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ABSTRACT

Four-wave interactions are shown to play an important role in the evolution of the spectrum of surface gravity
waves. This fact follows from direct simulations of an ensemble of ocean waves using the Zakharov equation.
The theory of homogeneous four-wave interactions, extended to include effects of nonresonant transfer, compares
favorably with the ensemble-averaged results of the Monte Carlo simulations. In particular, there is good agree-
ment regarding spectral shape. Also, the kurtosis of the surface elevation probability distribution is determined
well by theory even for waves with a narrow spectrum and large steepness. These extreme conditions are
favorable for the occurrence of freak waves.

1. Introduction

At present there is a considerable interest in under-
standing the occurrence of freak waves. The notion of
freak waves was first introduced by Draper (1965), and
this term is applied for single waves that are extremely
unlikely as judged by the Rayleigh distribution of wave
heights (Dean 1990). In practice this means that when
one studies wave records of a finite length (say of 10–
20 min), a wave is considered to be a freak wave if the
wave height H (defined as the distance from crest to
trough) exceeds the significant wave height HS by a
factor 2.2. It is difficult to collect hard evidence on such
extreme wave phenomena because they occur so rarely.
Nevertheless, observational evidence from time series
collected over the past decade does suggest that for large
surface elevations the probability distribution for the
surface elevation deviates substantially from the one that
follows from linear theory with random phase, namely
the Gaussian distribution (e.g., Wolfram and Linfoot
2000).

There are a number of reasons why freak wave phe-
nomena may occur. Often, extreme wave events can be
explained by the presence of ocean currents or bottom
topography that may cause wave energy to focus in a
small area because of refraction, reflection, and wave
trapping. These mechanisms are well understood and
may be explained by linear wave theory (e.g., Lavrenov
1998).

Trulsen and Dysthe (1997) argue, however, that it is
not well understood why exceptionally large waves may
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occur in the open ocean away from nonuniform currents
or bathymetry. As an example they discuss the case of
an extreme wave event that happened on 1 January 1995
in the Norwegian sector of the North Sea. Their basic
premise is that these waves can be produced by non-
linear self modulation of a slowly varying wave train.
An example of nonlinear modulation or focusing is the
instability of a uniform narrowband wave train to side-
band perturbations. This instability—known as the side-
band, modulational, or Benjamin–Feir instability (Ben-
jamin and Feir 1967)—will result in focusing of wave
energy in space and/or time as is illustrated by the ex-
periments of Lake et al. (1977).

To a first approximation, the evolution in time of the
envelope of a narrowband wave train is described by
the nonlinear Schrödinger equation. This equation,
which occurs in many branches of physics, was first
discussed in the general context of nonlinear dispersive
waves by Benney and Newell (1967) (see also Ostrows-
kii 1967). For water waves it was first derived by Zak-
harov (1968) using a spectral method and by Hasimoto
and Ono (1972) and Davey (1972) using multiple-scale
methods. The nonlinear Schrödinger equation in one-
space dimension may be solved by means of the inverse
scattering transform. For vanishing boundary condi-
tions, Zakharov and Shabat (1972) found that for large
times the solution consists of a combination of envelope
solitons and radiation modes, in analogy with the so-
lution of the Korteweg–de Vries equation. However, for
two-dimensional propagation, Zakharov and Rubenchik
(1974) discovered that envelope solitons are unstable to
transverse perturbations, and Cohen et al. (1976) found
that a random wave field would break up envelope sol-
itons. This meant that solitons could not be used as
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building blocks of the nonlinear evolution of gravity
waves.

For periodic boundary conditions, the solution of the
nonlinear Schrödinger equation is more complex. Lin-
ear stability analysis of a uniform wave train shows
that close side bands grow exponentially in time in
good qualitative agreement with the experimental re-
sults of Benjamin and Feir (1967) and Lake et al.
(1977). For large times there is a considerable energy
transfer from the carrier wave to the side bands. In
one-space dimension (1D) if there is only one unstable
side band, Fermi–Pasta–Ulam recurrence occurs (Yuen
and Ferguson 1978) in qualitative agreement with the
experiments of Lake et al. (1977). In the presence of
many unstable side bands, the evolution of a narrow-
band wave train becomes much more complex. No re-
currence is then found (Caponi et al. 1982), and these
authors have termed this confined chaos in a nonlinear
wave system because most of the energy resides in the
unstable modes. Also, in two-space dimensions (2D)
the phenomenon of recurrence is the exception rather
than the rule. In addition, in 2D the instability region
is unbounded in the perturbation wave vector space,
resulting in energy leakage to high wave-number
modes; hence there is no confined chaos in 2D (Martin
and Yuen 1980). This suggests that the 2D nonlinear
Schrödinger equation is inadequate to describe the evo-
lution of weakly nonlinear waves. This was pointed
out already by Longuet-Higgins (1978) who performed
a stability analysis on the exact equations and found
that the instability region is finite in extent. More-re-
alistic evolution equations such as the fourth-order
evolution equation of Dysthe (1979) or the Zakharov
equation (1968) are needed to give an appropriate de-
scription of nonlinear gravity waves in two-space di-
mensions.

Nevertheless, studies of the properties of the non-
linear Schrödinger equation have been vital in un-
derstanding the conditions under which freak waves
may occur. This was discussed in detail by Osborne
et al. (2000). For periodic boundary conditions, the
one-dimensional nonlinear Schrödinger equation may
be solved by the inverse scattering method as well.
The role of the solitons is then replaced by unstable
modes. In the linear regime, these modes just describe
the evolution in time according to the Benjamin–Feir
instability, whereas, by means of the inverse scatter-
ing transform, the fate of the unstable mode may be
followed right into the nonlinear regime. Using the
inverse scattering transform, the solution of the 1D
nonlinear Schrödinger equation may be written as a
‘‘linear’’ superposition of stable modes, unstable
modes, and their mutual nonlinear interactions. Here,
the stable modes form a Gaussian background wave
field from which the unstable modes occasionally rise
up and subsequently disappear again, repeating the
process quasi-periodically in time. Making use of the
inverse scattering transform, these authors readily

construct a few examples of giant waves from the one-
dimensional nonlinear Schrödinger equation. The
question now is what happens in the case of two-
dimensional propagation. The notion of solitons is no
longer useful, because solitons are unstable in two
dimensions. Osborne et al. (2000) show that unstable
modes do indeed still exist and that in the nonlinear
regime they can take the form of large-amplitude
freak waves. Furthermore, the notion of unstable
modes seems to be a generic property of deep-water
wave trains as the authors find nonlinear unstable
modes in both the one- and two-dimensional versions
of Dysthe’s fourth-order evolution equation. To sum-
marize this discussion, it seems that freak waves are
likely to occur as long as the wave train is subject to
nonlinear focusing. In addition, we only need to study
the case of one-dimensional propagation, because it
captures the essentials of the generation of freak
waves.

Therefore, in the context of the deterministic ap-
proach to wave evolution, there seems to be a reasonable
theoretical understanding of why in the open ocean freak
waves occur. In ocean wave forecasting practice one
follows, however, a stochastic approach; that is, one
attempts to predict the ensemble average of a spectrum
of random waves because knowledge on the phases is
not available. The main problem then is to what extent
one can make statements regarding the occurrence of
freak waves in a random wave field. Of course, in the
context of wave forecasting only statements of a prob-
ablistic nature can be made. Because freak waves imply
considerable deviations from the normal Gaussian prob-
ability distribution function (pdf ) of the surface ele-
vation, the main question therefore is whether one can
determine in a reliable manner the pdf of the surface
elevation. Because the wave spectrum plays a central
role in the stochastic approach, the question therefore
is whether for given wave spectrum the probability of
extreme events may be determined.

Present-day wave forecasting systems are based on
the energy balance equation (Komen et al. 1994), in-
cluding a parameterized version of Hasselmann’s four-
wave nonlinear transfer (Hasselmann 1962). Resonant
four-wave interactions for a random, homogeneous sea
play an important role in the evolution of the spectrum
of wind waves, because on the one hand they determine
the high-frequency part of the spectrum, giving rise to
an v24 tail (Zakharov and Filonenko 1968) while on
the other hand the peak of the spectrum is shifted toward
lower frequencies. The homogeneous nonlinear inter-
actions give rise to deviations from the Gaussian pdf
for the surface elevation, because the third-order non-
linearity generates fourth cumulants of the pdf while the
finite fourth cumulant results in spectral change. An
important issue is, however, whether the standard ho-
mogeneous theory can properly describe the generation
of freak waves, simply because it does not seem to
incorporate the Benjamin–Feir instability mechanism
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(Alber 1978; Alber and Saffman 1978; Crawford et al.
1980; Janssen 1983b). This follows from simple scaling
considerations applied to the Hasselmann evolution
equation for four-wave interactions. Because the rate of
change of the action density N is proportional to N 3,
the nonlinear transfer occurs on the time scale TNL 5
O(1/e4v0). Here, e is a typical wave steepness, which
is assumed to be small, and v0 is a typical angular
frequency of the wave field. In contrast, the Benjamin–
Feir instability occurs on the much faster timescale of
O(1/e2v0).

The Benjamin–Feir instability is an example of a non-
resonant four-wave interaction in which the carrier wave
is phase-locked with the side bands. This process cannot
be described by a theory that assumes that the Fourier
amplitudes are not correlated (i.e., a homogeneous wave
field) and in which only resonant four-wave interactions
are considered. For an inhomogeneous, Gaussian nar-
rowband wave train, Alber and Saffman (1978) and Al-
ber (1978) derived an evolution equation for the Wigner
distribution of the sea state. Inhomogeneities gave rise
to a much faster energy transfer, comparable with the
typical timescale of the modulational instability. In fact,
these authors discovered the random version of the Ben-
jamin–Feir instability: a random narrowband wave train
is unstable to side-band perturbations provided the width
of the spectrum is sufficiently narrow. Therefore, one
would expect the Alber and Saffman approach to be an
ideal starting point for treating freak waves in a random
wave context. However, it is emphasized that this ap-
proach has it limitations because deviations from nor-
mality have not yet been taken into account. In this paper
it will be shown, using numerical simulations of an
ensemble of ocean waves, that non-Gaussian effects are
important while inhomogeneities play only a minor role
in the evolution of the ensemble-averaged wave spec-
trum.

On the other hand, nonresonant interactions appear
to be relevant. Hasselmann’s treatment of four-wave in-
teractions is extended by including the effects of non-
resonant interactions. As a consequence, the resonance
function is, for short times, broader than the usual d
function and depends on the angular frequency reso-
nance conditions and on time. The standard nonlinear
transfer is based on the assumption that the action den-
sity spectrum is a slowly varying function of time. It is
then argued that the resonance function may be replaced
by its large time limit, giving the usual delta function.
However, the time span required for the resonance func-
tion to evolve toward a delta function is so large that
considerable changes in the action density function may
have occurred in the meantime. This will be shown for
the special case of one-dimensional propagation of sur-
face gravity waves. In those circumstances, the standard
approach to nonlinear wave–wave interactions would
not give rise to nonlinear transfer, whereas considerable
changes of the wave spectrum occur in the new ap-
proach. In fact, there is close agreement between results

on the ensemble-averaged spectrum and the kurtosis of
the pdf of the surface elevation, as obtained from nu-
merical simulations of an ensemble of ocean waves.
Because time series from the numerical simulations in-
dicate the occurence of freak waves when the waves are
sufficiently steep [see also Trulsen and Dysthe (1997)
or Osborne et al. (2000)], the implication is that an
approach to nonlinear transfer that includes nonresonant
interactions seems to capture freak wave events. How-
ever, it is strongly emphasized that such an approach
can only give statements of a probablistic nature on the
occurrence of extreme wave events.

The structure of this paper is as follows. In section
2 I review developments regarding the evolution of
a random wave field, but I discuss only the ideas need-
ed for understanding results in the remainder of this
paper. In particular, I extend the standard theory of
four-wave interactions by including effects of non-
resonant interactions and derive an explicit expression
for the kurtosis in terms of the action density spec-
trum. I also discuss Alber and Saffman’s key result,
that according to lowest-order inhomogeneous theory
there is only Benjamin–Feir instability when the wave
spectrum is sufficiently narrow. In section 3 I present
results from Monte Carlo simulations of the nonlinear
Schrödinger equation following similar work by
Onorato et al. (2000). Only one-dimensional wave
propagation is discussed. Apart from reasons of econ-
omy (runs are typically done with 500-member en-
sembles), the main reason for this choice is that for
one dimension the nonlinear transfer according to the
standard homogeneous theory of four-wave interac-
tions vanishes identically. The ensemble-averaged
evolution of the wave spectrum clearly shows that
there is an irreversible energy transfer resulting in a
broadening of the spectrum while the pdf of the sur-
face elevation has considerable deviations from the
Gaussian distribution. These deviations from nor-
mality may be described, as expected from four-wave
interactions, by means of the fourth cumulant. In case
of nonlinear focusing, the correction to the pdf is such
that there is an enhanced probability of extreme
events, while in the case of nonlinear defocusing (this
was achieved by changing the sign of the nonlinear
term) the opposite occurs, namely the probability of
extreme events is reduced. This is in agreement with
results by Tanaka (1992) who found an increase in
groupiness in the case of nonlinear focusing while in
the opposite case of a stable wave train groupiness
decreases. Defocusing of surface gravity wave trains
occurs in shallow waters when the parameter k 0 D
(with k 0 being a typical wave number and D the depth)
is less than 1.36 (Mori and Yasuda 2002a). In prin-
ciple, the approach could be extended to the case of
shallow water to study what happens with the prob-
ability of extreme events when k 0 D , 1.36. However,
this would introduce an extra complication. Nonlinear
defocusing will therefore only be discussed in a qual-
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itative sense, by changing the sign of the nonlinear
term.

Both the spectral broadening and the fourth cumulant
(or kurtosis) are found to depend on a single parameter
characterizing the narrowband wave train, namely the
ratio of mean square slope to the normalized width of
the (frequency) spectrum. It is suggested to call this
ratio the Benjamin–Feir index (BFI). If the BFI is larger
than 1, then according to Alber and Saffman (1978) the
random wave field is modulationally unstable. This re-
sult would suggest that if the BFI is less than 1 no
changes in the spectrum occur, whereas in the opposite
case the unstable side bands would give rise to a broad-
ening of the wave spectrum. Hence, BFI 5 1 is a bi-
furcation point. The numerical simulations provide no
convincing evidence of a bifurcation at BFI 5 1. Rather,
there is already a considerable broadening of the wave
spectrum around BFI 5 1, while the dependence of the
broadening on the BFI appears to be smooth rather then
abrupt (cf. Tanaka 1992).

I continue in section 3 by presenting results from
Monte Carlo simulations of the Zakharov equation (Zak-
harov 1968). Results are similar in spirit to those ob-
tained with the nonlinear Schrödinger equation, except
that the modulational instability seems to occur for larg-
er BFI. For the nonlinear Schrödinger equation, the
spectral change owing to nonlinear transfer is symmet-
rical with respect to the spectral maximum, but this is
not the case for Zakharov equation. In the latter case,
the nonlinear transfer coefficients and the angular fre-
quency are asymmetrical with respect to the spectral
peak and as a consequence there is a downshift of the
peak of the spectrum. It is emphasized that this down-
shift occurs in the absence of dissipation, whereas quan-
tities such as action, wave momentum, and total wave
energy are conserved.

In section 4, an interpretation of the numerical results
of section 3 is given. First, it is shown that inhomo-
geneities only play a minor role in the evolution of the
wave spectrum, and deviations from normality are more
relevant. Second, results from the numerical solution of
the extended version of Hasselmann’s wave–wave in-
teraction approach are presented and compared with the
results from Monte Carlo simulations. A good agree-
ment is obtained. Apart from the fact that I have given
a direct validation of Hasselmann’s four-wave theory,
it also shows that even in extreme conditions such as
occur during the generation of freak waves, reliable es-
timates of deviations from normality can be made.

In section 5 a summary of conclusions is given. Much
to my surprise, effects of inhomogeneity only play a
minor role in understanding the ensemble-averaged evo-
lution of surface gravity waves. Homogeneous four-
wave interactions, albeit extended by allowing for a
time-dependent resonance function, seem to capture
most essential features of the averaged nonlinear wave
evolution. It now seems possible to estimate the en-
hanced occurrence of extreme waves and freak waves

on the open ocean, because the kurtosis may be esti-
mated directly from the wave spectrum.

2. Review and extension of the theory of a random
wave field

The starting point is the Zakharov equation, which is
a deterministic evolution equation for surface gravity
waves in deep water. It is obtained from the Hamiltonian
for water waves, first found by Zakharov (1968). Con-
sider the potential flow of an ideal fluid of infinite depth.
Coordinates are chosen in such a way that the undis-
turbed surface of the fluid coincides with the x–y plane.
The z axis is pointed upward, and the acceleration of
gravity g is pointed in the negative z direction. Let h
be the shape of the surface of the fluid and let f be the
potential of the flow. Hence, the velocity of the flow
follows from u 5 2=f.

By choosing as canonical variables

h and c(x, t) 5 f(x, z 5 h, t), (1)

Zakharov (1968) showed that the total energy E of the
fluid may be used as a Hamiltonian. Here,

2h1 ]f g
2 2E 5 dz dx (=f) 1 1 dx h . (2)EE E1 2[ ]2 ]z 2

2`

The x integrals extend over the total basin considered.
If an infinite basin is considered, the resulting total en-
ergy is infinite, unless the wave motion is localized
within a finite region. This problem may be avoided by
introducing the energy per unit area by dividing (2) by
the total surface L 3 L, where L is the length of the
basin, and taking the limit of L → ` afterward. As a
consequence, integrals over wavenumber k are replaced
by summations while d functions are replaced by Kro-
necker ds. [For a more complete discussion, see Komen
et al. (1994).] I will adopt this approach implicitly in
the remainder of this paper.

The boundary conditions at the surface, namely the
kinematic boundary condition and Bernoulli’s equation,
are then equivalent to Hamilton’s equations,

]h dE ]c dE
5 , 5 2 , (3)

]t dc ]t dh

where dE/dc is the functional derivative of E with re-
spect to c, and so on. Inside the fluid, the potential f
satisfies Laplace’s equation,

2] f
2¹ f 1 5 0, (4)

2]z

with boundary conditions

f(x, z 5 h) 5 c and (5)

]f(x, z)
5 0, z → 2`. (6)

]z

If one is able to solve the potential problem, then f
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may be expressed in terms of the canonical variables h
and c. Then the energy E may be evaluated in terms of
the canonical variables, and the evolution in time of h
and c follows at once from Hamilton’s equations (3).
This was done by Zakharov (1968), who obtained the
deterministic evolution equations for deep-water waves
by solving the potential problem (4)–(6) in an iterative
fashion for small steepness e. In addition, the Fourier
transforms of h and f were introduced, and results could
be expressed in a concise way by use of the action
variable A(k, t). For example, in terms of A, the surface
elevation h becomes

1/2` k
ik · xh 5 dk [A(k) 1 A*(2k)]e . (7)E 1 22v

2`

Here, k is the wavenumber vector, k is its absolute value,
and v 5 denotes the dispersion relation of deep-Ïgk
water gravity waves. Substitution of the series solution
for f into the Hamiltonian (2) gives an expansion of
the total energy E of the fluid in terms of wave steepness,

2 3 4 5E 5 e E 1 e E 1 e E 1 O(e ).2 3 4 (8)

Retaining only the second-order term of E corre-
sponds to the linear theory of surface gravity waves,
the third-order term corresponds to three-wave inter-
actions, and the fourth-order term corresponds to four
wave interactions. Because resonant three-wave inter-
actions are absent for deep-water gravity waves, a mean-
ingful description of the wave field is only obtained by
going to fourth order in e. In fact, Krasitskii (1990) has
shown that in the absence of resonant three-wave in-
teractions there is a nonsingular, canonical transfor-
mation from the action variable A to the new variable
a that allows elimination of the third-order contribution
to the wave energy. In loose terms, the new variable a
describes the free-wave part of the wave field. Apart
from a constant factor, the energy of the free waves
becomes

E 5 dk v a*aE 1 1 1 1

1
1 dk T a*a*a a d , (9)E 1,2,3,4 1,2,3,4 1 2 3 4 11223242

where a1 5 a(k1), and so on, d is the Dirac delta func-
tion, and the interaction coefficient T is given by Kras-
itskii (1990). The interaction coefficient enjoys a num-
ber of symmetry conditions, of which the most impor-
tant one is T1,2,3,4 5 T3,4,1,2, because this condition im-
plies that E is conserved. Hamilton’s equations now
become the single equation

]a dE
i 5 , (10)
]t da*

and, evaluating the functional derivative of E with re-
spect to a*, the evolution equation for a becomes

]a1 1 iv a 5 2i dk T a*a a d , (11)1 1 E 2,3,4 1,2,3,4 2 3 4 1122324]t

known as the Zakharov equation. Apart from the free-
wave energy (9), the Zakharov equation admits con-
servation of action and of wave momentum, respec-
tively, as

d
dk a a* 5 0 andE 1 1 1dt

d
dk k a a* 5 0. (12)E 1 1 1 1dt

a. Comments on the Zakharov equation

The properties of the Zakharov equation have been
studied in great detail by, for example, Crawford et al.
(1981) [for an overview see Yuen and Lake (1982)].
Thus the nonlinear dispersion relation, first obtained by
Stokes (1947), follows from (11), and also the instability
of a weakly nonlinear, uniform wave train (the so-called
Benjamin–Feir instability) is described well by the Zak-
harov equation; the results on growth rates, for example,
are qualitatively in good agreement with the results of
Longuet-Higgins (1978). However, these results were
obtained with a form of the interaction coefficient T that
did not result in a Hamiltonian form of (11). Krasitskii
(1990) found the correct canonical transformation to
eliminate the cubic interactions, which resulted in a T
that satisfied the appropriate symmetry conditions for
(11) to be Hamiltonian. Krasitskii and Kalmykov (1993)
studied the differences between the Hamiltonian and the
non-Hamiltonian forms of the Zakharov equation, but
only for large amplitude were differences in the solution
found.

In this paper, I initially use a narrowband approxi-
mation to the Zakharov equation, because the main im-
pact of the Benjamin–Feir instability is found near the
spectral peak. This approximate evolution equation is
obtained by means of a Taylor expansion of angular
frequency v and the interaction coefficient T around the
carrier wavenumber k0. The nonlinear Schrödinger
equation is then obtained by using only the lowest-order
approximation to T given by , and angular frequency3k0

v is expanded to second order in the modulation wave-
number p 5 k 2 k0. The main advantage of the use of
the nonlinear Schrödinger equation is that many prop-
erties of this equation are known and that it can be
solved numerically in an efficient way. The draw-back,
however, is that it overestimates the growth rates of the
Benjamin–Feir instability and that the nonlinear energy
transfer is symmetrical with respect to the carrier wave-
number. For this reason, I study solutions of the com-
plete Zakharov equation as well, using the Krasitskii
(1990) expression for the interaction coefficient T. Sim-
ilarly, one could study higher-order evolution equations
such as the one by Dysthe (1979), but I found that
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spectra may become so broad that the narrowband ap-
proximation becomes invalid.

Another reason for studying the nonlinear Schrö-
dinger equation is that it allows one to introduce an
important parameter that will be used to stratify the
numerical and theoretical results. From the physical
point of view, we are basically studying a problem that
concerns the balance between dispersion of the waves
and its nonlinearity. For the full Zakharov equation, it
will be difficult to introduce a unique measure of, for
example, nonlinearity because the nonlinear transfer co-
efficient T is a complicated function of wavenumber.
However, in the narrowband approximation, giving the
nonlinear Schrödinger equation, this is more straight-
forward to do. Balancing the nonlinear term and the
dispersive term in the narrowband version of (11) there-
fore gives the dimensionless number

2gT 1 e02 , (13)
4 2v k v0 s90 0 0 v

where v0 is the angular frequency at k0. Because my
interest is in the dynamics of a continuous spectrum of
waves, the slope parameter e and the relative width

of the frequency spectrum relate to spectral prop-s9v
erties, hence e 5 ( ^h2&)1/2, with ^h2& being the average2k0

surface elevation variance, and 5 sv/v0. For pos-s9v
itive sign of the dimensionless parameter (13), there is
focusing (modulational instability) while in the opposite
case there is defocusing of the weakly nonlinear wave
train. Based on this, I introduce the Benjamin–Feir in-
dex, which, apart from a constant, is the square root of
the dimensionless number (13). Using the dispersion
relation for deep-water gravity waves and the expression
for the nonlinear interaction coefficient, T0 5 , the3k0

BFI becomes

BFI 5 eÏ2/s9 .v (14)

The BFI turns out to be very useful in ordering the
theoretical and numerical results presented in the fol-
lowing sections. For simple initial wave spectra (defined
in terms of the modulation wavenumber p) that only
depend on the variance and on the spectral width, it can
be shown that for the nonlinear Schrödinger equation
the large-time solution is completely characterized by
the BFI. For the Zakharov equation this is not the case,
but the BFI is still expected to be a useful parameter
for narrowband wave trains. The BFI plays a key role
in the inhomogeneous theory of wave–wave interactions
(Alber 1978), and a similar parameter has been intro-
duced and discussed by Onorato et al. (2001) in the
context of freak waves in random sea states.

b. Stochastic approach

The Zakharov equation [(11)] predicts amplitude and
phase of the waves. For practical applications such as
wave prediction, the detailed information regarding the
phase of the waves is not available. Therefore, at best

one can hope to predict average quantities such as the
second moment,

B 5 ^a a*&,1,2 1 2 (15)
where the angle brackets denote an ensemble average.
Here, we briefly sketch the derivation of the evolution
equation for the second moment from the Zakharov
equation, assuming a zero mean value, ^a1& 5 0. It is
known, however, that because of nonlinearity, the evo-
lution of the second moment is determined by the fourth
moment, and so on, resulting in an infinite hierarchy of
equations (Davidson 1972). To obtain a meaningful
truncation of this hierachy, it is customary to assume
that the sea surface is close to a Gaussian state. This
means that the amplitudes a1 are simultaneously Gauss-
ian, an assumption that is a reasonable one for small
wave steepness e. In that event, higher-order moments
can be expressed in lower-order moments. For a zero-
mean stochastic variable a, the fourth moment can be
written as (Hasselmann 1962; Crawford et al. 1980)

^a a a*a*& 5 B B 1 B B 1 D .j k l m j,l k,m j,m k,l j,k,l,m (16)
Here, it is assumed that, when compared with Bj,k, the
moment ^ajak& is small (note that for homogeneous
fields this moment vanishes). In addition, D is the so-
called fourth cumulant, which vanishes for a Gaussian
sea state. Resonant nonlinear interactions, however, will
tend to create correlations in such a way that a finite
fourth cumulant results. However, for small steepness,
D is expected to be small, so that an approximate closure
of the infinite hierarchy of equations may be achieved.

Let us now sketch the derivation of the evolution
equation for the second moment ^ai & from the Zak-a*j
harov equation [(11)]. To that end, I multiply (11) for
ai by , add the complex conjugate with i and j inter-a*j
changed, and take the ensemble average:

]
1 i(v 2 v ) Bi j i,j[ ]]t

5 2i dk [T ^a*a*a a &dE 2,3,4 i,2,3,4 j 2 3 4 i122324

2 c.c.(i ↔ j)], (17)
where c.c. denotes complex conjugate, and i ↔ j denotes
the operation of interchanging indices i and j in the
previous term. Because of nonlinearity, the equation for
the second moment involves the fourth moment. Sim-
ilarly, the equation for the fourth moment involves the
sixth moment. It becomes

]
1 i(v 1 v 2 v 2 v ) ^a a a*a*&i j k l i j k l[ ]]t

5 2i dk [T ^a*a*a*a a a &dE 2,3,4 i,2,3,4 2 k l 3 4 j i122324

1 (i ↔ j)]

1 i dk [T ^a*a*a*a a a &dE 2,3,4 k,2,3,4 3 4 l 2 i j k122324

1 (k ↔ l)]. (18)
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So far, no approximations have been made. In the next
section, I discuss the implications of the assumptions
of a homogeneous weakly nonlinear wave field. Ho-
mogeneity of the wave field, however, does not allow
a description of the Benjamin–Feir instability, and there-
fore in the following section I discuss the consequences
for spectral evolution when the wave field is allowed
to be inhomogeneous.

c. Evolution of a homogeneous random wave field

A wave field is considered to be homogeneous if the
two-point correlation function ^h(x1)h(x2)& depends
only on the distance x1 2 x2. Using the expression for
the surface elevation, (7), it is then straightforward to
verify that a wave field is homogeneous provided that
the second moment Bi,j satisfies

B 5 N d(k 2 k ),i,j i i j (19)

where Ni is the spectral action density, which is equiv-
alent to a number density because viNi is the spectral
energy density, while kiNi is the spectral momentum
density (apart from a factor rw, the water density).

For weakly nonlinear waves, the fourth cumulant
D is small when compared with the product of second-
order cumulants [this may be verified afterward; it
follows immediately from (18)]. Now, invoking the
random-phase approximation [i.e. (16)] with D 5 0
on (17), combined with the assumption of a homo-
geneous wave field, results in constancy of the second
moment Bi,j . Hence, the need to go to higher order;
that is, the fourth moment has to be determined
through (18).

Application of the random phase approximation to
the sixth moment (which implies that the sixth cumulant
is ignored) and solving (18) for the fourth cumulant D,
subject to the initial condition D(t 5 0) 5 0, gives

D 5 2T d G(Dv, t)[N N (N 1 N )i,j,k,l i,j,k,l i1j2k2l i j k l

2 (N 1 N )N N ] (20)i j k l

where Dv is shorthand for v i 1 vj 2 vk 2 v l, and I
have made extensive use of the symmetry properties of
the nonlinear transfer coefficient T, in particular the
Hamiltonian symmetry. In addition, I used the property
that, according to (17), the action density N only evolves
on the slow timescale. The function G is defined as

t

iDv (t2t)G(Dv, t) 5 i dt eE
0

5 R (Dv, t) 1 iR (Dv, t), (21)t i

where

1 2 cos(Dvt)
R (Dv, t) 5 , (22)t Dv

while

sin(Dvt)
R (Dv, t) 5 . (23)i Dv

The function G develops for large time t into the usual
generalized functions P/Dv (where P means the Cauchy
principal value), and d(Dv), since,

P
lim G(Dv, t) 5 1 pid(Dv). (24)

Dvt→`

The limit in (24) is a limit in the sense of generalized
functions and is, in a strict sense, only meaningful inside
integrals over wavenumber when multiplied by a
smooth function.

Substitution of (20) into (17) eventually results in the
following evolution equation for four-wave interactions:

]
2N 5 4 dk T d(k 1 k 2 k 2 k )R (Dv, t)4 E 1,2,3 1,2,3,4 1 2 3 4 i]t

3 [N N (N 1 N ) 2 N N (N 1 N )], (25)1 2 3 4 3 4 1 2

where now Dv 5 v1 1 v2 2 v3 2 v4. This evolution
equation is usually called the Boltzmann equation.

Two limits of the resonance function Ri(Dv, t) are of
interest to mention. For small times one has

lim R (Dv, t) 5 t, (26)i
t→0

and for large times one has

lim R (Dv, t) 5 pd(Dv). (27)i
t→`

Hence, according to (25), for short times the evolution
of the action density N is caused by both resonant and
nonresonant four-wave interactions, and for large times,
when the resonance function evolves toward a d func-
tion, only resonant interactions contribute to spectral
change.

In the standard treatment of resonant wave–wave in-
teractions (e.g., Hasselmann 1962; Davidson 1972) it is
argued that the resonance function Ri(Dv, t) may be
replaced by its time-asymptotic value [(27)], because
the action density spectrum is a slowly varying function
of time. However, the time required for the resonance
function to evolve toward a delta function may be so
large that in the meantime considerable changes in the
action density may have occurred. For this reason I will
keep the full expression for the resonance function.

An important consequence of this choice concerns
the estimation of a typical time scale TNL for the non-
linear wave–wave interactions in a homogeneous wave
field. With e being a typical wave steepness and v0 being
a typical angular frequency of the wave field, one finds
from the Boltzmann equation [(25)] that for short times
TNL 5 O(1/e2v0), and for large times TNL 5 O(1/e4v0).
Hence, although the standard nonlinear transfer, which
uses (27) as resonance function, does not capture the
physics of the modulational instability (which operates
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on the fast timescale 1/e2v0), the full resonance function
does not suffer from this defect.

It is also important to note that according to the stan-
dard theory there is only nonlinear transfer for two-
dimensional wave propagation. In the one-dimensional
case there is no nonlinear transfer in a homogeneous
wave field. The reason for this is that only those waves
interact nonlinearly that satisfy the resonance conditions
k1 1 k2 5 k3 1 k4 and v1 1 v2 5 v3 1 v4. In one
dimension these resonance conditions can only be met
for the combinations k1 5 k3, k2 5 k4 or k1 5 k4, k2

5 k3. Then, the rate of change of the action density, as
given by (25) and (27), vanishes identically because of
the symmetry properties of the term involving the action
densities. This contrasts with the Benjamin–Feir insta-
bility, which has its largest growth rates for waves in
one dimension. On the other hand, using the complete
expression for the resonance function, there is always
an irreversible nonlinear transfer even in the case of
one-dimensional propagation.

The Boltzmann equation, (25), admits just as the de-
terministic Zakharov equation, conservation of total ac-
tion, wave momentum, and the ensemble average of the
Hamiltonian [(9)] is conserved as well. [The last con-
servation law follows from (25) by consistently utilizing
the assumption of a slowly varying action density.] It
is emphasized that the Hamiltonian consists of two parts,
the energy according to linear wave theory, and a non-
linear interaction term. Therefore, unlike the standard
theory of four-wave interactions, the linear expression
for the wave energy is not conserved. The exception
occurs for large times when the resonance function Ri

has evolved toward a d function, and then just as in the
standard theory the linear wave energy is conserved.
This follows also from the numerical simulations pre-
sented in section 3, which show that the ensemble av-
erage of the Hamiltonian is conserved but, in particular
for short times, not the linear wave energy. Furthermore,
it should be mentioned that the Boltzmann equation
[(25)] has the time reversal symmetry of the original
Zakharov equation, because the resonance function
changes sign when time t changes sign. Also, as Ri

vanishes for t 5 0, the time derivative of the action
density spectrum is continuous around t 5 0 and does
not show a cusp (Komen et al. 1994). Nevertheless,
despite the fact that there is time reversal, (25) has the
irreversibility property: the memory of the initial con-
ditions gets lost in the course of time owing to phase
mixing.

The standard nonlinear transfer in a homogeneous
wave field has been studied extensively in the past four
decades. The Joint North Sea Wave Project (JONSWAP)
study (Hasselmann et al. 1973) has shown the prominent
role played by four-wave interactions in shaping the
wave spectrum and in shifting the peak of the spectrum
toward lower frequencies. Modern wave forecasting
systems therefore use a parameterization of the nonlin-
ear transfer (Komen et al. 1994).

The main interest in this paper is in the statistical
aspects of random, weakly nonlinear waves in the con-
text of the Zakharov equation. In particular I am inter-
ested in the relation between the deviations from the
Gaussian distribution and four-wave interactions. Be-
cause of the symmetries of the Zakharov equation, the
first moment of interest is then the fourth moment and
the related kurtosis. The third moment and its related
skewness vanish: information on the odd moments can
only be obtained by making explicit use of Krasitskii’s
(1990) canonical transformation. Now, the fourth mo-
ment ^h4& may be obtained in a straightforward manner
from (16) and the expression for the fourth cumulant
[(20)] as

3
4 1/2^h & 5 dk (v v v v ) ^a a a*a*& 1 c.c.E 1,2,3,4 1 2 3 4 1 2 3 424g

(28)

Denoting the second moment ^h2& by m0, deviations
from normality are then most conveniently established
by calculating the kurtosis

4 2C 5 ^h &/3m 2 1,4 0

because for a Gaussian pdf C4 vanishes. The result for
C4 is

4
1/2C 5 dk T d (v v v v )4 E 1,2,3,4 1,2,3,4 1122324 1 2 3 42 2g m0

3 R (Dv, t)N N N , (29)t 1 2 3

where Rr is defined by (22), and the integral should be
interpretated as a principal value integral. For large
times, unlike the evolution of the action density, the
kurtosis does not involve a Dirac d function but rather
depends on P/Dv. Therefore, the kurtosis is determined
by the resonant and nonresonant interactions. It is in-
structive to apply (29) to the case of a narrowband wave
spectrum in one dimension. Hence, performing the usual
Taylor expansions around the carrier wavenumber k0 to
lowest significant order, one finds for large times

28v T d0 0 1122324C 5 dp N N N ,4 E 1,2,3,4 1 2 32 2 2 2 2 2g m v0 p 1 p 2 p 2 p0 0 1 2 3 4

(30)

where p 5 k 2 k0 is the wavenumber with respect to
the carrier. It is seen that the sign of the kurtosis is
determined by the ratio T0/ , which is the same pa-v00
rameter that determines whether a wave train is stable
to side-band perturbations. Note that numerically the
integral is found to be negative, at least for bell-shaped
spectra. Hence, from (30) it is immediately plausible
that for an unstable wave system, which has negative
T0/ , the kurtosis will be positive and thus will resultv00
in an increased probability of extreme events. On the
other hand, for a stable wave system there will a re-
duction in the probability of extreme events.

A further simplification of the expression for the kur-



APRIL 2003 871J A N S S E N

tosis may be achieved if it is assumed that the wave-
number spectrum F(p) 5 v0N(p)/g only depends on
two parameters, namely, the variance m0 and the spectral
width sk. Introduce the scaled wavenumber x 5 p/sk

and the correspondingly scaled spectrum m0H(x)dx 5
F(p)dp. Then, using the deep-water dispersion relation
and T0 5 , (30) becomes3k0

2
e

C 5 28 J, (31)4 1 2s9v

where e is the significant steepness k0 and is the1/2m s90 v

relative width in angular frequency space sv/v0 5
0.5sk/k0. The parameter J is given by the expression

d1122324J 5 dx H H HE 1,2,3,4 1 2 32 2 2 2x 1 x 2 x 2 x1 2 3 4

and is independent of the spectral parameters m0 and
sk. Therefore, (31) suggests a simple dependence of the
kurtosis on spectral parameters. In fact, the kurtosis de-
pends on the square of the BFI introduced in (13).

d. Evolution of an inhomogeneous random wave field

The Benjamin–Feir instability is the result of a non-
linear interaction of waves that are phase locked, as the
carrier wave is phase locked with the side bands, and
therefore this process cannot be described by a theory
that assumes that the Fourier amplitudes are not cor-
related, as expressed by the assumption of homogeneity
of the wave field [(19)]. Therefore, this suggests that
local nonlinear events such as freak waves could be
beyond the scope of the standard description of ocean
waves.

The investigation of the effect of inhomogeneities on
the nonlinear energy transfer started with the work of
Alber (1978) and Alber and Saffman (1978), whereas
Crawford et al. (1980) combined the effects of inho-
mogeneity and nonnormality on the evolution of weakly
nonlinear water waves. A review of this may be found
in Yuen and Lake (1982). I will only discuss the lowest-
order effects of inhomogeneity, disregarding any effects
resulting from deviations from normality, and I only
discuss one-dimensional wave propagation.

Hence, I do not impose the condition of a homoge-
neous wave field [(19)]. Now invoking the Gaussian
approximation on the fourth moment [(16) with D 5 0]
and substituting the result in the evolution equation for
the second moment, (17), gives

]
1 i(v 2 v ) Bi j i, j[ ]]t

5 22i dk [T d B BE 2,3,4 i,2,3,4 i122324 3, j 4,2

2 T d B B ]. (32)j,2,3,4 j122324 i,3 2,4

Here, we used the property that the second moment B

is hermitian, Bi,j 5 , and we made use of the sym-B*j,i
metry properties of T.

In principle, (32) could be used to study the
(in)stability of a homogeneous wave spectra, but to my
knowledge this has not been done so far. Instead of this,
Alber (1978) and Alber and Saffman (1978) studied the
stability of a narrowband homogeneous wave spectrum.
Following Crawford et al. (1980) and Yuen and Lake
(1982), a considerable simplification of the evolution
equation for Bi,j may be achieved by expanding angular
frequency v and interaction coefficient T around the
carrier wavenumber k0. At the same time, one introduces
the sum and difference wavenumbers

1
n 5 (k 1 k ), m 5 k 2 k , (33)i j i j2

and one introduces the relative wavenumber p 5 n 2
k0. The correlation function B is from now on regarded
as a function m and n. Realizing that in the narrowband
approximation n is close to k0 while m is small, one
obtains from (32) the following approximate evolution
equation for B:

]
1 im(v9 1 pv0) B0 0 n,m[ ]]t

5 22iT dl (B 2 B ) dk B . (34)0 E n2(1/2)l,m2l n1(1/2)l,m2l E k,l

Here, a prime denotes differentation with respect to the
carrier wavenumber k0, and T0 5 . A key role in the3k0

work of Alber and Saffman is played by the envelope
spectral function W(p, x, t), which is in fact a Wigner
distribution (Wigner 1932). It is related to the Fourier
transform of B(n, m, t) with respect to m,

2v0 imxW(p,x,t) 5 dm e B(n, m, t), (35)Eg

and a homogeneous sea state simply has a Wigner dis-
tribution that is independent of the spatial coordinate x,
in agreement with the definition of homogeneous sea
given in (19). In terms of the Wigner distribution, (34)
becomes a transport equation in x, p, and t, which bears
a similarity with the Vlasov equation from plasma phys-
ics. This transport equation is obtained by means of a
Taylor expansion of the difference term in the right-
hand side of (34) with respect to l, giving an infinite
sum. The result is

] ] gT ]r ]W01 (v9 1 pv0) W 5 1 · · · , (36)0 0[ ]]t ]x v ]x ]p0

where r(x, t) 5 2^h2& is the mean-square envelope var-
iance, given by

r(x, t) 5 dp W(p, x, t), (37)E
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and the dots on the right-hand side of (36) represent the
remaining terms of the Taylor series expansion. Note
that all terms of the series are required to recover prop-
erly the random version of the Benjamin–Feir instabil-
ity.

Alber and Saffman (1978) and Alber (1978) studied
the stability of a homogeneous spectrum and found that
it is unstable to long-wavelength perturbations if the
width of the spectrum is sufficiently small. In other
words, in case of instability, inhomogeneities would be
generated by what is termed the random version of the
Benjamin–Feir instability, therefore violating the as-
sumption of homogeneity made in the standard theory
of wave–wave interactions.

To see whether a homogeneous spectrum W0(p) is
stable, one proceeds in the usual fashion by perturbing
W0(p) slightly according to

W 5 W (p) 1 W (p, x, t), W K W .0 1 1 0 (38)

Linearizing the evolution equation for W around the
equilibrium W0 and considering normal mode pertur-
bations, one obtains a dispersion relation between the
angular frequency v and the wavenumber k of the per-
turbation. Instability is found for Im(v) . 0. Alber
(1978) considered as special case the Gaussian spectrum

2 2^a & p0W (p) 5 exp 2 , (39)0 21 22ss Ï2p kk

where ^ & is a constant envelope variance and sk is the2a0

width of the spectrum in wavenumber space. Stability
of the random wave train was found when the relative
width of the spectrum, sk/k0, exceeds a measure of
mean-square slope. In terms of the relative width sv/v0

of the frequency spectrum, which is just one-half of the
relative width for the wavenumber spectrum, one finds
stability if

sv 2 2 1/2. (k ^a &) ; (40)0 0v0

in the opposite case there is instability of the random
wave train. Note that in terms of the BFI the stability
condition (40) simply becomes BFI , 1.

As a consequence, one should expect to find in nature
spectra with a width larger than the right-hand side of
(40), because for smaller width the random version of
the Benjamin–Feir instability would occur, resulting in
a rapid broadening of the spectral shape. For a random
narrowband wave train this broadening is an irreversible
process because of phase mixing (Janssen 1983b). The
broadening of the spectrum is associated with the gen-
eration of inhomogeneities in the wave field. To appre-
ciate this point, it is mentioned that the evolution equa-
tion [(36)] satisfies a number of conservation laws. Us-
ing the already introduced envelope surface elevation var-
iance r(x), the first few conservation laws are given by

d
dx r(x) 5 0, (41a)Edt

d
dx dr pW 5 0, and (41b)Edt

d gT02 2v0 dx dp p W 1 dx r (x) 5 0, (41c)0 E E[ ]dt v0

assuming periodic boundary conditions in x space and
the vanishing of W for large p. The first equation ex-
presses conservation of wave variance, the second one
implies conservation of wave momentum, and the last
one is the most interesting one in the present discussion
because it relates the rate of change of spectral width
to the inhomogeneity of the wave field. If the wave field
is homogeneous, then r(x) is independent of x and the
second integral in (41c) is then, because of the first
conservation law, independent of time. Therefore, for a
homogeneous wave field there is, as expected, no change
in spectral width with time; only inhomogeneities will
give rise to spectral change according to lowest-order
inhomogeneous theory of wave–wave interactions.

Note that the first two conservation laws of (41) may
also be obtained immediately from the ensemble aver-
age of (12), and the last conservation law follows from
the expression of the free-wave energy given in (9) by
performing ensemble averaging and by invoking the
narrowband approximation. Let us give some of the
details of this last derivation. Thus, in the first term the
angular frequency is expanded around the carrier wave
number k0 up to second order; in the second term the
interaction coefficient is replaced by its value at k0. For
one-dimensional propagation, we therefore get

1
2E 5 dp v 1 p v9 1 p v0 a a*E 1 0 1 0 1 0 1 11 22

T01 dp a*a*a a d .E 1,2,3,4 1 2 3 4 11223242

Now, the first two terms are already conserved because
of conservation of action and momentum, so I will omit
them. Performing ensemble averaging while invoking
the assumption of a Gaussian state that is, (16) with D
5 0, and renaming of the integration variable gives

v00 2^E& 5 dp p ^a a*&E 1 1 1 12

1 T dp ^a*a &^a*a &d .0 E 1,2,3,4 1 3 2 4 1122324

Using the definition for the Wigner distribution, (35),
one then finally arrives at the conservation law (41c).

To summarize the present discussion, note that the
central role of the BFI is immediately evident in the
context of the lowest-order inhomogeneous theory of
wave–wave interactions. According to the stability cri-
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terion (40) there is change of stability for BFI 5 1. In
other words, BFI is a bifurcation parameter: on the short
timescale, spectra will be stable and therefore do not
change if BFI , 1 while in the opposite case inho-
mogeneities will be generated, giving rise to a broad-
ening of the spectrum. However, this prediction follows
from an approximate theory that neglects deviations
from normality. In general, considerable deviations from
normality are to be expected, in particular in the case
of Benjamin–Feir instability. It is therefore of interest
to explore the consequences of nonnormality. This will
be done in the next section by means of a numerical
simulation of an ensemble of surface gravity waves.

3. Numerical simulation of an ensemble of waves

It is important to determine the range of validity of
both the homogeneous and inhomogeneous theories of
four-wave interactions. Both theories assume that the
wave steepness is sufficiently small, the homogeneous
theory ignores effects of inhomogeneity, and the in-
homogeneous theory assumes that deviations from nor-
mality are small. To address these questions, I simulate
the evolution of an ensemble of waves by running a
deterministic model with random initial conditions.
Only wave propagation in one dimension will be con-
sidered from now on.

For given wave number spectrum F(k), which is related
to the action density spectrum through F 5 vN/g, initial
conditions for the amplitude and phase of the waves are
drawn from a Gaussian probability distribution of the
surface elevation. The phase of the wave components
is then random between 0 and 2p while the amplitude
should also be drawn from a probability distribution
(Komen et al. 1994). Regarding each wave component
as independent, narrowband wave trains, a Rayleigh dis-
tribution seems to be appropriate for the amplitude
(Tucker et al. 1984). However, because the surface el-
evation is only determined by a finite number of waves,
extreme states are not well represented. As a conse-
quence, the kurtosis of the pdf is underestimated. For
example, for linear waves it was checked that, even with
51 wave components and a wavenumber resolution of
0.2sk, the kurtosis was underestimated by more than
5%. The size of the ensemble was varied between 500
and 5000. On the other hand, drawing random phases
but choosing the amplitudes of the waves in a deter-
ministic fashion, as is common practice, gave an un-
derestimation of kurtosis by only 0.1%. Because the
main interest is in the proper representation of extreme
events, and because computer resources are limited, it
was therefore decided to take only the initial phase as
random variable; hence,

iu(k)a(k) 5 ÏN(k)Dke . (42)

where u(k) is a random phase 5 2pxr, xr is a random
number between 0 and 1, and Dk is the resolution in
wavenumber space.

Each member of the ensemble is integrated for a long
enough time to reach equilibrium conditions, typically
on the order of 60 dominant wave periods. At every
time step of interest, the ensemble average of quantities
such as the correlation function B, the pdf of the surface
elevation, and integral parameters such as wave height,
spectral width, and kurtosis is taken. Typically, the size
of the ensemble Nens is 500 members. This choice was
made to ensure that quantities such as the wave spectrum
were sufficiently smooth and that the statistical scatter
in the spectra, which is inversely proportional to

, is small enough to give statistically significantÏNens

results. I now apply this Monte Carlo approach to the
nonlinear Schrödinger equation and to the Zakharov
equation.

a. Nonlinear transfer according to the nonlinear
Schrödinger equation

As a starting point I choose the Zakharov equation
[(11)] with transfer coefficients and dispersion relation
appropriate for the nonlinear Schrödinger equation. The
action variable is written as a sum of d functions

i5N

a(k) 5 a d(k 2 iDk), (43)O i
i52N

where Dk is the resolution in wavenumber space and
2N 1 1 is the total number of modes. Substitution of
(43) into (11) gives the following set of ordinary dif-
ferential equations for the amplitude a1:

d
a 1 iv a 5 2i T a*a a . (44)O1 1 1 1,2,3,4 2 3 4dt 112232450

I have solved this set of differential equations with a
Runge–Kutta method with variable time step. Relative
and absolute error of the solution have been chosen in
such a way that conserved quantities such as action,
wave momentum, and wave energy are conserved to at
least five significant digits.

In the case of the nonlinear Schrödinger equation, I
expand the angular frequency around the carrier wave-
number k0 up to second order. Again using the difference
wave number p 5 k 2 k0, I find

1
2v 5 v 1 pv9 1 p v00 0 02

and I eliminate the contribution of the first term by a
change of variable of the form a 5 a9 exp(2iv0t) and
dropping of the prime while the contribution of the sec-
ond term is removed by transforming to a frame moving
with the group velocity at k0. Furthermore, the inter-
action coefficient T is replaced by its value at k0. As a
result we obtain

d i
2a 1 p v0a 5 2iT a*a a , (45)O1 1 0 1 0 2 3 4dt 2 112232450

where T0 5 . Amplitude and phase needed for the3k0
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FIG. 1. Detail of surface elevation h as function of dimensionless
time t9: (top) the time series for a fixed choice of initial phase, u 5
0; (bottom) the time series for a random choice of initial phase.

FIG. 2. The surface elevation probability distribution as function
of normalized height x 5 h/ (with m0 the variance), correspond-Ïm0

ing to the cases of Fig. 1. For reference the Gaussian distribution is
also shown.

initial condition for (45) are generated by (42) where
the wavenumber spectrum is given by a Gaussian shape,

2 2^h & p
F(p) 5 exp 2 . (46)

21 22ss Ï2p kk

Before results on the evolution of the spectral prop-
erties of the system (45)–(46) are presented, I mention
that the nonlinear Schrödinger equation admits a
straightforward scaling relation. To see this, let us re-
move the dependence of the initial condition on the
variance ^h2& and the width sk by introducing dimen-
sionless variables

p9 5 p /s ,k

2t9 5 (s /k ) v t, andk 0 0

a9 5 k a /(eÏc ), (47)0 0

where e is the wave steepness defined below (13) and
c0 is the phase speed corresponding to the carrier wave-
number, c0 5 v0/k0. Writing the nonlinear Schrödinger
equation in terms of these new variables, it is imme-
diately evident that for large times its solution can only
depend on a single parameter, namely, k0e/sk, which
apart from a constant is just the BFI as defined in (13).

Initial results obtained from the ensemble average of
Monte Carlo forecasting did not show the simple scaling
behavior with respect to the BFI, until it was realized
that results should only be compared for the same di-
mensionless time t9, which depends in a sensitive man-
ner on the spectral width sk. I therefore integrated the
system of equations in (45) until a fixed dimensionless
time t9 5 15. A spectral width sk 5 0.2k0 was chosen
and without loss of generality the carrier wavenumber
k0 5 1 was taken. The integration interval then corre-
sponds to about 60 wave peak periods. Furthermore, the
resolution in wavenumber space was taken as Dk 5 sk/3

while the total number of wave components was 41,
therefore covering a wide range in wavenumber space.
As already noted, this choice gave for linear waves a
reasonable simulation of the pdf of the surface elevation.

Note that the specification of a random initial phase
has important consequences for the evolution of a nar-
rowband wave train. This is immediately evident when
one compares in Fig. 1 time series for the surface el-
evation from a run with a fixed initial phase u(k) 5 0
with results from a run with a random choice of the
initial phase. With a deterministic choice of initial phase,
the nonlinear Schrödinger equation generates in an al-
most periodic fashion extreme events (Fig. 1a), satis-
fying the criteria for freak waves; with a random choice
of initial phase (Fig. 1b), this is much less evident.
Comparing the timeseries from the two cases in detail,
it is clear that for fixed phase small waves and large
waves occur more frequently than in the random-phase
case. This impression is confirmed by the pdf of the
surface elevation shown in Fig. 2. For reference we have
also shown the Gaussian probability distribution. In both
cases there are considerable deviations from normality,
but in particular for deterministic phase the deviations
are large. Similar deviations from the normal distribu-
tion were found by Janssen and Komen (1982). Their
approach was entirely analytical, and they started from
the assumption that for large time the solution of the
nonlinear Schrödinger equation would evolve toward a
series of envelope solitons, described by an elliptic func-
tion. Although they only considered the pdf of the en-
velope (which under normal conditions is given by the
Rayleigh distribution), one may obtain the pdf of the
surface elevation as well. The resulting analytical pdf
has characteristics similar to the pdf for the case of
deterministic phase.

The Monte Carlo approach was adopted because it is
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FIG. 3. Time evolution of spectral width for several values of
the BFI. Corresponding results from homogeneous theory are also
shown.

FIG. 4. Initial and final-time wavenumber spectrum according to
the Monte Carlo forecasting of waves (MCFW) using the nonlinear
Schrödinger equation. Error bars give 95% confidence limits. Results
from theory are also shown.

not evident that for the system under discussion the
ergodic hypothesis applies. This hypothesis implies re-
placement of the ensemble average by a time average.
However, if one happens to choose initial phases in a
way that is favorable for the generation of envelope
solitons, then there is a high probability that the solution
stays close to the envelope soliton branch and will hard-
ly ever visit other parts of phase space. To guarantee a
representative picture, we therefore decided to perform
Nens runs, where for each run amplitude and phase are
drawn in an independent manner. In the remainder, only
ensemble-averaged results will be discussed. These are
presented graphically in the figures. To limit the number
of plots, each figure shows results from the numerical
simulations [usually denoted by Monte Carlo forecast-
ing of waves (MCFW)], and corresponding results from
the stochastic approach (labeled ‘‘theory’’). The theo-
retical results are discussed in section 4.

In Fig. 3 I show the evolution of the spectral width
sk with dimensionless time t9 for several values of BFI.
Here, sk is defined using integrals of the wave spectrum
F over wavenumber p:

2dp p F(p)E
2s 5 . (48)k

dp F(p)E
Note that for simulations with the nonlinear Schrödinger
equation this turned out to give a remarkably stable
estimate of the width of the spectral peak, because the
spectra vanish sufficiently rapidly for large p. According
to this simulation, there is a considerable broadening of
the spectrum, which occurs on a fairly short timescale
of about 10 peak wave periods. In this case of one-
dimensional propagation, the standard theory of non-

linear transfer would give no spectral change. Note that
sk shows in the early stages of time evolution an over-
shoot followed by a rapid transition toward an equilib-
rium value. The number of oscillations around this equi-
librium value depends on the precise details of the dis-
cretization scheme. In particular, more, larger-amplitude
oscillations are found for coarser spectral resolution.
The overshoot is in agreement with results of Janssen
(1983b), who studied the evolution of a single unstable
mode in the context of inhomogeneous theory of wave–
wave interactions. For sufficiently narrow spectra, over-
shoot in the amplitude of the unstable mode was found
followed by a damped oscillation toward an equilibrium
value. The damping timescale was found to depend on
the width of the spectrum, vanishing for small width.
In physical terms, the damping is caused by phase mix-
ing (or destructive interference), and its effect depends
on wavenumber resolution. Note that other parameters,
such as the kurtosis, show a similar time behavior.

As an example of spectral evolution, Fig. 4 shows
for BFI 5 1.40 the initial and final time–wavenumber
spectrum. To give an idea about the representativeness
of the results, 95% confidence limits, based on Nens 2
1 degrees of freedom, are shown as well. The broad-
ening of the spectrum as caused by the nonlinear in-
teractions is statistically significant. Although the spec-
tral change should be symmetrical with respect to the
carrier wavenumber, that is, p 5 0, it is clear that there
are asymmetries present in the ensemble average of the
numerical results. However, these deviations are within
the statistical uncertainty. To make sure of this, I redid
the case for BFI 5 1.40 but now with an ensemble size
of 2000. As expected, statistical uncertainty was reduced
by a factor of 2 while asymmetries were reduced as
well.

To examine whether the Monte Carlo results show
evidence of a bifurcation at BFI 5 1, I plot in Fig. 5
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FIG. 5. Relative spectral broadening [sk( ) 2 sk(0)]/sk(0) as at9̀
function of the BFI. Shown are results for focusing (BF) and defo-
cusing (no BF) from the simulations and from theory, but results from
theory are identical for these two cases.

FIG. 6. Final-time vs initial-time value of the BFI for the same
cases as displayed in Fig. 5.

FIG. 7. Probability distribution function for surface elevation as a
function of normalized height x 5 h/ . Results are from numericalÏm0

simulations with the nonlinear Schrödinger equation and homoge-
neous theory in the case of focusing (BFI of 1.4). For reference, the
Gaussian distribution is also shown. To emphasize the extremes, the
logarithm of the pdf has been plotted. Freak waves correspond to a
normalized height of 4.4 or larger; hence nonlinearity has a dramatic
impact on the occurrence of freak waves.

the relative increase in spectral width, defined as
[sk( ) 2 sk(0)]/sk(0), as a function of the BFI eval-t9̀
uated with the initial value for spectral width. The re-
sults suggest that there is only evolution of the spectrum
for sufficiently large BFI, but in contrast to inhomo-
geneous theory of wave–wave interactions, BFI 5 1
does not appear to be a bifurcation point, given that
considerable changes in the wave spectrum already start
to occur for BFI 5 1/2. Although from inhomogeneous
theory one would expect a sudden transition from no
spectral change to spectral change, Fig. 5 seems to sug-
gest that the transition is gradual. I attribute this dis-
crepancy to the assumption in inhomogeneous theory
that deviations from normality are small, because these
may give rise to irreversible changes of the spectrum
as well. This will be discussed more extensively in the
next section. It is illuminating to plot the information
on spectral width in a slightly different manner, namely,
by relating the final time value of BFI with its initial
value. This is done in Fig. 6, and it clearly shows that
for large times BFI hardly exceeds the value of 1. This
seems to agree with the conjecture given in Section 2b
that according to inhomogeneous theory [(40)] one
should not expect spectra to have a BFI much larger
than 1. According to the Monte Carlo results (Fig. 3)
the timescale of change for large BFI is, on average,
only a few wave periods.

Nonlinear effects give rise to considerable changes
in the probability distribution of the surface elevation
from the Gaussian distribution (see also Onorato et al.
2000; Mori and Yasuda 2002a), although the deviations
are of course much less than in the cases discussed in
Fig. 2. This is shown in Fig. 7 for BFI 5 1.40. To
emphasize the occurrence of extreme events, I have plot-
ted the logarithm of the pdf as function of the surface
elevation normalized with the wave variance. The

Gaussian distribution then corresponds to a parabola.
The simulated pdf, in the range of 2–4, shows an almost
linear behavior that suggests an exponential decay of
the pdf. In Fig. 8 I summarize the results on the devi-
ations from normality by plotting the final time value
of the kurtosis C4 5 ^h4&/3 2 1 as a function of the2m0

final time BFI. Here, the fourth moment ^h4& was de-
termined from the pdf of the surface elevation, which
was obtained by sampling the second half of the time
series for the surface elevation at an arbitrarily chosen
location. Alternatively, the fourth moment may be ob-
tained from (28), giving very similar answers. For small
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FIG. 8. Normalized kurtosis as function of the final-time BFI. The
theoretical result for defocusing can be obtained from the results of
focusing by a reflection with respect to the x axis.

FIG. 9. Probability distribution function for surface elevation as a
function of normalized height x 5 h/ . Results are from numericalÏm0

simulations with the nonlinear Schrödinger equation and homoge-
neous theory in the case of defocusing (BFI of 1.4). For reference,
the Gaussian distribution is also shown.

nonlinearity one would expect a vanishing kurtosis, but
the simulation still underestimates, as already men-
tioned, the kurtosis by 2%. The kurtosis depends almost
quadratically on the Benjamin–Feir index up to a value
close to 1. This quadratic dependence will be explained
in the next section, when an interpretation of results is
provided. Near BFI 5 1, on the other hand, the kurtosis
behaves in a more singular fashion, because, in agree-
ment with the discussion of Fig. 6, the Benjamin–Feir
index cannot pass the barrier near 1.

The nonlinear Schrödinger equation [(45)] for deep-
water waves is an example in which nonlinearity leads
to focusing of wave energy and therefore counteracts
the dispersion by the linear term, which is proportional
to . The results from the numerical simulation dov00
indeed suggest that, when nonlinearity is sufficiently
strong, focusing of energy occurs, giving considerable
enhancements to the probability of extreme events, at
least when compared with the normal distribution. In
the opposite case, when the nonlinear term has opposite
sign, defocusing of wave energy occurs and one would
expect a reduction in the number of extreme events. To
show this, I performed simulations with the nonlinear
Schrödinger equation [(45)] but now with negative non-
linear transfer coefficient (T0 5 2 ). Results of this3k0

case are shown in Figs. 5, 6, and 8; the logarithm of
the pdf of the surface elevation is shown in Fig. 9. These
plots show that in the case of defocusing the broadening
of the spectrum is less dramatic. Furthermore, the final
time Benjamin–Feir index does not have a limiting value
of about 1. On the other hand, the kurtosis for this case
is negative, resulting, as can be seen from Fig. 9, in a
large reduction of the probability of extreme events. The
dependence of the kurtosis on BFI is different from the
case of focusing, because there are clear signs of sat-
uration beyond BFI 5 1, whereas only in the range BFI

, 0.5 is there a quadratic dependence of kurtosis C4 on
BFI.

b. Nonlinear transfer according to the Zakharov
equation

The nonlinear Schrödinger equation gives the lowest-
order effects of finite bandwidth on the evolution of a
weakly nonlinear wave train. Dysthe (1979) investigated
the consequences of next order in bandwidth and he
found a surprisingly large impact on the results for the
growth rates of the modulational instability. Similarly,
Crawford et al. (1981) studied the stability of a uniform
wave train using the complete Zakharov equation, which
retains all of the high-order dispersion effects. In gen-
eral, growth rates are reduced when compared with re-
sults from the nonlinear Schrödinger equation; there-
fore, according to the Zakharov and Dysthe equations,
a uniform wave train is less unstable. In fact, growth
rates and thresholds for instability were in better agree-
ment with experimental results of Benjamin and Feir
(1967) and Lake et al. (1977) (see also Janssen 1983a).
The Zakharov and Dysthe equations have, in addition,
the interesting property that the nonlinear transfer co-
efficient and the angular frequencies are not symmetrical
with respect to the carrier wavenumber. It will be seen
that this has important consequences for the spectral
shape.

The Dysthe equation follows from the Zakharov
equation by expanding angular frequency to third order
in the modulation wave number p while the interaction
coefficient T is expanded up to first order in p. For
narrowband wave trains it gives an accurate description
of the sea state. However, wave spectra may become so
broad that the narrowband approximation becomes in-
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FIG. 10. Initial and final-time wavenumber spectrum according to
MCFW using the Zakharov equation. Error bars give 95% confidence
limits. Results from theory are also shown.

FIG. 11. Comparison of curves of final time vs initial value of BFI
from simulations with the nonlinear Schrödinger equation and from
the Zakharov equation. The corresponding theoretical results are also
shown.

FIG. 12. Normalized kurtosis as function of the BFI. Shown are
results for focusing from simulations with the nonlinear Schrödinger
equation and with the Zakharov equation. The corresponding theo-
retical results are also shown.

valid, and therefore I have chosen to study numerical
results from the Zakharov equation.

The Zakharov equation I solved was given by (44),
where the nonlinear transfer coefficient was from Kras-
itskii (1990), and the exact dispersion relation for deep-
water gravity waves was taken. The initial condition
was provided by (46). The discretization details were
identical to those of the numerical simulations with the
nonlinear Schrödinger equation. Because the Zakharov
equation contains all higher-order terms in the modu-
lation wave number p, it is not possible to prove that
the large-time solution of the initial value problem is
determined completely by the BFI, but in good ap-
proximation the BFI can still be used for this purpose
as long as the spectra are narrow-banded.

In Fig. 10 is plotted the ensemble-averaged wave-
number spectrum for BFI 5 1.4, and it shows a clear
downshift of the peak of the spectrum while also con-
siderable amounts of energy have been pumped into the
high-wavenumber part of the spectrum. The wavenum-
ber downshift is caused by the asymmetries in the non-
linear transfer coefficient and to the same extent by the
asymmetries in the angular frequency with respect to
the carrier wavenumber. This was checked by running
(44) with constant nonlinear transfer coefficient, and
similar-looking ensemble mean spectra, but with one-
half of the wavenumber downshift, were obtained. There
is also a noticable broadening of the spectrum. However,
because of the increased spectral levels at high wave-
numbers, use of the second moment of the wave number
spectrum, as was done for the nonlinear Schrödinger
equation [(48)], to measure the width of the spectral
peak is not appropriate. Instead I use here the width as
obtained from fitting the peak of the spectrum with a
Gaussian shape function.

The relation between the final time BFI versus the
initial value of BFI is shown in Fig. 11 and is compared

with the corresponding one from the nonlinear Schrö-
dinger equation. Also, Fig. 12 shows the normalized
kurtosis versus the final time BFI. Results from the Zak-
harov equation are in qualitative agreement with the
ones from the nonlinear Schrödinger equation. However,
because growth rates are smaller, the broadening of the
spectrum is less, the final time BFI is higher by about
10%, and the normalized kurtosis is smaller. A unique
feature of the Zakharov equation is the downshift of the
peak of the wavenumber spectrum. This is shown in
Fig. 13 where is plotted the final time value of the peak
wavenumber, normalized with its initial value versus the
initial BFI. For large values of BFI reductions in peak
wavenumber of more than 10% are found from the re-
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FIG. 13. Final-time peak wavenumber downshift vs BFI. Shown is
a comparison between numerical simulation results from the Zak-
harov equation and theory.

sults of the numerical simulations, but the dependence
of the downshift in peak wavenumber on BFI is not
smooth. This is caused by the fact that the ensemble-
averaged spectra do not always have a well-defined
spectral peak.

4. Interpretation of numerical results

In the previous section I have discussed results from
the Monte Carlo simulation of the nonlinear Schrödinger
equation and the Zakharov equation. These results show
that on average there is a rapid broadening of the wave
spectrum while nonlinearity gives rise to considerable
deviations from Gaussian statistics. The question now
is whether the average of the Monte Carlo results may
be obtained in the framework of a simple theoretical
description. In section 2 I discussed two attempts to
achieve this. The first one is the standard theory of
wave–wave interactions, extended with the effects of
nonresonant four-wave interactions. This approach as-
sumes a homogeneous wave field but allows for devi-
ations from the Gaussian sea state. The second theory
is the inhomogeneous theory of wave–wave interac-
tions, which assumes that effects of inhomogeneity in
the wave field are dominant while deviations from nor-
mality only play a minor role. This approach seems to
be an ideal starting point for treating inhomogeneous
and nonstationary phenomena such as freak waves be-
cause it describes the random version of the Benjamin–
Feir instability. Let us therefore first discuss the validity
of inhomogeneous theory using results from the Monte
Carlo forecasting of ocean waves obtained from the non-
linear Schrödinger equation.

According to inhomogeneous theory the broadening
of the wave spectrum is caused by the inhomogeneity
of the wave field. This is clearly expressed by the con-
servation law [(41c)] and is explained in the discussion

that follows. From this conservation law, one may there-
fore obtain a measure of inhomogeneity of the wave
field, namely,

2I 5 I /I ,2 1 (49)

where

I 5 dx r(x) and (50)1 E
2I 5 dx r (x). (51)2 E

Here, the integrals over space are weighted by the
size of the domain, and using the definitions for r [(37)]
and the Wigner distribution [(35)] one may express the
inhomogeneity measure I in terms of the correlation
function B(n, m, t) as

2v0I 5 B(p, 0), and (52)O1 g p

22v0I 5 B(p, m)B*(p9, m). (53)O2 1 2g p,p9,m

The correlation functions B(p, m) may be readily ob-
tained from the numerical results for the complex am-
plitude a(k, t) after ensemble averaging. For a homo-
geneous wave field B(p, m) 5 N(p)d(m); hence I2 5

, or I 5 1.2I1

The initial conditions used in the numerical simula-
tion of waves have been chosen in such a way that the
sea state corresponds to a Gaussian one. As a conse-
quence, because the complex amplitudes a(k, t) are not
correlated, this implies that initially the sea state is ho-
mogeneous as well (Komen et al. 1994). However, the
wave ensemble consists of a finite number of members,
and this means that the initial probability distribution
is not a perfect Gaussian (e.g., the kurtosis is slightly
underestimated) but it also means that the initial con-
ditions are slightly inhomogeneous. According to the
inhomogeneous theory, the perturbations should grow
exponentially in time, resulting in, for example, a broad-
ening of the wave spectrum.

For BFI 5 1.4, the evolution in time of the inho-
mogeneity I is shown in Fig. 14. Initially, inhomoge-
neity is small but grows rapidly in the course of time,
which is then followed by an oscillation around the level
1.004. This level of inhomogeneity and the variation
with time is, however, extremely small (note that for
the case of Fig. 1a, I is on the order of 3), and it cannot
explain the large changes in the wavenumber spectrum
seen in the numerical simulations.

In addition, according to the inhomogeneous theory,
the conservation law of (41c) should be satisfied. In
section 3b it was explained that this conservation law
follows from the conservation of Hamiltonian, assuming
that deviations from normality may be ignored. It is of
interest, of course, to test whether it is justified to ignore
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FIG. 14. Time evolution of a measure for inhomogeneity, I, for two
different ensemble sizes, according to the nonlinear Schrödinger
equation.

FIG. 15. Time evolution of Hamiltonian E of the nonlinear Schrö-
dinger equation. Also shown are time evolution of E according to
lowest-order inhomogeneous theory (Eapprox) and according to ho-
mogeneous theory that includes the fourth cumulant. Also shown are
the nonlinear contributions to E for a strictly Gaussian state [NL (C4

5 0)] and including all higher-order cumulants (NL 1 C4).
effects of the fourth cumulant. To that end, Fig. 15 com-
pares the evolution in time of the Hamiltonian as ob-
tained from the numerical simulation (this will be called
the ‘‘exact’’ Hamiltonian from now on) with the Ham-
iltonian according to inhomogeneous theory. Although
the exact Hamiltonian is a constant (at least up to five
significant digits), it is clear that the approximate Ham-
iltonian is not conserved when evaluated using the nu-
merical results. In fact, there are large deviations as the
approximate Hamiltonian becomes negative, whereas
the exact Hamiltonian is positive definite. The disagree-
ment between the approximate and the exact Hamilto-
nian is caused by the neglect of the higher-order cu-
mulants. This is immediately clear from Fig. 15 in which
the nonlinear contribution to the Hamiltonian according
to lowest-order inhomogeneous theory [called approx-
imate; NL (c4 5 0)] is compared with the corresponding
nonlinear contribution that includes higher-order cu-
mulants (called exact; NL 1 c4). The approximate non-
linear contribution hardly varies with time, which is in
agreement with the results from Fig. 14 that effects of
inhomogeneity are small. The exact nonlinear contri-
bution shows a significant variation with time. The dif-
ferences between exact and approximate are consider-
able, and therefore it is not justified to ignore effects of
deviations from normality in a simple theoretical de-
scription of the evolution of the sea state. As a matter
of fact, the deviations from normality are the main rea-
son for the spectral broadening as the time-varying non-
linear contribution to the Hamiltonian, including effects
of the fourth-order cumulant, just compensates for the
changes with time of the linear part of the wave energy.
Clearly, according to the Monte Carlo simulations the
linear wave energy is not conserved.

The previous discussion therefore suggests that ef-
fects of the deviations from normality are important,
which may explain why there is no bifurcation at BFI

5 1 as is suggested by inhomogeneous theory (Fig. 5).
Alternatively, there could be another possible reason for
the discrepancy between the inhomogeneous theory and
the numerical results. The evidence for a bifurcation at
BFI 5 1 follows from a linear stability analysis; there-
fore the perturbation of the homogeneous spectrum is
assumed to be small. In the numerical simulations the
perturbation is not prescribed a priori and its amplitude
is determined by the full nonlinear evolution equation.
The initial size of the perturbation is, however, deter-
mined in an indirect way by the ensemble size, because
the larger the ensemble is, the closer one approaches to
conditions for a homogeneous sea state. This is evident
in Fig. 14 in which the inhomogeneity I is smaller for
larger ensemble size. I therefore performed Monte Carlo
simulations with different ensemble size, namely, for
Nens 5 50 and Nens 5 2000, but almost identical results
for, for example, the relative increase in spectral width
as a function of BFI were found. Although this does
not present conclusive evidence, it does suggest that the
initial size of the perturbations is small enough and that
the main reason for the absence of a bifurcation at BFI
5 1 is the neglect of deviations from normality.

In summary, it has been shown that, in the inho-
mogeneous theory of four-wave interactions, effects of
the generation of the fourth cumulant cannot be ignored.
At the same time it has been shown that the numerical
ensemble of ocean waves may be regarded to good ap-
proximation as a homogeneous ensemble. Hence, the
standard theory of four-wave interactions (extended by
including nonresonant interactions), which assumes a
homogeneous wave field, may be a good candidate to
explain the results of the numerical simulations in sec-
tion 3.

Therefore, the Boltzmann equation [(25)] was used
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to evolve the action density N(k) for the same cases as
presented in section 3. The differential equation was
solved with a Runge–Kutta method with variable time
step, and the continuous problem was discretized in the
same way as was done in the case of the solution of the
Zakharov equation. Run times using the homogeneous
theory are typically two orders of magnitudes faster than
when following the ensemble approach.

In contrast to inhomogeneous theory, the standard
theory gives a much better approximation to the exact
Hamiltonian as shown in Fig. 15. There are, as should
be, small differences because the standard theory is an
approximation as well, given that both effects of in-
homogeneity and the sixth cumulant have been neglect-
ed. Further results from the discretized version of the
homogeneous theory are compared with the ones from
the simulations with the nonlinear Schrödinger equation
in Figs. 3–8.

From Fig. 3, which shows the evolution in time of
the spectral width for several values of the BFI, it is
seen that for large times there is good agreement be-
tween homogeneous theory and the ensemble-averaged
results from the Monte Carlo simulations. For short
times it is, however, evident that (25) does not show
the overshoot found in the numerical simulations. A
likely reason for the absence of overshoot found in the
theoretical calculations is the assumption that the action
density varies slowly as compared with the timescale
implied by the resonance function Ri(Dv, t). Both the
numerical simulations and homogeneous theory show
for short times a rapid broadening of the wave spectrum,
which for large times is followed by a transition towards
a steady state. The evolution toward a steady state can
be understood as follows: First, it should be noted that,
according to section 2c, for one-dimensional propaga-
tion there is no nonlinear transfer because of resonant
nonlinear interactions. Now, initially the resonance
function Ri(Dv, t) will be wide so that nonresonant
wave–wave interactions are allowed to modify the ac-
tion density spectrum. After about 5–10 wave periods,
however, the resonance function becomes progressively
narrower until it becomes approximately a d function;
hence only resonant waves are selected. In that event
there is no change of the action density spectrum pos-
sible anymore so that for large times a steady state is
achieved.

An example of the comparison between theoretical
and simulated spectra is given in Fig. 4. There is a fair
agreement between the two. However, it should be men-
tioned that typically the simulated spectrum is slightly
more peaked than the theoretical one despite the fact
that there is a close agreement in spectral width. This
agreement in spectral width between theory and simu-
lation is also very much evident in the Figs. 5 and 6
over the full range of the initial value of BFI. In par-
ticular, note that there is close agreement between the
upper limit of the final time BFI from theory and the
simulation. Hence, homogeneous theory also provides

an explanation of why there is a lower bound to spectral
width.

We therefore have the curious situation in which both
homogeneous and inhomogeneous theory explain why
there is a lower bound to spectral width as found in the
numerical simulations. However, because it has been
shown that inhomogeneities only play a minor role in
the numerical simulations it follows that only homo-
geneous theory provides a proper explanation. In situ
observations from the North Sea seem to indicate the
presence of a lower bound to spectral width as well (see,
e.g., Janssen 1991). Although it is impossible to prove
at present that at sea inhomogeneities do not play a role,
homogeneous theory even seems to give a plausible
explanation of the lower bound found at sea.

As discussed in section 2c, nonlinearity gives rise to
deviations from the normal distribution. I determined
the normalized kurtosis using (29), which is obtained
from the fourth cumulant D. Introducing the normalized
height x 5 h/ , the pdf of the normalized surfaceÏm0

elevation x is then given by (see also Mori and Yasuda
2002b)

41 d
p(x) 5 1 1 C f , (54)4 041 28 dx

where f 0 is given by the normal distribution

21 x
f (x) 5 exp 2 . (55)0 1 22Ï2p

Equation (54) follows from an expansion of the pdf p
in terms of orthogonal functions (d/dx)nf 0. Here, n is
even because of the symmetry of the Zakharov equation.
The expansion coefficients are then obtained by deter-
mining the first, second, and fourth moments. For the
range of BFI studied in this paper, it was verified that
higher moments only gave a small contribution to the
shape of the pdf p(x). The pdf according to theory is
compared in Fig. 7 with the simulated one, and a good
agreement is obtained, even for extreme sea state con-
ditions. Clearly, in the case of nonlinear focusing, the
probability of extreme states is, as expected, larger when
compared with the normal distribution. In Fig. 8, the-
oretical and simulated final-time kurtosis is plotted as
function of the final-time BFI. A good agreement be-
tween the two results is obtained, even close to the
limiting value of the final-time BFI. For BFI , 1, both
simulated and theoretical kurtosis depend in an almost
quadratic fashion on BFI, in agreement with the simple
estimates of C4 given in section 2c [(31)].

In the case of nonlinear focusing, a good agreement
between the numerical simulations and the homoge-
neous theory has been obtained, even for extreme values
of the Benjamin–Feir index. Here, it should be empha-
sized that at sea BFI has typical values of 0.5 or less,
and only occasionally are values on the order of 1
reached. We have performed simulations to values of
BFI of up to 3 and, even for these extreme conditions
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(having large values of kurtosis, for example), a rea-
sonable agreement is obtained. This is surprising be-
cause the homogeneous theory was derived under the
assumption of small deviations from normality.

In the case of nonlinear defocusing, the range of va-
lidity of homogeneous theory is much more restricted.
This is made plainly clear in Figs. 5, 6, 8, and 9, where
results from the simulations and homogeneous theory
are compared for the case of nonlinear defocusing. To
be able to interpret this comparison, note that homo-
geneous theory does not distinguish between focusing
and defocusing, because the nonlinear transfer is in-
dependent of the sign of the interaction coefficient T.
Only the kurtosis depends on the sign of T. Judging
from Figs. 5, 6, and 8, the range of validity of homo-
geneous theory is restricted to BFI , 0.6. In particular,
for large BFI there are large qualitative deviations in
the kurtosis of the pdf: from the numerical simulations
there are clear signs of saturation in kurtosis, but there
is no indication of saturation in the results from ho-
mogeneous theory. In addition, in the case of nonlinear
defocusing the kurtosis is negative so that for large nor-
malized elevation x the pdf given in (54) may become
negative. This is clearly unrealistic, and to correct this
undesirable property of homogeneous theory one needs,
for large BFI, to take into account the effects of higher-
than-fourth-order cumulants as well. It is believed this
is the main reason why homogeneous theory has such
a restricted validity in this case. In the opposite case of
nonlinear focusing, the kurtosis is positive, giving for
large x a positive correction to the normal distribution.
The pdf of the surface elevation is therefore positive,
at least for the cases that have been studied here, and
as a consequence homogeneous theory has a much larg-
er range of validity.

Last, I applied homogeneous theory to the Zakharov
equation. Results are compared with the numerical sim-
ulations in Figs. 10, 11, 12, and 13. There is a fair
agreement between simulated and theoretical spectrum
(Fig. 10), between simulated and theoretical final-time
BFI index (Fig. 11), and in normalized kurtosis (Fig.
12). Less favorable is the agreement between simulated
and theoretical peak wavenumber, as shown in Fig. 13.
The theoretical results show a smooth dependence of
wavenumber downshift on BFI, giving shifts of 20% or
more for large values of BFI. However, the simulation
shows more scatter while the downshift is at most 15%.
The reason for the scatter in the simulated results is
probably that the peak of the wavenumber spectrum is
not always well defined. In contrast, homogeneous the-
ory gives a smoother spectrum and a well-defined peak
of the spectrum.

5. Conclusions

Present-day wave forecasting systems are based on a
description of the ensemble-averaged sea state. In this
approach, the wavenumber spectrum plays a central role

and its evolution follows from the energy balance equa-
tion. The question discussed here is whether it is pos-
sible to make statements, necessarily of a statistical na-
ture, on the occurrence of extreme events such as freak
waves.

To show that this is possible, the following approach
has been adopted. The starting point is a deterministic
set of equations, namely, the Zakharov equation or its
narrowband limit, the nonlinear Schrödinger equation.
There is ample evidence that these equations admit freak
wave–type solutions. These freak waves occur when the
waves are sufficiently steep, because nonlinear focusing
may then overcome the spreading of energy by linear
dispersion. For the same reason, the Benjamin–Feir in-
stability occurs. As shown in Fig. 1, the occurrence of
freak waves depends in a sensitive manner on the choice
of the initial phase of the waves. In addition, on the
open ocean, waves propagate from different locations
toward a certain point of interest and may therefore be
regarded as independent. Hence, for open-ocean appli-
cations, the random-phase approximation seems to be
appropriate. I therefore simulated the evolution of an
ensemble of ocean waves by running a deterministic
model with random initial phase. These Monte Carlo
simulations are expensive (typically, the size of the en-
semble is 500) so that the study is restricted to the case
of one-dimensional propagation only.

The ensemble average of the results from the Monte
Carlo simulations shows that when the Benjamin–Feir
index is sufficiently large (as occurs for the combination
of narrow spectra and steep waves) the wave spectrum
broadens while at the same time considerable deviations
from the Gaussian pdf are found. In the case of the
Zakharov equation, the spectral change is even asym-
metrical with respect to the peak of a symmetrical spec-
trum, giving a downshift of the peak wavenumber while
as a consequence of the conservation of wave action
and wave energy considerable amounts of energy are
being pumped into the high-wavenumber part of the
spectrum. These spectral changes occur on a short time-
scale, typically on the order of 10 wave periods. This
timescale is comparable to the Benjamin–Feir timescale.

The standard homogeneous theory of resonant non-
linear transfer does not give spectral change in the case
of one-dimensional propagation. This theory was there-
fore extended to allow for nonresonant interactions as
well, because the nonlinear focusing related to the Ben-
jamin-Feir instability is an example of a nonresonant
four-wave interaction. This nonlinear four-wave transfer
is associated with the generation of higher-order cu-
mulants such as the kurtosis. Deviations of the surface
elevation pdf from the normal distribution can therefore
be expressed in terms of a six-dimensional integral in-
volving the cube of the action spectrum [(29)]. In the
case of nonlinear focusing, there is, for a large range
of values of the BFI, a good agreement between the
ensemble-averaged results from the numerical simula-
tions and homogeneous theory. This is in particular true
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for the broadening of the spectrum, the spectral shape,
and the estimation of the kurtosis. In comparison with
the simulations, theory overestimates, however, the peak
wavenumber downshift.

Homogeneous theory also explains why for one-di-
mensional propagation the wave spectrum evolves to-
ward a steady state. The resonance function evolves
rapidly toward a d function; hence for large times only
resonant wave–wave interactions are selected that in one
dimension do not give rise to spectral change. This is
in sharp contrast with the case of two-dimensional prop-
agation. No trend toward a steady state is expected in
that case because resonant four-wave interactions do
contribute to a change in the spectrum.

The extended version of the homogeneous four-wave
theory has two timescales, a fast one on which the non-
resonant interactions take place and a long timescale on
which the resonant interactions occur. The nonresonant
interactions play a role similar to that of transients in
the solution of an initial-value problem. They are simply
generated because initially there is a mismatch between
the choice of the probability distribution of the waves,
a Gaussian, and between the initial choice of the wave
spectrum, representing a sea state with narrowband,
steep nonlinear waves. For example, if one could choose
a probability distribution function which is in equilib-
rium with the nonlinear sea state (theoretically one can,
by the way), then nonresonant interactions would not
contribute. Only resonant wave–wave interactions will
then give rise to nonlinear transfer. In the general case
for which there is a finite mismatch between pdf and
wave spectrum, the nonresonant contribution will die
out very quickly owing to phase mixing but will, nev-
ertheless, as we have seen, result in considerable chang-
es in the wave spectrum. The question therefore is
whether there is a need to include effects of nonresonant
interactions. This depends on the application. In wave-
tank experiments, where one can program a wave maker
to produce the initial conditions used in this paper, it
seems that effects of nonresonant transfer need to be
taken account for. For the open-ocean case this is not
clear. The point is that in nature the combination of steep
waves and a strictly Gaussian distribution most likely
does not occur. Changes in nature are expected to be
more gradual so that the mismatch between pdf and
wave spectrum is small. Only when a wind starts blow-
ing suddenly, hence for short fetches and duration, are
effects of nonresonant interactions expected to be rel-
evant. More research in this direction is, however, re-
quired.

The results from Monte Carlo simulations do not pro-
vide evidence that there are significant deviations from
homogeneity of the ensemble of waves. Deviations from
normality are found to be much more important. Nev-
ertheless, it cannot be concluded from the present study
that the inhomogeneous approach of Alber and Saffman
(1978) is not relevant for real ocean waves. For example,
effects of inhomogeneity might be relevant in fetch-

limited, rapidly varying circumstances. However, its ef-
fects are expected to be small, and therefore only the
lowest-order approximation, as given explicitly in (36),
needs to be retained.

For real ocean waves, not only four-wave interactions
determine the evolution of the wave spectrum. Wind
input and dissipation due to white-capping are relevant,
and these processes may affect the kurtosis of the sea
surface as well. However, it has been shown in this paper
that in particular the nonresonant nonlinear transfer acts
on a short timescale that is much shorter then the time-
scales associated with wind input and dissipation source
functions used in wave forecasting (Komen et al. 1994).
Hence, one would expect that the expression for kurtosis
found in this paper [(29)] should be relevant in nature.
Nevertheless, nonlinear focusing may result in steep
waves. If their steepness exceeds a certain threshold,
one would expect a significant amount of wave break-
ing, thus limiting the height of these waves, and af-
fecting the extreme statistics. A realistic, deterministic
model of wave breaking is needed to assess the impor-
tance of wave breaking in these circumstances. It may
be more effective, however, to try to compare results
from the present approach directly with observations of
extremes collected over a long period.
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