 
lier-like corrections to the Gaussian probability distribution. 
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Later work along these lines was reported by Tayfun [1980] 
and Longuet-Higgins [1980]. The early experimental field 
verification (Cartwright and Longuet-Higgins [1956]; see 
also Phillips [1977]) was not geared toward a detection of 
nonlinear deviations. Later work [Forristal, 1978; Longuet- 
Higgins, 1980] is still somewhat controversial. In the labora- 
tory interesting data were reported recently by Huang and 
Long [1980]. Their results could be described with a Gram- 
Charlier series, although the approximation was not uni- 
form. 

The theoretical work discussed so far was based on 

ordinary perturbation theory, and attention was confined to 
the case of uniform wave trains. However, surprisingly, it 
was discovered by Lighthill [ 1965] that a uniform wave train 
is unstable to the presence of sidebands [Benjamin and Feir, 
1967]; when a sufficiently steep uniform wave train is 
produced, the presence of sidebands will result in a breaking 
up of the wave train and in generation of wave groups. 
Recently, this instability was studied experimentally by 
Lake et al. [1977]; the initial group formation was clearly 
seen. However, for long times an (approximate) recurrence 
to the initial state was observed: the so-called Fermi-Pasta- 

Ulam (FPU) recurrence [Fermi et al., 1955]. 
A convenient tool for the description of the long-term 

behavior of a train of water waves is the nonlinear Schr6- 

dinger equation. This equation is used in many branches of 
physics. Its usefulness for water waves was demonstrated by 
Davey and Stewartson [1974]. The equation is valid for not 
too strong nonlinearities and not too strong dispersion 
(narrow spectra). It has several advantages over ordinary 
perturbation theory. Among these are its simplicity and the 
ease with which nonhomogeneous stochastic situations can 
be treated. For periodic boundary conditions, relevant for 
situations at open sea, both numerical [ Yuen and Lake, 1980; 
Yuen and Ferguson, 1978] and analytical [Hui and Hamil- 
ton, 1979; Janssen, 1981] results from this equation have 
been reported. They are in agreement with the observations 
of Lake et al. [1977]. 

An interesting question that remains to be answered is the 
relevance of the Benjamin-Feir instability for the propaga- 
tion of water waves in nature. In the case of steep waves 
such as those occurring during active wind generation, 
nonlinearities are certainly important [Hasselmann, 1962]. 
However, under these circumstances the influence of wind 
and wave breaking is so important that one can hardly 
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expect to be able to observe a pure hydrodynamic instabil- 
ity. In the relatively simple case of swell, on the other hand, 
the steepness is rather small, so it has been argued that 
nonlinearities are less important. Nevertheless, we think it is 
interesting to explore possible nonlinear effects, since secu- 
lar effects may be present and their importance depends not 
only on steepness but on duration as well. 

By now several people have applied the nonlinear Schr6- 
dinger equation to the study of random sea waves. Alber 
[1978] performed a careful, two-dimensional analysis with 
the important result that the Benjamin-Feir instability does 
have a stochastic counterpart, provided that the normalized 
spectral bandwidth does not exceed a certain value. Later, 
Alber and Saffman [1978] elaborated further on this ap- 
proach. In the first-mentioned paper the nonlinear Schr6- 
dinger equation is studied as a stochastic equation, in the 
other paper an equation for the Wigner distribution function 
is derived and studied. In both cases it was not possible to 
indicate the end state of the instability. 

In this paper we speculate that the end state of the 
instability will be a stable steady solution of the nonlinear 
SchrOdinger equation, periodic in space, and we explore the 
consequences of this Ansatz for the evolution of the wave 
height probability distribution. We could also investigate the 
case of a recurrent end state such as the FPU recurrence; 
however, such a solution seems less plausible to occur, since 
a small amount of dissipation is sufficient to induce limit 
cycle behavior. It will turn out that the stable steady end 
state can be written as a Jacobian elliptic function. The 
integration constants can be determined in terms of the 
parameters of the initial narrow wave train. To fix the 
stochastic meaning of this solution we make the additional 
assumption that initially the wave envelope is Rayleigh 
distributed, just as one would expect when initially many 
independent Fourier modes contribute. The main result then 
is that the probability distribution of the surface elevation in 
the end state is non-Gaussian, simply because side bands in 
the spectrum are present which are phase-locked. 

The plan of this paper is as follows. In section 2 we 
illustrate our method of calculation with a simple .example, 
namely, a uniform wave train with Stokes frequency correc- 
tion. The main calculation of the probability distribution for 
a nonuniform wave train is given in section 3, whereas our 
conclusions are given in section 4. 

2. THE NONLINEAR SCHRODINGER EQUATION 

To investigate the effect of nonlinearities such as the 
Stokes frequency correction and the effect of the Benjamin- 
Feir instability on the formation of wave groups we propose 
to study the nonlinear Schr0dinger equation. This equation 
may be applied to the case of water waves with a narrow 
band spectrum and small wave steepness, so that in a good 
approximation the surface elevation is given by 

ß / = Re (p(x, t) exp K-mot + kox)) 

Here m0 and k0 are the angular frequency and wave number 
of the carder wave obeying the deep-water dispersion rela- 
tion m0 = (gko) 1/:, whereas p(x, t) is the slowly varying, 
complex envelope of the wave. 

Application of the multiple scale technique to the exact 
deep-water equations then gives the following nonlinear 

Schr6dinger equation for p(x, t), 

+ •xx p + - - •oko21p12p = 0 (2) 2 Ox 2 p 

Here, the prime denotes differentiation with respect to k0, 
and we assume that the complex envelope p is a function of x 
(the propagation direction of the carder wave) and t only. 

We emphasize, however, that the nonlinear Schradinger 
equation has only a restricted validity. As shown by, e.g., 
Longuet-Higgins [1980], Lake et al. [1977], and Dysthe 
[1979], the steepness kop of the carrier wave must be smaller 
than, say, 10-15%, since for greater wave steepness the 
effect of higher order dispersion and the effect of wave- 
induced current becomes important. Consequently, we have 
a restriction on the width of the spectrum in wave number 
space. Noting that in the derivation of the nonlinear Schra- 
dinger equation the dispersion is assumed to be of the same 
order as the effect of nonlinearity, we obtain for the width/ik 
of the spectrum in wave number space the upper bound 

•k 
= 0(2k0p0) =< 20-30% (3) 

The width of the frequency spectrum is, therefore, at most 
10%, since &o/t•0 = tik/2ko. 

Because of (3) and the restriction on the wave steepness, 
the nonlinear Schradinger equation seems to be an appropri- 
ate model for the description of swell. 

To investigate some special solutions of the nonlinear 
Schradinger equation (2), we transform (2) to a frame 
moving with the group velocity m0' to obtain 

0 1 0 2 
i-- p - p -- tclp12p = 0 (4) Ot • • 

where • = (x - mo't)/(-o•o") v2 and K = m0k02/2. 
The rest of this section is devoted to the case of uniform 

wave trains, while in the next section the modulated wave 
train is considered. 

For a uniform wave train (i.e., the envelope p is indepen- 
dent of O, equation (4) may be solved at once with the result 

p = ao exp i•r •r = -kao2t + •ro (5) 

for the initial condition p(O) = ao exp i•ro. It should be noted 
that Orr/Ot is just the Stokes correction to the frequency. We 
next assume that ao and fro are random variables with joint 
probability distribution 

ao 

Pao,o.o(ao, fro)- ,rr(ao2) exp--ao2/(ao 2) (6) 
i.e., we have random phases, whereas a0 obeys the Rayleigh 
distribution law. Hence at t = 0 we deal with a Gaussian 

process. Let us determine the statistics for t • 0 by means of 
a method described by, e.g., Soong [1973]. To that end, it is 
most convenient to write (4) in matrix form. For the uniform 
case we then obtain 

-- x = x x(O) = (ao, •ro) (7) 
Ot - Ka 

where x = (a, rr). 
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The solution of (7) is given by 

( 1 0) x(0) (8) x = - Kaot 1 
while its inverse reads 

x (9) x(0) = + Kat 
Equation (7) is a first-order differential equation. As shown 
by Soong in that case, a Liouville equation for the probabili- 
ty distribution function may be derived. The result is that 
one can calculate px(X) as follows: 

px- px0 (x0 - x0 (x, t))lJI (10) 

where the Jacobian J is given by 

0x0 •r 
J= 

0x 

In our case IJI - 1, hence 

a 

p(a, tr) - ,r(ao2 ) exp - a2/(ao 2) (i 1) 
We therefore have shown that a uniform wave train with 
Stokes frequency corrections included obeys the Gaussian 
statistics for all times. 

Since we are interested in wave groups, we compute the 
average length of the wave groups by means of an expression 
derived by Ewing [1973]. For an envelope p, which has a 
Rayleigh distribution, Ewing has shown that the average 
length (/l) of the wave groups is given by 

(/1) = •- 2•r/z2 (12) 
where k = p/rno 1/2 (k = 2 for a level corresponding to the 
significant wave height) and 

t'62n = (to- d•o)2ns(to)dto m2n = to2ns(to)dto 

Here, S(w) is the spectrum of the waves and &0 its central 
frequency. Note that for linear waves m0 = (a02)/2. Combin- 
ing (1) and (5) we obtain for the elevation 

r/= ao cos (kox- mot- •cao2t + cro) (13) 

The spectrum of the signal •/ is determined through the 
correlation function R(r) defined by 

R(r) = lim rl(t)rl(t + r)dt (14a) 
r--> oo 2T r 

Next, defining the spectrum according to 

S(to) = - dr e itøt a('r) to > 0 (14b) 

we obtain for the process (13) the spectrum 

a0 2 
S(to) = -•- [•to -mo - t•ao2)] (15) 

where •i denotes the Dirac function. This is the usual 

2xS(tol 

• 2 3 4 5 6 
(J')- (J-)o 

2X m o 

Fig. 1. Spectral shape resulting from the nonlinear Stokes correc- 
tion to a monochromatic spectrum. 

expression for the spectrum of a harmonic function in the 
deterministic case. However, a0 is a random variable with a 
Rayleigh distribution, and therefore the average spectrum of 
the stochastic process (13) reads 

= f drro Pao,•o (ao, fro) S(w) 
where Pao,•o (ao, fro) is given by (6). The result is 

(S(o.,)) = o.,- ,-o 4•2m ø exp - to >mo 2•mo 

(S(o.,)) = 0 0 < o• < • 

(16) 

(17) 

The form of S(to) is given in Figure 1, which clearly shows 
that for stochastic processes the Stokes correction gives rise 
to a nonlinear broadening of the spectrum. 

The maximum of the spectrum is given by 

1 g2 (18) 
{S(tomax)) > -- _ 

2•e to05e 

where tomax = 2Km0 + too = too + • (a 2) = too + list. 
It is now a simple matter to compute the moments of the 

spectrum, and the end result for (11) reads 

1 [1 + (t3o/O')2 } 1/2 (19) (/1) = •- 2•r ' 

where cr is the width of the spectrum defined by 

which in this case in given by 

02 = 8•2tno 2 (20) 

In terms of the average wave steepness • = ko (a2) u2 = 2 m 
komo u2, the expression for (11) may also be written as 

(11) -- k8 2 2• k8 2 e << 1 
In practice, e • 10%, giving a wave group length of the order 
(/1) • 28 for k = 2. This co•esponds to a small width of the 
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spectrum: •r = 10-2d•. We therefore conclude that for deep- 
water waves the broadening of the frequency spectrum due 
to the Stokes correction could not explain the observed 
width of the spectrum, since usually (l•) = 2. Apparently, 
there must be additional effects responsible for the observed 
width of the spectrum. Parameters such as the distance from 
the source region and the extent of the source region are 
relevant for determining the width of the spectrum [Walden, 
1956]. It is well known, however, that for deep-water waves 
a uniform wave train is unstable to perturbations in its 
envelope [Benjamin and Feir, 1967]. As a result of this 
instability, sidebands will occur in the spectrum which give 
rise to an additional broadening of the spectrum. Especially, 
far away from the source region the latter effect may be 
important, and the next section is therefore devoted to the 
study of the effect of the Benjamin-Feir instability on the 
statistical properties of the wave train. We incidentally note 
that for shallow water waves the effect of the nonlinear 

frequency correction may be really important. Starting from 
the one-dimensional Davey-Stewartson equations [Davey 
and Stewartson, 1974], we obtain in the limit koh << 1 (where 
h is the water depth) a nonlinear Schr6dinger equation for 
the envelope of the wave train with 

9 a•k02 
• = (21)' 

16 (k0h) 4 

Owing to the wave-induced current, nonlinearity now 
gives rise to a decrease of the frequency of the wave train, 
whereas the wave train is modulationally stable (at least in 
one-dimensional theory). The expression for the average 
length of the wave group is the same as given in (19). In 
terms of the wave steepness we obtain 

9 
{/1} = k -1•'-1/2/5-1 (1 - •) • = -fr2/(koh)4 

8 

For koh = 0.5, an average wave steepness of 10%, and k = 2, 
we obtain (l•) = 1.3 and •r = 0.13 o•0, showing that in shallow 
water the broadening of the spectrum due to the nonlinear 
frequency correction may be considerable. 

To summarize, we have investigated in this section uni- 
form wave trains. Whereas in the deterministic case a single 
peaked spectrum is obtained, the combination of nonlinear 
frequency correction and randomness gives rise to a broad- 
ening of that spectrum. This nonlinear line broadening is 
quite small for deep-water waves, although it may be consid- 
erable for shallow-water waves. Furthermore, we have 
shown that a uniform wave train is a Gaussian process if it is 
Gaussian initially. 

For deep water, a uniform wave train is,-however, unsta- 
ble to modulational perturbations, and it is the purpose of the 
next section to investigate the effect of the modulations on 
the statistics of the wave train. 

3. EFFECT OF THE BENJAMIN-FEIR INSTABILITY 

This section is devoted to the study of nonuniform wave 
trains, and we are especially interested in the effect of 
modulations in the envelope of the wave train on the 
statistics. 

Let us suppose that we have initially a uniform wave train 
with a small perturbation in the envelope; e.g., the energy in 
the modulation is small compared with the energy in the 
carrier wave. To apply the method given by, e.g., Soong 

[1973], we need to solve the one-dimensional nonlinear 
Schr6dinger equation subject to the above-mentioned initial 
conditions and periodic boundary conditions in x space. 
Then, inverting the solution, one can in principle obtain the 
probability distribution for the wave train. Unfortunately, 
the solution to the initial value problem with periodic bound- 
ary conditions is not known to us. We therefore attack this 
problem in a different fashion. Thereby, we assume that the 
physical system (in this case the narrow-band wave train) 
evolves from the unstable initial state (which is the uniform 
wave train) to a more complicated, stable equilibrium. 
Against the assumption of limit cycle behavior the objection 
may be raised that according to the experiments of Lake et 
al. [1977] the time evolution of the narrow-band wave train 
shows the Fermi-Pasta-Ulam recurrence [Fermi et al., 1955]. 
These authors remark, however, that the recurrence is not 
perfect because of the presence of dissipation. 

Although the nonlinear Schr6dinger equation (2) does not 
include the effect of dissipation, we assume that at least the 
end state is approximately well described by this equation. 

For an end state of the form 

p = a e i(ø'ø-at) (22) 

where (for simplicity) 1• is a constant and a is a function of • 
only, we obtain from (4) the following equation for a: 

ld 2 
--•a + t<a(a 2- a02) = 0 a02= +•/t< (23) 

The solution of (23) is given by 

( t ) a = ao dn ao ,m 
2-m 2 m 

(24) 

0_<m_<l 

where m is the modulus of the dn function. We note that (24) 
represents a whole class of solutions parameterized by the 
constant m. In the limit rn -• 0 we rediscover the uniform 

solution (5), which is, as already mentioned, modulationally 
unstable. This follows from a linear stability analysis of (4) 
with the result 

to 2 = -•k 2 (k 2 - 4a:ao 2) (25) 

where •o and k are frequency and wave number of the 
modulation (-• exp (ik• - •or)), respectively, and a0 is the 
amplitude of the uniform wave train. Hence •o 2 is negative 
(i.e., •o is complex) if k 2 < 4K a02, and maximum growth is 
found for 

k = kmax = (2tcao2) 1/2 (26) 

As was conjectured by Lake and Yuen [1978] and Longuet- 
Higgins [1980], we assume that the mode with the wave 
number kmax dominates the behavior of the envelope for 
large times. 

In other words, the wave number of the end state (24) is 
given by k = kmax. From this requirement we obtain the 
following condition 

qr (2t<) 1/2 qr K = ao m)•/2 (27) kmax 2- rn (2- 

where K is the complete elliptic integral of the first kind. We 
have solved (27) for m numerically. It turns out that m = 1 so 
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that K = « In [16/(1 - m)], and we have 

tn = 1 - 16e -2 • = 0.96 (28) 

Hence the envelope a is now completely fixed. In the 
appendix it is shown that the solution (24) with m given by 
(28) is stable to one-dimensional perturbations, so that, in 
agreement with a conjecture made by Whitham [1974], the 
cnoidal wave is a possible end state of the Benjamin-Feir 
instability. 

Combination of (22) and (24), and substitution of the result 
in equation (1), gives 

•1 = ao dn ao , rn 
2-m 2-m 

ß cos {kox - (wo + 11)t + rr0} (29) 

-12 

-08 

-3 -2 -1 o 1 2 3 

Fig. 2. Spectral shape resulting from our estimate of the effect 
of the Benjamin-Feir instability on a monochromatic spectrum. • = 
8K<S(a,))/•o, x = (a, - •)/(•o•). 

where 11 = tea02, • = (x - o•o't)l(-ooo") 1/2, and rn is given by 
(28). We next determine the spectrum of r/ by using the 
Fourier series expansion of the dn function, as given by 
Abramowitz and Stegun [1964], 

dn(u,m) =•-• 1 + 4 • 1 + q2n cos2nv 
n=l 

(3O) 

v = •rul(2K) 

where q is the nome, 

q = exp (-•rK'IK) K' = K(I - m) 

In an analogous fashion, as was done in the previous section, 
one can determine the spectrum S(•o) through the correlation 
function R(r) with the result 

S(to) = • ao 2 {•o• -- o•0) 
o• q2n + 4 • (1 + q2n)2 (•(to- •'•+) + •(to- •'•_)) 

n=l 

(31) 

where 11_+ = wo (1 -+ nkoao). Here, we have neglected the 
Stokes frequency correction, because it only gives a small 
contribution (see the previous section). 

So far, we have investigated the deterministic aspects of 
the problem. We next assume that we deal with random 
initial conditions such that a0 and rr0 are distributed accord- 
ing to the distribution law (6). The purpose of the remaining 
part of this section is then to determine the spectrum of this 
stochastic system and its statistical properties for large 
times. The spectrum of the stochastic process with modula- 
tions included is obtained by averaging the spectrum of the 
deterministic process (31) by means of the Rayleigh distribu- 
tion law (6). As a result we find 

<S(•o)> - -• <a02> [•o- o•0) 
+ 8 • an 2 •nlo• -- o•0 3 exp (-a•(•o - wo) 2) 

n=l 

(32) 

where a n = (rtwoeo) -2,/•n = q2n/( 1 + q2n)2, and eo is the wave 
steepness at t = 0 (co = ko (ao2)1/2). In Figure 2 we have 
plotted the normalized spectrum • = 8K (S(oo))/eo as a 
function of normalized angular frequency x = (•o - wo)/eocoo. 

Only the sidebands with n = 1 are presented, because even 
for rn = 0.96 (q = 0.2), the sidebands with n -> 2 are quite 
small and are therefore not presented in Figure 2. 

The effect of randomness is clear from the broadening of 
the sidebands in the spectrum. The sidebands are symmetri- 
cal with respect to the main peak at •o -- mo. Note that the 
effect of the Stokes frequency correction is to enhance the 
peak to the left of wo and to reduce the peak to the right of 
m0, although this feature is quite small. 

To summarize our results of the spectrum we offer the 
following picture. Initially, the width of the spectrum is 
infinitesimally small. Due to the Benjamin-Feir inst•t•bility 
sidebands will appear in the spectrum, giving rise to a 
broadening of the spectrum. The spectrum will broaden until 
the instability is quenched. We note that the conjecture that 
a broad spectrum may be stable to modulational perturba- 
tions is in qualitative agreement with the theoretical results 
of Alber [1978]. He found, on the basis of a linear stability 
analysis, that a random uniform wave train is stable if its 
spectrum is sufficiently broad: 

(33) 

where rr is the spectral width and e is the wave steepness, 
= k0 (a2) 1/2. From (32) we obtain for the relative width rr/wo 
of the spectrum 

O' 4(2B1) 1/2 
--= • e (34) 
wo 1 q- 

Here, we have taken into account the width due to the first 
sideband only. Remarkably, for rn = 0.96 (q = 0.20), the 
value of the relative width is just below the threshold value 
for stability of a random uniform wave train (see equation 
(33)). 

From (34) we observe that the broadening of the spectrum 
is of the order of the wave steepness e, rather than e 2, as in 
the case of the uniform wave train treated in the previous 
section. One may therefore expect much shorter wave 
groups with an average length of the order of e -1, rather than 
e -2 as found for the uniform wave train with Stokes frequen- 
cy correction included. 

We next investigate the statistical properties of the modu- 
lated wave train. We confine ourselves to a discussion of the 

probability distribution of the envelope a. Note that the 
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envelope will no longer obey a Rayleigh distribution because 
the sidebands are phase locked instead of independent in the 
statistical sense. To see this we compute the probability 
distribution for the envelope of the stochastic process (29), 
assuming the distribution of a0 to be given by the Rayleigh 
distribution. For convenience, we only take the first term of 
the series of the dn function, but our results can easily be 
extended to the full expression for the dn function. Thus 

a = «(2)ma0 1 + q2 cos (7t) (35) 1+ 

where •/= k0a0a,0, and for convenience we have chosen x = 
0. The process (35) is not stationary. This is evident, e.g., 
from the expression of the first moment (a), 

(a) = f daopao(ao)a 

where Pao is the Rayleigh distribution for a0. Clearly, the first 
moment depends on time. For large t, however, the integral 
involving the cosine function averages out due to phase 
mixing so that limt_•o• (a) - (a0) (2)1/2/2. For this reason, we 
only calculate the probability distribution of a for large 
times. 

We first observe now that for large t the processes a0 and 
cos (yt) are independent in the statistical sense because of 
phase mixing. Hence the probability that a is smaller than 
some value x can easily be determined if we know the 
distribution functions for a0 and cos (yt). Since a0 is Rayleigh 
distributed, we only need to calculate the probability distri- 
bution for cos (yt). 

The probability distribution function for 

y = cos z z = yt = aokotoot (36) 

is easily found. Suppose the value y = Yo is realized for z = 
Zo. Then, because of the periodicity of the cosine function, y 
has the same value Yo if 

z= -zo+ 2n•r 

where n is an integer. The probability density for the 
occurrence of Yo is then given by 

Py(YO) = Z {Pz(ZO q- 2nrr) + Pz(--Zo + 2nrr)}dzo/dyo (37) 
n 

where the Jacobian dzo/dyo = 1/(1 - y02) 1/2. The variable z, 
being a multiple of ao, is Rayleigh distributed, 

2Zo 

Pz (Zo) = (z--•-exp (--Zo2/(Z02)) 
For large t, the summation (37) can be replaced by an 
integral, since the spacing goes to zero. The result is 

Py (Y0) = 'tr(1 - y02) 1/2 t---> c• (38) 
We remark that this type of consideration may be applied to 
any periodic function, e.g., the dn function of (39); the only 
difference is the Jacobian dzo/dyo. 

Since the stochastic variables y and a0 are independent for 
large times, we obtain the joint probability distribution 

1 2a0 

Pao,y (a0, Y0) = 'tr(1 - y0) 1/2 (a02) exp (-ao2/(a02)) (39) 

Then, the probability that a < x, with a given by (35), equals 

P(a < x) = f r• dao dyo Pao,y (ao, Yo) (40) 
where D is defined by 

D: « (2) •/2 ao 1 + q2 Yo < x 1+ 

Differentiating (40) with respect to x, we obtain for the 
probability density of the envelope a 

x fo '• exp - [re 2 x2/(1 + 41311/2 cos 0) 2] Pa (x) - •r•a02 ) dO 41311/2 (1 + cos 0) 2 

(41) 

where a 2 = 2/(ao 2) and •11/2 = q/(1 + q2). 
We remark that in the limit /3• --> 0, corresponding to a 

uniform wave train, we rediscover from (41) the Rayleigh 
distribution. For small /3• 1/2 we obtain an approximate 
expression to (41) by means of a multiple scale analysis, 

(27r) 1/2 

Pa(X) = 8((a02)131)1/2 [elf (Zl) - elf (z2)] fll << 1 (42) 
where z• = ax/(1 - 41311/2), z2 = aoc/(1 + 41311/2), and err is the 
error function. Equations (41) and (42) show that the sto- 
chastic process is non-Gaussian, because the envelope a 
does not obey the Rayleigh distribution. Unfortunately, in 
the case of interest,/3• •/2 = 0.2 so that the approximation (42) 
fails. In addition, for such large values of/3• •/2, (35) is only a 
poor approximation to the exact expression for the enve- 
lope. We therefore took more terms of the series for the dn 
function into account. By inspection, we found out that three 
terms of the series were sufficient for our purposes. The 
results are presented in Figure 3 and are compared with a 
Rayleigh distribution with the actual rms amplitude. We 
observe from Figure 3 that the modulated wave train has a 
probability distribution for the envelope that gives a larger 
probability for larger waves and also for small waves. Also 
shown is the result of a numerical simulation of the envelope 
of the random process (29) for large times. The agreement is 
good. 

We finally note that the present method can also be 
applied to the random process (29). Following the same 
procedure, one can easily obtain the probability distribution 
for the surface elevation, but we shall not give the details. 

4. CONCLUSIONS 

In one dimension a narrow spectrum of water waves is 
unstable, which gives a broadening of the spectrum. 

If initially the probability distribution of the surface eleva- 
tion is Gaussian, we find in the end state deviations that 
result from phase relations between the different modes in 
the broadened spectrum. 

The present effect could play a role in nature, although 
observational evidence is hard to obtain. This is because 

surface wave spectra have a natural line width that obscures 
the nonlinear broadening. Walden [1956], e.g., has shown 
how in the case of swell the finite extension of the source 

region and the finite generation time of the waves by the 
wind determine linearly the width of the wave spectrum. 
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nonlinear 

'• •."• Rayleigh 

1 2 3 

Fig. 3. The probability density function for our stable nonlinear 
solution (41) for the cnoidal wave envelope (24). The dashed line is 
the result of a Monte Carlo simulation, while the solid circles 
indicate the result of a numerical integration. For comparison, the 
Rayl•eigh distribution (solid line) is also given. We normalized such 
that f = mo 1/2 Pa (a) and ./= a/mo u2, with mo = fdoo S(oo). 

Recently, it was suggested [Goda, 1976; Mollo-Christen- 
sen and Rarnarnonjiarisoa, 1978; Rye, 1980] that nonlinear 
effects increase the average group length. This conjecture 
seems at variance with our result that nonlinearities may 
actually shorten the wave groups. However, we merely state 
that an initial line spectrum (with infinite wave group length) 
evolves into a broader spectrum with finite wave group 
length. To support the above-mentioned conjecture, one 
should calculate the wave group length according to linear 
theory and compare it with the expression for the wave 
group length, including nonlinear effects, for a spectrum with 
the same width. This is, however, beyond the scope of the 
present paper. 

Our calculation was made under a few restrictive assump- 
tions. In the first place, we considered one-dimensional 
wave propagation only. Extension to two dimensions is 
desirable but very hard at present, since no stable cnoidal 
solutions in two dimensions are known. Also, we restricted 
our attention to deep-water waves. In shallow water differ- 
ent results will certainly follow for the modulated wave train 
and the corresponding probability distribution. In the case of 
our simple example of the Stokes correction to a uniform 
wave train, we were able to discuss the shallow water limit. 
It was found that nonlinear effects are more important than 
in deep water. Finally, we made a conjecture about the 
stable end state of the Benjamin-F. eir instability. It is impor- 
tant that we were able to find a stable end state at all, and it 
was interesting to investigate its consequences. However, 
more general solutions may be relevant (with nonuniform 
phases, for example), and it would be worthwhile to extend 
the present approach. 

APPENDIX 

In this appendix we investigate the linear stability of the 
cnoidal wave solution (24) in one-space dimension. Our 
starting point is the nonlinear SchrOdinger equation (4). 
Substitution of 

p = a exp --iKti2t (A1) 

where d is an arbitrary reference amplitude, gives 

0 0 2 
i--A --A -/(l/I 2 - 1) = 0 (A2) 

0•' OZ 2 

Here, we introduced the dimensionless quantities A = a/d, 
r = Kti2t and z = ti•(2K) 1/2. The cnoidal wave (24) reads in the 
present units 

A0 = /3(2) u2 dn(13z, m) (A3) 

where/3 = 1/(2 - m) 1/2. To investigate its stability, we write 

A = A0 + A1 A1 << A0 (A4) 

and we linearize (A2) to obtain for solutions of the form A• = 
(u + iv) exp (7t) the following differential equation for v, 

L •L2v = - 'y2v (A5) 

where L• = 02/0z 2 + 3A0 2- 1; L2 = 02/0Z 2 + A0 2- 1. 
Since A0 is periodic with period 2K/13, we observe at once 

that (A5) is invariant under translation over 2K/13. This 
suggests that, in complete analogy with the Ansatz of Bloch 
for periodic potentials, v may be written in the form 

v = e ikz g(z) (A6) 

where g(z) has period 2K/13, and k is an arbitrary wave 
number. The normal modes are thus modulated with period 
2K/13. Inserting (A6) into (A5), we obtain the following 
eigenvalue problem 

L •L2g -- - T2 g (A7) 

where g is periodic with period 2K/13, L• = (O/Oz + ik) 2 + 
3A02 - 1, and L2 = (O/Oz + ik) 2 + A02 - 1. Unfortunately, 
however, no exact solutions to the eigenvalue problem (A7) 
are known to us. We therefore seek approximate solutions of 
(A7) for small k and small 7, following the method of 
Zakharov and Rubenchik [1974]. To that end, for wave 
numbers k which are small with respect to 13/2K, we expand 
g = go + gl + ß ß ', 3 '2 = (72)1 + ß ß ß ß In lowest order we then 
obtain 

L10 L2 0 go = 0 (A8) 

where L1 ø = 02/Oz 2 + 3A0 2- 1, L2 ø = 02/OZ 2 + A0 2- 1. 
Equation (A8) gives two periodic solutions, namely, one 
which is even with respect to the crest of the steady state 
(A3) and one which is odd. In the following we consider the 
even mode in more detail. It is given by 

go + = A0 (A9) 

For this choice of go we obtain in next order, 

LløL2øgl = -•2g0+ + 2k2[(g0+) 2 + 2(g0+) "] -= • (A10) 

where the prime denotes differentiation with respect to z, 
and we only retained terms up to order k 2. The growth rate 
•2 is now obtained from the solvability condition of (A10), 

i k/ l• (X, •3) = dz X* •3 = 0 (All) 
d -k/t• 

where X is the solution of the adjoint problem L2øL•øx = 0. 
Obviously, (All) is automatically satisfied for uneven X 
because •3 is even. The even solution of the adjoint problem 
is given by Martin et al. [1980]. Without presenting the 
details, the result in the neighborhood of rn - 1 reads 

• = 2k2(1 - m)K (K- 2E)/{(1 - m)K 2 -- E 2) (A12) 
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where K and E are the complete elliptic integrals of the first 
and second kind, respectively. Clearly, 72 vanishes for rn = 
1 and is negative in the neighborhood of rn = 1. Hence near 
rn = 1 the cnoidal wave is stable to even perturbations. In 
addition, it can be shown by means of a similar analysis that 
the cnoidal wave near rn = 1 is stable to odd perturbations. 
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