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On a random time series analysis valid for
arbitrary spectral shape
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While studying the problem of predicting freak waves it was realized that it would
be advantageous to introduce a simple measure for such extreme events. Although
it is customary to characterize extremes in terms of wave height or its maximum it
is argued in this paper that wave height is an ill-defined quantity in contrast to, for
example, the envelope of a wave train. Also, the last measure has physical relevance,
because the square of the envelope is the potential energy of the wave train. The
well-known representation of a narrow-band wave train is given in terms of a slowly
varying envelope function ρ and a slowly varying frequency ω=−∂φ/∂t where φ is
the phase of the wave train. The key point is now that the notion of a local frequency
and envelope is generalized by also applying the same definitions for a wave train with
a broad-banded spectrum. It turns out that this reduction of a complicated signal to
only two parameters, namely envelope and frequency, still provides useful information
on how to characterize extreme events in a time series. As an example, for a linear
wave train the joint probability distribution of envelope height and period is obtained
and is validated against results from a Monte Carlo simulation. The extension to the
nonlinear regime is, as will be seen, fairly straightforward.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
New developments in the problem of the detection of extreme events have resulted

in a considerable interest in the determination of statistical properties of time series of
the surface elevation. Traditionally, in such an analysis the key parameter to express
the severity of the sea state has been the wave height, which for a single wave is
defined as the distance between the trough and the crest of the wave. As typically
many waves with different frequency and direction are present a statistical approach
is usually followed. In practice, researchers obtain the wave height distribution by
means of the zero-crossing method. This is a very elegant method, which is easily
implemented. One just searches for two consecutive zero-upcrossings in the time
series and one determines the wave height from the difference of the maximum
and the minimum of the surface elevation η in the corresponding time interval.
Thus, wave height is determined by sampling with the zero-crossing frequency given
by (m2/m0)

1/2 (with mn the nth moment of the wave spectrum), and to quantify
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Random time series analysis 237

the severity of the sea state one determines the probability distribution function
(p.d.f.) of wave height. By applying the zero-crossing method to observed time series
of the surface elevation it turns out that the resulting p.d.f. depends on spectral
shape. For a narrow-band spectrum the wave height p.d.f. is found to be close to
the Rayleigh distribution, in agreement with theoretical results by Longuet-Higgins
(1957), while for broad-banded spectra extreme waves are, when compared to the
Rayleigh distribution, less likely to occur. The underestimation of the probability of
extreme events for broad-banded spectra is problematic as will discussed below.

While for narrow-band spectra it can be shown that the wave height distribution is
indeed a Rayleigh distribution, for broad-banded spectra the theoretical wave height
p.d.f. is, as far as I know, not known. This therefore presents a stumbling block
when one is interested in the development and verification of a theory for extreme
events for arbitrary spectra. This led me to consider alternative ways to measure the
intensity of extreme events. A prominent candidate is to use instead of wave height
the envelope of a wave train. This idea, which was probably first suggested by Gabor
(1946) in the field of signal processing, has been proposed by a number of authors in
the field of ocean waves as well. Examples include the work of Naess (1982), Shum
& Melville (1984) and, although restricted to narrow-band wave trains, the work of
Tayfun & Lo (1990).

The choice of using the envelope of the signal has a number of advantages.
First, for a Gaussian sea state it will be shown in this paper that the p.d.f. of the
envelope height is always Rayleigh, independent of spectral shape. Second, in actual
applications it is important to determine extreme forces on structures such as oil
rigs or ships. An interesting quantity to know then is the energy of the waves. The
square of the envelope is a measure for the potential energy of the wave train and is
therefore closely related to the wave energy. On the other hand, for extreme cases the
square of the wave height would underestimate, for broad-banded spectra, the forces
on structures as the p.d.f. of wave height falls below the Rayleigh distribution by a
significant amount while the envelope p.d.f. is Rayleigh.

Another advantage of the use of the envelope is that it is fairly easy to construct
from a time series at any point in time, but this is not really possible if wave height
is obtained from the zero-crossing method as wave height will be sampled in a
discrete manner with the zero-crossing frequency. As the envelope is a continuous
function in time its p.d.f. may be made as accurate as possible by simply sampling
at a sufficiently high frequency. In other words, there is a definite case to be made
to concentrate on the envelope distribution rather than the wave height distribution.

In this paper I will obtain the joint probability of wave height and period starting
from the idea that the envelope of a wave train gives an adequate characterization
of the severity of the sea state. The time series will therefore be given in terms of
an envelope function ρ and a local phase φ. Here, wave height will be defined as
twice the envelope height while the local frequency will be given by ω = −∂φ/∂t.
It is then important to have a procedure to obtain from the time series of η(t) the
envelope and the phase of the wave train. Two methods have been explored. The
first one, described in § 2, assumes that η(t) is an analytic signal so that envelope
and phase may be obtained from the signal η and its orthogonal complement, the
Hilbert transform. This is a well-known method, already applied by Shum & Melville
(1984) to observed time series of ocean waves. The second method assumes that the
correlation R(τ ) = 〈η(t)η(t + τ)〉 has at least one zero at τ = τ∗. Then, η(t) and
η(t + τ∗) are orthogonal and may be used to obtain the envelope and phase of the
wave train.
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238 P. A. E. M. Janssen

In § 3 it is shown that the reduction of a complicated signal to just two parameters,
namely envelope and frequency, will provide useful information on the statistical
properties of the time series for surface elevation. For Gaussian signals with a
stationary two-point correlation function it will be shown that there is excellent
agreement between the theoretical joint p.d.f. of envelope wave height and period
and the corresponding p.d.f. obtained from Monte Carlo simulations of the (analytic)
signal. This good agreement is not only obtained for narrow-band spectra but also
for broad-band spectra. The present approach is therefore an extension of the work
of Longuet-Higgins (1983) and Xu et al. (2004) and, as discussed in § 4, is therefore
a good starting point for the development of a statistical theory of weakly nonlinear
waves. Finally, in § 5 a summary of conclusions is presented.

2. Joint distribution of envelope height and period
Before developing the theory for the joint p.d.f. of envelope height and period

we first have to make some underlying assumptions more explicit. In the field of
ocean waves a central role is given to the energy balance equation which describes
the evolution in space and time of the wave variance spectrum. The energy balance
equation has been derived under the assumption that the waves are weakly nonlinear,
that the wavefield may be regarded as homogeneous and stationary while the
probability distribution of the ocean surface elevation is approximately Gaussian. The
same assumptions will be used in the determination of the joint p.d.f. of envelope
wave height and period, in particular for evaluating the connection between certain
correlations and the wave spectrum. Here, the wave spectrum follows from the Fourier
transform of the two-point correlation function ρ defined as

ρ(τ)= 〈η(t)η(t+ τ)〉, (2.1)

and for stationary conditions the correlation function only depends on the time
difference τ . The angular frequency spectrum E(ω) is then given by

E(ω)= 1
2π

∫
dτρ(τ) cos(ωτ), (2.2)

and, in particular, the moments of the wave spectrum are important for knowledge of
the statistical properties of the time series.

In order to obtain the joint p.d.f. of envelope and period a method is required to
obtain from a given time series η(t) the envelope ρ and local phase φ. In fact, as will
be seen in this paper, several procedures are possible. Here, we start by assuming that
the time series is analytic and we follow the work of Gabor (1946) closely.

Let us restrict our attention to analytic functions Z(t)= η+ iζ . These functions have
the remarkable property that if the real part of Z is known then the imaginary part of
Z is given by the Hilbert transform of its real part. Thus,

ζ = Im(Z)=±H(η)=± 1
π

∫
dτ
η(τ)

t− τ , (2.3)

where the integral is a principal value integral and the ± sign depends on the chosen
assumed behaviour of the complex function Z for large arguments (cf. the Remarks
below). Envelope ρ and phase φ are now defined as

ρ eiφ = Z(t)= η+ iζ , (2.4)
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therefore
η= ρ cos φ, ζ = ρ sin φ. (2.5a,b)

Envelope and phase follow now at once from η and ζ ,

ρ =
√
η2 + ζ 2, φ = arctan(ζ/η). (2.6a,b)

In this fashion (and this is of course very well-known) one may obtain from a real
time series the envelope and phase of a wave train. This is a very general approach.
For a narrow-band wave train (but note that we will not make this assumption here)
ρ and the derivative of φ will be slowly varying functions in time and space. In those
circumstances it is customary to introduce the local angular frequency through

ω=−∂φ
∂t
, (2.7)

and for a narrow-band wave train the local frequency is also slowly varying. The key
point is now that we generalize the notion of a local frequency by also applying the
same definitions for a wave train with a broad-banded spectrum. Hence, for any time
series η we obtain envelope and phase from (2.6) where ζ is the Hilbert transform of
η. The joint p.d.f. of envelope ρ and period T is then easily obtained by making use
of the local frequency ω of (2.7) and the definition T = 2π/ω.

Remarks on the procedure. It is indeed a remarkable result that one may construct
a complex signal Z from its real part and the Hilbert transform of its real part, but
there is also a caveat. A unique solution can only be found provided one makes an
assumption regarding the behaviour of the complex function Z(z) for large complex z.

Is it possible to find for given function g(x) on the real axis a unique analytical
function f (z)= g(z)+ ih(z), with z= x+ iy? This is simply not possible unless some
conditions on the behaviour of f (z) for large z are imposed. To illustrate the point
consider the function g(x)= cos x. There are at least two complex functions f (z) that
give the same function on the real axis, namely f (z) = exp(iz) and f (z) = exp(−iz).
So the solution is not unique unless one imposes an additional condition on the
behaviour of f (z). Imposing the condition that f (iy) vanishes sufficiently rapidly for
y→∞ will give rise to the unique solution f (z) = exp(iz), while the condition that
f (iy) will vanish sufficiently rapidly for y→−∞ will give rise to the second solution
f (z)= exp(−iz).

This has consequences for the extension of a real signal into the complex domain.
If f (z) is analytic and C is a piecewise smooth closed contour in an open domain,
then according to the Cauchy integral theorem∫

C

f (z)
z− z0

dz= 2πif (z0), (2.8)

if z0 is inside C. If z0 is outside C then the singular integral vanishes.
The result in (2.3) now follows by making a special choice of the contour C.

Consider a contour C that consists of a semicircle ΓR with radius R and the real axis
from −R to +R, hence C=ΓR+ [−R,R]. First suppose that f (z) vanishes sufficiently
rapidly for y→∞ so that the contribution from the semicircle in the upper half-plane,
Γ u

R , vanishes. In the limit R→∞ one then finds

P
∫ ∞
−∞

f (x)
x− x0

dx=πi f (x0). (2.9)
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240 P. A. E. M. Janssen

Writing f (x0)= g(x0)+ ih(x0) one immediately finds from the real part of the above
equation that

h(x0)= 1
π

P
∫ ∞
−∞

g(x)
x0 − x

dx, (2.10)

corresponding to the + sign result of (2.3).
However, if one now assumes on the other hand that f (z) vanishes sufficiently

rapidly for y→−∞ then in order that the contribution along the semicircle vanishes
one has to close the contour C by choosing a semicircle Γ l

R in the lower half-plane.
The end result has a different sign. Therefore the extension of a real function into
the complex plane is not unique, and results will depend on assumptions regarding
the behaviour of the complex function for large z.

Finally, in this paper the starting point is the complex function Z (see for example
§ 2 and appendix A) so the behaviour at large z is known. Following the above
procedure the sign in (2.3) is therefore known so that there is no ambiguity.

In order to obtain the joint p.d.f. of envelope and period we follow the work
of Longuet-Higgins (1983), see also Xu et al. (2004). The starting point is the
assumption that η(t) is a stationary Gaussian process. Since η̇, ζ and ζ̇ are linear
transforms of η their joint p.d.f. is Gaussian and therefore can be expressed as

p(x)= 1
(2π)2|Σ |1/2 exp

{
−1

2
xTΣ−1x

}
, (2.11)

where x= (η, ζ , η̇, ζ̇ ), and the covariance matrix is given by Σij = 〈xixj〉. Fortunately,
because ζ is the Hilbert transform of a stationary process, a number of elements in
the correlation matrix Σ vanish (cf. Xu et al. 2004), i.e. Σ12 = Σ21 = Σ13 = Σ31 =
Σ24 =Σ42 =Σ34 =Σ43 = 0, and the elements with a finite value are

Σ11=Σ22=m0, Σ14=Σ41=−m1, Σ23=Σ32=m1, Σ33=Σ44=m2. (2.12a−d)

Here, mn are the moments of the wave spectrum E(ω),

mn =
∫

dω ωnE(ω), (2.13)

and in this treatment it is assumed that all moments up to second order exist, which
in practice has implications for the behaviour of the tail of the wave spectrum.

With this choice of Σ the determinant |Σ | becomes

|Σ | =∆2, ∆=m0m2 −m2
1, (2.14)

and the joint p.d.f. reads

p(x)= 1
(2π)2∆

exp
{
− 1

2∆

[
m2(η

2 + ζ 2)+m0(η̇
2 + ζ̇ 2)− 2m1(ζ η̇− ηζ̇ )

]}
. (2.15)

From this the joint p.d.f. of ρ, φ, ρ̇, φ̇ is found by the usual transformation rule, i.e.

p(ρ, φ, ρ̇, φ̇)= p(x) J, (2.16)
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where the Jacobian J = ∂(η, ζ , η̇, ζ̇ )/∂(ρ, φ, ρ̇, φ̇) follows from the transformation
given in (2.5). One finds J = ρ2, and the joint p.d.f. becomes

p(ρ, φ, ρ̇, φ̇)= ρ2

(2π)2∆
exp

{
− 1

2∆

[
m2ρ

2 +m0(ρ̇
2 + ρ2φ̇2)+ 2m1ρ

2φ̇
]}
. (2.17)

The joint p.d.f. of ρ and φ̇ is then found by integrating (2.17) over ρ̇ from −∞ to
+∞ and over φ from 0 to 2π. The result is

p(ρ, φ̇)= ρ2

√
2πm0∆

exp
{
− ρ

2

2∆

(
m2 +m0φ̇

2 + 2m1φ̇
)}
. (2.18)

Finally, it is then straightforward to obtain the joint p.d.f. of the normalized envelope,

R= ρ√
2m0

, (2.19)

and the local, normalized period

T = τ
τ
, (2.20)

where the period τ =2π/ω=−2π/φ̇, and the mean period τ =2πm0/m1. The eventual
result is

p(R, T)= 2
νπ1/2

R2

T2
exp

{
−R2

[
1+ 1

ν2

(
1− 1

T

)2
]}
, (2.21)

where ν is the width parameter as introduced by Longuet-Higgins (1983),

ν = (m0m2/m2
1 − 1)1/2. (2.22)

There are two marginal distribution laws. The first one is the p.d.f. of the envelope
and is obtained by integration over period T . The result is

p(R)= 2R e−R2
, (2.23)

hence the envelope R follows the Rayleigh distribution, independent of the width of
the spectrum. The second marginal distribution law is the p.d.f. of the period, and is
obtained by integration over the envelope with the result

p(T)= 1
2νT2

[
1+ 1

ν2

(
1− 1

T

)2
]−3/2

, (2.24)

which shows, as to be expected, a sensitive dependence on the width of the spectrum
as measured by the width parameter ν. Note that the p.d.f. (2.24) permits negative
periods. By integrating the p.d.f. over negative T one finds that the fraction of negative
periods equals (1 − (1 + ν2)−1/2)/2, which for typical values of ν ' 0.5 amounts to
only 5 %.

Longuet-Higgins (1983) derived a joint p.d.f. for envelope and period by considering
only positive periods T , because it was thought unphysical that there are negative
periods. Ignoring negative periods will result in an envelope distribution which shows
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slight deviations from the Rayleigh statistics. However, reducing the information in
a complicated signal to just two parameters, as given in the manner of (2.5)–(2.7),
has the consequence that compromises in the interpretation of the reduced information
have to be made, which implies in this context that negative periods are permissible.
But, as pointed out above and as also already discussed by Longuet-Higgins (1983),
even for broad-banded spectra the probability that periods become negative is quite
small. Including these negative periods, as done here, will then result in the Rayleigh
distribution for the envelope.

In addition, there is a more straightforward proof that the p.d.f. of the envelope is
Rayleigh. To that end one starts from the joint p.d.f. of η and ζ given by

p(η, ζ )= 1
2πm0

exp
{
− 1

2m0

(
η2 + ζ 2

)}
, (2.25)

and following the same procedure as given at the beginning of this section it is found
immediately that the envelope distribution is Rayleigh.

In order to conclude this section it is remarked that there are alternative ways to
analyse the stochastic properties of a time series. In essence, given the original time
series η(t) one seeks an orthogonal complement ζ . In this section attention has been
restricted to analytic signals, but in view of the fact that in reality the signal may
reflect breaking waves the restriction to an analytic signal may not be an entirely
satisfactory assumption. An alternative way of analysing the time series is by taking as
orthogonal complement ζ = η(t+ τ∗), where τ∗ is the first zero of the autocorrelation
function, i.e. 〈η(t)η(t + τ∗)〉 = 0. By construction, η(t) and η(t + τ∗) are orthogonal,
but in contrast to the Hilbert transform approach, the correlation matrix Σ needed for
the joint p.d.f. of envelope wave height and period has more non-zero elements. In
fact, one finds as additional non-zero elements

Σ34 =Σ43 =
∫

dω ω2E(ω) cosωτ∗, (2.26)

with E(ω) the frequency spectrum, while the non-zero elements Σ14, Σ41, Σ23, Σ32
have a value that differs from (2.12) by an additional factor of sin(ωτ∗) in the integral.
Therefore, the inverse of the matrix Σ will be more involved and the joint p.d.f. of
envelope wave height and period will have a different shape. Nevertheless, analysing
time series using η(t) and ζ = η(t+ τ∗) will produce the same joint p.d.f. for η and ζ
as given in (2.25) and therefore in the same envelope wave height p.d.f. because the
elements of the relevant correlation matrix are identical.

3. Monte Carlo simulations

In order to show that the result (2.21) is valid for narrow-band and broad-band
spectra Monte Carlo simulations were performed for linear wave trains. Introduce the
complex representation Z of a train of surface gravity waves

Z(t)=
∑

k

ake−i(ωk t+θk), (3.1)

where ωk = (gk)1/2 is the dispersion relation for surface gravity waves, θk is a
randomly chosen phase, and ak is drawn from a given wavenumber spectrum
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with peak wavenumber kp = 1 using a Rayleigh distribution. We have chosen two
discretizations of the wavenumber, namely a linear grid,

k= α n, n= 0,N, (3.2)

where N + 1 is the number of wave components and α is a fraction of the width σk
of the spectrum (typically α = 0.025σk and N = 100), or a logarithmic grid

k= k0(1+ α)n, n= 0,N, (3.3)

where k0 is the start wavenumber (typically k0 = 0.1, and α = 0.7σk). The surface
elevation η given by

η= 1
2 (Z + Z∗) (3.4)

can then be shown to follow a normal distribution. Because ωk is positive definite, the
complex function Z of (3.1) has the property that it vanishes for Im(t)→−∞, hence
in order to determine the auxiliary variable ζ I take the minus sign in (2.3). Hence,

ζ =−H(η), (3.5)

and since it is straightforward to show, by following the procedure sketched in the
Remarks in § 2, that for arbitrary ω

H(eiωt)=−i sgn(ω)eiωt, (3.6)

one finds
ζ =− i

2
(Z − Z∗). (3.7)

Therefore, in the context of a linear wave solution with constant amplitudes ak it
is straightforward to obtain the auxiliary variable ζ , using the Hilbert transform. It
is remarkable that the pair (η, ζ ) just corresponds to the canonical variables of the
Hamiltonian formulation of water waves.

Using (3.5) and (3.7) envelope ρ and phase φ follow from (2.6) while the local
frequency follows from (2.7). In order to test the theoretical approach a broad-band
spectral example is required, which is provided by the Pierson–Moskowitz spectrum
(Pierson & Moskowitz 1964). The approach works equally well for the JONSWAP
spectrum (which is narrower) so that no results for this case are presented. For
the Pierson–Moskowitz spectrum on the logarithmic grid an example of results for
envelope and local frequency is shown in figure 1. Two cases are shown. The first
case is a Pierson–Moskowitz spectrum which is cut off at twice the peak frequency,
giving a spectral width ν = 0.24, while the second case has the cut-off at 8 times
the peak frequency, which gives ν = 0.40. It is evident that the broad-band spectrum
gives a more erratic behaviour in time of the envelope and the local frequency. In
addition, note the occasional occurrence of negative local frequencies. Figure 2 shows
for the same two cases a comparison of the theoretical joint p.d.f. of envelope wave
height and period with the numerical simulation. The agreement is almost perfect,
even for the broad-band case. In order to simulate the p.d.f. I have calculated η and
ζ for a 500 member ensemble and each time series was 1000 wave periods long. The
p.d.f. was determined by counting the number of times the envelope wave height 2ρ
and local period T entered a given wave height and period bin. In the figure wave
height is normalized with the significant wave height HS= 4m1/2

0 and the local period
is normalized with the mean period T01= τ .
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FIGURE 1. Envelope ρ and local frequency ω for: (a,b) a narrow-band (ν = 0.24) and
(c,d) a broad-band (ν = 0.40) signal.

Finally, figure 3 shows, for the broad-band case only, a comparison of the
numerically simulated marginal distribution laws with the theoretically ones, given in
(2.23) and (2.24). Note that for the period distribution only the positive periods are
plotted. For a width ν = 0.4, the fraction of negative periods is only 3.6 % according
to theory and only 3.5 % according to the Monte Carlo simulations.

It is concluded that there is good agreement between the theoretical probability
distributions and the results obtained with Monte Carlo simulations. This implies that
the time series analysis here, which is based on the simple description that η=ρ cosφ,
where the local frequency follows from the time derivative of the phase, seems to
work, even for broad-banded spectra.

4. Extension to weakly nonlinear waves
Having obtained the joint p.d.f. of envelope height and period for linear wave

trains we are now going to sketch how to extend the random time series analysis
to weakly nonlinear waves. The aim here is to obtain the p.d.f. of the envelope of
a weakly nonlinear wave train. Again, we attempt to adopt the simple description
η = ρ cos φ where envelope ρ and phase φ are obtained from the surface elevation
η and its orthogonal complement ζ which follows from the Hilbert transform of η.
The orthogonality implies that 〈ηζ 〉 vanishes. Referring to the development in § 2 the
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FIGURE 2. Joint p.d.f. of envelope wave height H/HS (with H = 2ρ) and period T/T01
for: (a) a narrow-band (ν = 0.24) and (c) a broad-band (ν = 0.40) case. For comparison
the corresponding theoretical distributions are shown in (b) and (d).

key problem in deriving the envelope p.d.f. is then to obtain a number of statistical
parameters. This means, using stationarity of the surface elevation, that we need to
obtain in terms of the wave spectrum expressions for the covariances 〈η2〉 and 〈ζ 2〉
and higher-order cumulants such as skewness and kurtosis and mixed cumulants such
as 〈ηζ 2〉 and 〈η2ζ 2〉. For the general case of an arbitrary spectrum a number of these
statistical moments have already been derived by Janssen (2009), which shows that
this can be done but, admittedly, the task is quite laborious.

For observed time series it is straightforward to obtain the Hilbert transform of
the surface elevation once its Fourier transform is known (see e.g. Shum & Melville
1984). In that event we have for a given time window a representation of η(t) in
terms of basis functions exp (−iωt) with fixed Fourier coefficients. Then, as already
suggested by Gabor in 1946, the Hilbert transform of the surface elevation follows
at once by applying the rule given in (3.6) (see § 3). Note, however, that the spectral
values will depend on the length of the time window, and therefore there is an implicit
dependence of the results of the Hilbert transform on the stationarity of the signal.
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FIGURE 3. Comparison of simulated (black) and theoretical (red) marginal distribution
laws for (a) envelope wave height and (b) period. The spectrum corresponds to the broad-
band case (ν = 0.40).

Theoretically, the situation is more complicated because in general the Fourier
coefficients will become time-dependent and the Hilbert transform of these coefficients
is required as well. However, for weakly nonlinear waves it is possible to obtain an
approximate expression for the Hilbert transform of the surface elevation. In that case
wave steepness ε is small and it can be shown that the relevant Fourier coefficients
only vary on the long time scale τ = t/ε2, so that when the Hilbert transform is
applied these coefficients can be taken as frozen. The case of weakly nonlinear
surface gravity waves is briefly discussed in the appendix A. It is made plausible that
since wave–wave interactions only have a relatively small effect on wave evolution,
in the weakly nonlinear case it is also possible to find a complex function Z, which
vanishes for Im(t)→−∞, in such a way that η= (Z+ Z∗)/2 while ζ =−i(Z− Z∗)/2.

In order now to obtain the envelope wave height distribution the joint p.d.f. of
the two orthogonal quantities η and ζ is required. The joint p.d.f. follows from the
so-called generating or characteristic function. Here, the characteristic function for N
parameters x= (x1, x2, . . . , xN) is defined by

G(µ)= 〈exp iµ · x〉 =
∫

dx p(x) exp iµ · x, (4.1)

and the parameter µ represents the counterpart of x in Fourier space. Clearly, the joint
p.d.f. p(x) is the Fourier transform of the generating function G. Now, for weakly
nonlinear waves an expansion of p(x) in terms of statistical moments is obtained by
expanding G and then p(x) follows from the Fourier transform of G.

Note that G contains all the statistical information on the stochastic process x,
e.g. the moments of the p.d.f. are related to derivatives of G with respect to µ at the
origin. Hence, the moments are related to the coefficients of the Taylor expansion
around the origin. This expansion is, however, not very useful because it does not
bring out the significance of a special characteristic distribution, the one corresponding
to a Gaussian distribution, which is of great importance as linear waves usually have
a normal distribution. Here the Gaussian characteristic function is given by

G0 = e−µiµjBij/2, (4.2)
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and by expanding G around G0 the so-called cumulants of the distribution function
are introduced. These are the coefficients of the Taylor expansion of the logarithm of
G, i.e.

G= exp
{
−1

2
µiµjBij − i

3!µiµjµkCijk + 1
4!µiµjµkµlDijkl + · · ·

}
, (4.3)

where Bij is the second-order cumulant, Cijk is the third-order cumulant, related to
the skewness and, finally, Dijkl is the fourth-order cumulant which is connected to the
excess kurtosis. Consistent with the small-amplitude expansion for waves with a small
steepness ε, there is an ordering in the magnitude of the cumulants, i.e.

Bij =O(ε2), Cijk =O(ε4), Dijkl =O(ε6), (4.4a−c)

and the hope is that for sufficiently small ε the expansion converges. In order to obtain
the joint p.d.f. the Fourier transform of G is required, which for the expansion given in
(4.3) is not straightforward. Therefore the exponential function is expanded. Adopting
the above ordering one finds to lowest significant order

G'G0

{
1− i

3!µiµjµkCijk + 1
4!µiµjµkµlDijkl − 1

72

(
µiµjµkCijk

)2
}
. (4.5)

The corresponding expansion for the p.d.f. p(x) then follows from the Fourier
transform of G, i.e.

p(x)= 1
(2π)N

∫
dµG(µ) exp (−iµ · x). (4.6)

Noting the usual rule for Fourier transformation, namely that each factor µi
corresponds to i∂/∂xi and denoting the Fourier transform of G0 by Φ0 where

Φ0 = 1
(2π)N/2|B|1/2 exp

(
−1

2
xixjB−1

ij

)
, (4.7)

the expansion for the p.d.f. p(x) becomes

p(x)=
{

1− Cijk

3!
∂3

∂xi∂xj∂xk
+ Dijkl

4!
∂4

∂xi∂xj∂xk∂xl
+ C2

ijk

72

(
∂3

∂xi∂xj∂xk

)2
}
Φ0(x) (4.8)

which is known as the Edgeworth expansion. Compared to the well-known Gram–
Charlier expansion, used by e.g. Tayfun & Lo (1990), the difference is the additional
term which is proportional to the square of the skewness parameter Cijk. According to
the order of magnitude of skewness and kurtosis, given in (4.4), the last term of the
Edgeworth expansion is, at least in the tail of the distribution on the scale xi=O(1/ε),
as important as the term involving the kurtosis Dijkl. Therefore, it should be retained
and it gives an important contribution to the tail of the wave height distribution as
will be seen in a moment.

Equation (4.8) has been applied to the case of the joint p.d.f. of η and ζ . Polar
coordinates ρ and θ are introduced, i.e.

η= ρ cos θ, ζ = ρ sin θ, (4.9a,b)
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and following the approach given in Mori & Janssen (2006) the p.d.f. of the envelope
ρ is then obtained from an integration of the joint p.d.f. over θ from 0 to 2π. For
convenience it will be assumed that the variances of η and ζ are equal and that
these parameters are orthogonal in the sense that 〈ηζ 〉 = 0. Results will be presented
for the scaled parameters η′ = η/〈η2〉1/2 and ζ ′ = η/〈ζ 2〉1/2 and the primes will be
dropped. Because of this normalization, the parameters that measure the deviation
from normality, namely skewness and kurtosis, are scaled accordingly. Introducing the
normalized moments

λm,n = 〈ηmζ n〉
〈η2〉m/2〈ζ 2〉n/2 , (4.10)

the normalized skewness becomes

κm,n = λm,n, m+ n= 3, (4.11)

while the normalized kurtosis becomes

κm,n = λm,n + (m− 1)(n− 1)(−1)m/2, m+ n= 4. (4.12)

As a result, the envelope p.d.f. becomes

p(ρ)= ρe−ρ
2/2

{
1+ κ4

8

(
1
8
ρ4 − ρ2 + 1

)
+ κ

2
3

72

(
1
16
ρ6 − 9

8
ρ4 + 9

2
ρ2 − 3

)}
, (4.13)

with
κ2

3 = 5(k2
30 + κ2

03)+ 9(κ2
21 + κ2

12)+ 6(κ30κ12 + κ03κ21) (4.14)

and
κ4 = κ40 + κ04 + 2κ22. (4.15)

The envelope p.d.f. consists of three contributions. The first term is the dominant one
and represents the usual Rayleigh distribution also found in § 2. The other two terms,
proportional to kurtosis and skewness, represent deviations from normality and are
supposed to be small corrections to the Rayleigh distribution. However, from (4.13)
it is immediately evident that for large ρ the nonlinear terms will dominate. Thus,
the expansion is not uniformly valid and has a limited range of validity. This is also
evident when the theoretical result is compared with Monte Carlo simulations.

It is noted that Mori & Janssen (2006) used as starting point the Gram–Charlier
expansion for the joint p.d.f. of η and ζ . The reason for this was that they mainly
concentrated on the contribution of free waves to the deviations from normality. For
free waves the skewness of the sea surface can be shown to vanish (see appendix A)
and therefore the third term in (4.13) was ignored. Here, it is shown that for bound
waves the third term should be included.

In order to agree with the common practice of using the wave height distribution for
the study of extreme sea states a change of variable from envelope height normalized
with the variance 〈η2〉1/2 of the time series to wave height normalized with the
significant wave height HS = 4〈η2〉1/2 is introduced, where local wave height is given
by twice the envelope height. Denoting the normalized wave height by h one then
finds that h= ρ/2 and from (4.13) the p.d.f. of h becomes

p(h)= 4he−2h2

{
1+ κ4

3

(
2h4 − 4h2 + 1

)+ κ2
3

72

(
4h6 − 18h4 + 18h2 − 3

)}
. (4.16)
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In principle, it is straightforward to evaluate for an arbitrary sea state all the
coefficients in (4.16). To be specific, κ40 and κ30 are already known from Janssen
(2009), but κ22 and κ04 still need to be determined. Clearly this is a rather cumbersome
task; therefore, to validate the present approach only the case of a single wave train
will be considered, which may be regarded as the narrow-band limit of a weakly
nonlinear, random sea state. In that case the surface elevation is given by the
well-known Stokes expansion (see appendix A for more details)

η/a=
(

1− ε
2

8

)
cos θ + 1

2
ε cos 2θ + 3

8
ε2 cos 3θ, (4.17)

where a is the wave amplitude, ε= k0a is the wave slope, θ = k0x−Ω0t+φ, φ is the
arbitrary, random phase of the wave and Ω0=ω0(1+ ε2/2) is the nonlinear dispersion
relation with ω0 = √gk0. The auxiliary variable ζ is then obtained by replacing all
cosines with sines times a ‘minus’ sign.

In order to evaluate the p.d.f. of the wave height the evaluation of a number of
skewness and kurtosis terms is required. To that end the method used in Janssen
(2009) (cf. § A.3 therein) is followed which means that it is assumed that the wave
amplitude a has a Rayleigh distribution while the phase φ is uniform. With σ 2= 〈a2〉
the wave variance and ∆ = k0σ the so-called significant slope parameter, it is then
found that the relevant skewness terms become

κ30 = 3∆, κ12 =∆, κ21 = κ03 = 0, (4.18a−c)

while the relevant kurtosis terms become

κ40 = 18∆2, κ22 = 3∆2, κ04 = 0. (4.19a−c)

It is striking to see that the statistical parameters for η and ζ are so different. Whilst η
is a nonlinear signal with finite skewness and kurtosis, its Hilbert transform ζ is also a
nonlinear signal but with vanishing third and fourth cumulant. Using (4.18) and (4.19)
in (4.16) the wave height p.d.f. of a third-order Stokes wave train becomes

p(h)= 4he−2h2 {
1+ 4∆2

(
3
2 h2 − 3h4 + h6

)}
. (4.20)

Finally, in order to check the validity of the theoretical result (4.20) Monte Carlo
simulations using the surface elevation (4.17), with Rayleigh distributed amplitude a
and uniform phase φ, and its corresponding Hilbert transform were performed. The
envelope then follows from (2.6), and the wave height distribution follows at once. In
order to obtain statistically reliable results, in particular in the tail of the distribution,
the number of ensemble members was 5 000 000.

In figure 4 a comparison is made between (4.20) and the result of the Monte
Carlo simulation. The significant steepness ∆ was chosen to be 0.1 which is a
typically value for steep, young windsea. Concentrating on the tail of the distribution
the logarithm of the p.d.f. versus normalized wave height has been plotted, hence
a Gaussian distribution appears as a parabola while an exponential distribution is
a straight line. It is striking to see that the Monte Carlo simulations show, to high
precision, that the tail of the distribution is exponential. It has already been noted that
the theoretical result, given by the blue line in figure 4, is not uniformly valid. Hence
theory can at best only agree in a limited range of h with the Monte Carlo results.
Figure 4 suggests that there is good agreement up to h ' 2.5, but it is emphasized
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FIGURE 4. Comparison of simulated (black) and theoretical (blue) probability distribution
laws for local wave height normalized with its mean value (the significant wave height).
The signal is given by a Stokes wave train with significant steepness of 0.1. For illustration
the wave height distribution for a Gaussian sea state is shown by the red line, while the
theoretical p.d.f. without skewness effects is shown by the green line.

that the range of validity depends on the wave steepness, i.e. for steeper waves the
range is smaller.

Furthermore, by comparing the p.d.f. for a Gaussian sea state (red line) with the
Monte Carlo result it is evident that for young windsea even the contributions by
the bound waves may result in considerable deviations from the normal distribution,
leading to considerable increases in the probability of extreme events. For example,
the probability that wave height is larger than two times significant wave height
increases by almost a factor of three, from 3.6 × 10−4 to 9.8 × 10−4. Finally, by
comparing the green curve with the blue one it is seen that finite skewness has a
considerable impact on the tail of the distribution. It is emphasized that this result
holds for the bound wave contribution to the statistics of a weakly nonlinear, random
sea state. The free waves statistics is different because skewness can be shown to
be vanishingly small. Therefore, as already shown by Mori & Janssen (2006), for
free waves the wave height distribution is given by (4.16) with vanishing skewness
contribution, i.e. κ2

3 = 0.

5. Conclusions

In this paper an analysis method has been studied that allows the characterization
of extreme events in a random time series. The idea is to obtain the joint p.d.f. of
envelope wave height and period from the envelope ρ and the local phase φ of the
wave train, and wave height is then defined as twice the envelope height while the
local period follows from the angular frequency given by ω=−∂φ/∂t. Envelope and
phase are obtained from the time series of the signal η and its Hilbert transform. The
envelope has the interesting physical interpretation that its square is a measure of the
power of the signal. The physical interpretation of the local period is not always clear
as there is no guarantee that this quantity is always positive, and the frequency with
which negative periods occur, although small, increases with the width of the wave
spectrum.
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Nevertheless, it turns out that the reduction of a complicated signal to just two
parameters provides useful information on the statistical properties of the time series.
For example, for a Gaussian sea state it is straightforward to obtain the joint p.d.f. of
envelope wave height and wave period. A comparison with Monte Carlo simulations
suggests that this conclusion not only holds for narrow-band wave trains, but also
for time series with a fairly arbitrary spectral shape, the only restriction being that
a number of spectral moments should exist. For the joint p.d.f. of wave height
and period marginal distribution laws can be derived as well, and the p.d.f. of
envelope wave height is shown to follow, independent of spectral width, the Rayleigh
distribution.

It has also been shown how the present approach can be extended into the weakly
nonlinear regime. This is, of course, quite relevant when one wishes to study extreme
events such as freak waves because nonlinear effects are expected to be important.
In the present work the starting point to study nonlinear effects on the p.d.f. was
the well-known Edgeworth expansion. Unfortunately, this expansion is not uniformly
valid, but for typical values of skewness and kurtosis seems to give acceptable
estimates of the probability of extreme events for h < 2.5, where h is the envelope
wave height normalized with the significant wave height. Monte Carlo simulations
seem to indicate that the tail of the distribution is exponential, which is beyond the
grasp of the Edgeworth expansion. More work is therefore needed to extend the
weakly nonlinear statistical approach to allow for the exponential behaviour of the
tail of the p.d.f.
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Appendix A. Hilbert transform for surface elevation of weakly nonlinear waves
Assuming potential flow of an ideal fluid with potential φ, Zakharov (1968) has

shown that the total energy E of the fluid may be used as a Hamiltonian when one
chooses as canonical variables the surface elevation η and the value ψ of the potential
at the surface, i.e. ψ(x, t)=φ(x, z, t). Here, coordinates are chosen in such a way that
the undisturbed surface of the fluid coincides with the x–y plane, while the z-axis is
pointed upward and the acceleration due to gravity g is pointed downward.

For weakly nonlinear waves Zakharov (1968) obtained from the Hamilton equations
an approximate evolution equation for surface gravity waves which in essence
describes the evolution of the amplitude of the waves caused by four-wave interactions.
In this approach the surface elevation and potential at the surface are written in terms
of a Fourier expansion. Introducing k as the wavenumber vector, k as its magnitude,
while ω = ω(k, D) denotes the dispersion relation of surface gravity waves on water
of finite depth D, the canonical variables η and ψ become

η=
∫ ∞
−∞

dk η̂(k, t)eik·x + c.c., ψ =
∫ ∞
−∞

dk ψ̂(k, t)eik·x + c.c., (A 1a,b)

where η̂(k, t)=√(ω/2g)B(k, t), ψ̂(k, t)=−i
√
(g/2ω)B(k, t) and B(k, t) is the action

variable. It is remarked that the variable η̂ and ψ̂ are in quadrature: they are out of
phase by 90◦.
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The Fourier expansions for η and ψ are then substituted into the expression for the
energy E, and assuming small steepness ε an expansion of E in powers of the action
variable B is obtained. Then, the evolution equation for B follows from Hamilton’s
equations ∂B/∂t=−iδE/δB∗, and it turns out that the rate of change in time of B is
caused by three terms. The first one, which is linear in B, is the dominant term and
results in a harmonic oscillation with angular frequency ω. The second and third terms
are nonlinear in the action variable and they describe the rate of change in time caused
by three-wave and four-wave interactions, respectively. Surface gravity waves, because
the dispersion relation is concave, do not have resonant three-wave interactions, while
Phillips (1960) has shown that only one type of resonant four-wave interaction is
permitted by the dispersion relation, namely interactions that satisfy the condition ω1+
ω2=ω3+ω4 for k1+ k2= k3+ k4. The distinction between resonant and non-resonant
interactions has important consequences, namely, non-resonant interactions, which give
rise to bound harmonics, may be eliminated by means of a canonical transformation
that is non-singular (Zakharov 1968; Krasitskii 1994).

In order to eliminate as much as possible the effects of the bound waves, one
therefore applies on B a canonical transformation of the type

B= b+ B2(b, b∗), (A 2)

where b is the action variable of the free gravity waves while B2(b, b∗) is a
representation of the bound waves. The transformation B2(b, b∗) is only known
in terms of an amplitude expansion, and an expression up to third order is required
(Krasitskii 1994; Janssen 2009). As an illustration the expression up to second order
in steepness is given:

B2 =
∫

dk2,3

{
A(1)1,2,3b2b3δ1−2−3 + A(2)1,2,3b∗2b3δ1+2−3 + A(3)1,2,3b∗2b∗3δ1+2+3

}
+ · · · (A 3)

where, for brevity, the notation b1 = b(k1), etc., is introduced. The unknowns A(i),
i = 1, 3 are obtained by systematically removing the non-resonant third-order
contributions to the wave energy.

As a consequence, the evolution equation for b becomes

∂b1

∂t
+ iω1b1 =−i

∫
dk2,3,4T1,2,3,4b∗2b3b4δ1+2−3−4, (A 4)

which is called the Zakharov equation. It describes the rate of change of the free
wave action variable b due to one particular type of nonlinear interaction only, namely
k1 + k2 = k3 + k4. The nonlinear transfer function T1,2,3,4, as found by Krasitskii
(1994), enjoys a number of symmetries that guarantee that the Zakharov equation is
Hamiltonian and conserves energy.

In Janssen (2003) it was shown that according to the deep-water version of the
Zakharov equation extreme wave events are generated by nonlinear focusing in
a random wavefield, resulting in considerable enhancement of the probability of
extreme waves (which basically prompted the present study). Therefore, the nonlinear
focusing gives rise to deviations from the normal probability distribution and is
strongly connected to the dynamics of the free waves. However, it is also of interest
to study the consequences of the presence of bound waves on the surface elevation
statistics (see for an extensive study Janssen 2009). Bound waves will give rise to
sharper crests and wider troughs which will result in deviations from the normal
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distribution as well. Based on the canonical transformation (A 2) the surface elevation
is therefore written as a sum of the free wave contribution ηfree and a contribution
from the bound waves ηbound, i.e.

η= ηfree + ηbound, (A 5)

where ηfree is given by (A 1) with η̂free(k, t) = (ω/2g)1/2b(k, t) while ηbound is given
by (A 1) but now using, in agreement with the canonical transformation (A 2), the
contribution of the bound waves, i.e. η̂bound(k, t)= (ω/2g)1/2B2(k, t).

Now, we are in a position to derive an approximate expression for the Hilbert
transform of the surface elevation. In doing so it is assumed that to a good
approximation the dynamics of the free wave action variable b(k) is given by a
harmonic oscillator with angular frequency ω(k). In other words in (A 4) effects of
nonlinear interactions are ignored, and in the evaluation of the Hilbert transform we
take the simple linear solution

b(k, t)= b̂(k, τ ) e−iω(k)t (A 6)

and from the Zakharov equation it follows that b̂ evolves on the slow time scale
τ = ε2t.

A.1. Free waves
Let us first start with the free wave part of the surface elevation. Inspection of
the expression for the surface elevation suggests introducing the following complex
function:

Zfree = 2
∫ ∞
−∞

dk η̂free(k)eik·x, (A 7)

so that in agreement with (4.1) the surface elevation becomes

η= 1
2

(
Zfree + Z∗free

)
. (A 8)

Writing the time evolution in the form given in (A 6) and ignoring the slow time
dependence, it is seen that just as in § 2 the complex function Z vanishes for Im(t)→
−∞, hence the auxiliary variable becomes ζ =−H(η). Assuming that the amplitudes
vary on a slow time scale while using (3.6) one finds that H(η) ≈ (i/2)(Z − Z∗),
therefore, the appropriate auxiliary variable becomes

ζ =− i
2
(Zfree − Z∗free). (A 9)

It is remarkable that the pair (η, ζ ) enjoys a similar relation to the canonical variables
η and ψ of the Hamiltonian formulation of water waves, i.e. ζ is 90◦ out of phase
with η. The envelope ρ and phase φ are introduced according to Z = ρeiφ , hence

η= ρ cos φ, ζ = ρ sin φ; (A 10a,b)

therefore envelope and phase may be obtained in the usual manner. Although we
only have an approximate expression for ζ it is worthwhile to point out that for
homogeneous and stationary conditions it still follows that surface elevation and
auxiliary variable are orthogonal, i.e. 〈ηζ 〉 = 0. For homogeneous water waves the
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spatial correlation function only depends on the distance between the two locations
of interest. As a consequence this implies for the second moments

〈b1b∗2〉 =N1δ(k1 − k2) and 〈b1b2〉 = 0, (A 11a,b)

where we have introduced the usual action density N(k). Using (A 8) and (A 9) the
correlation between η and ζ becomes

〈ηζ 〉 = 1
4

(〈Z2
free〉 − 〈(Z∗free)

2〉)= 0, (A 12)

and because of the second homogeneity condition in (A 11) both the first and the
second term on the right-hand side vanish. For the same reason one can show that
the second moments of η and ζ are identical, i.e. m0 = 〈η2〉 = 〈ζ 2〉, where m0 is the
zeroth moment of the spectrum.

As indicated in Mori & Janssen (2006), who originally introduced the auxiliary
parameter ζ of (A 9), higher-order moments/cumulants can be obtained as well.
Using the properties of the Zakharov equation, which has cubic nonlinearity, and the
homogeneity assumption it can be shown that to lowest significant order the free
waves do not contribute to the skewness of the sea surface, i.e. 〈η3〉 = 0, 〈η2ζ 〉 = 0,
〈ηζ 2〉 = 0 and 〈ζ 3〉 = 0. As will be seen in the next subsection the skewness of the
sea surface is entirely determined by the bound waves.

However, as pointed out by Janssen (2003) free waves will contribute to the
kurtosis of the sea surface, because of the action of the resonant and non-resonant
four-wave interactions. The excess kurtosis κ40=〈η4〉/m2

0− 3 is given by (14) of Mori
& Janssen (2006), and for a narrow-band, uni-directional wave train the kurtosis can
be shown to depend on the square of the Benjamin–Feir Index. Other fourth-order
cumulants that are needed for the evaluation of the p.d.f. of the envelope wave height
are κ22 = 〈η2ζ 2〉/m2

0 − 1 and κ04 = 〈ζ 4〉/m2
0 − 3. Using the pair (A 8) and (A 9) and

the homogeneity condition one finds κ22 = κ40/3, while κ04 = κ40.
The p.d.f. of envelope wave height and the resulting p.d.f. of maximum wave height

can then be obtained following the procedure sketched in Mori & Janssen (2006). The
paper treats the nonlinear free waves, which give the dominant contribution to changes
in the p.d.f. in the case of extreme events such as freak waves. However, bound waves
need to be treated somewhat differently as will be seen in the next subsection.

A.2. Bound waves
The case of bound waves is not as straightforward as the free wave case. In the
previous subsection we have seen that it is trivial to obtain the appropriate complex
function Zfree (see (A 9)) because, at least to second order in steepness, all modes
behave like exp(−iωt) and therefore they decay in time for Im(t)→−∞. Then, under
the assumption of frozen amplitude, the Hilbert transform of Zfree follows at once.

The nonlinear part of the canonical transformation is given in (A 2) and from
the expression below (A 3) it is evident that there is a mixed large-time behaviour.
The term proportional to b2b3 oscillates like exp(−i(ω2 + ω3)t) hence it vanishes
for Im(t)→ −∞. On the other hand, the term proportional to b∗2b∗3 oscillates like
exp(+i(ω2+ω3)t) so it will vanish for positive imaginary time, while the behaviour of
the mixed term b∗2b3 depends on the sign of ω2 −ω3. However, in the expression for
the bound part of the surface elevation terms with similar time-asymptotic behaviour
can be grouped together suggesting the following complex function for the bound
waves:

Zbound = 2
∫ ∞
−∞

dk1 η̂bound exp(ik1 · x) (A 13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.565


Random time series analysis 255

where

η̂bound =
(
ω1

2g

)1/2 ∫ ∞
−∞

dk2,3

{(
A(1)1,2,3 + A(3)−1,2,3

)
b2b3δ1−2−3

+
(

A(2)1,2,3 + A(2)−1,2,3

)
b∗2b3H(ω3 −ω2)δ1+2−3

}
+ · · · , (A 14)

where H is the Heaviside function and the dots represent the third-order terms that
determine the kurtosis related to the bound waves. With this definition of the complex
function one may proceed as before and one obtains the pair of functions

η= 1
2

(
Zbound + Z∗bound

)
, ζ =− i

2

(
Zbound − Z∗bound

)
. (A 15a,b)

In principle it is now straightforward, but very laborious, to obtain the relevant
cumulants which are needed to obtain the p.d.f. of envelope wave height (Janssen
2009). Rather than studying the general case we will consider instead the simple
case of a uniform nonlinear Stokes wave. Up to third order in wave steepness the
canonical transformation for a single deep-water wave train is found to be

η/a=
(

1− ε
2

8

)
cos θ + 1

2
ε cos 2θ + 3

8
ε2 cos 3θ, (A 16)

where a is the wave amplitude, ε= k0a is the wave slope, θ = k0x−Ω0t+φ, φ is the
arbitrary phase of the wave and Ω0=ω0(1+ ε2/2) is the nonlinear dispersion relation
with ω0=√gk0. The above single-mode result follows from the narrow-band limit of
the canonical transformation for general wave spectra (Janssen 2009). The auxiliary
variable ζ is then obtained by taking the Hilbert transform of the surface elevation.
For the expression (A 16) this is a straightforward task as it simply means that the
cosines are replaced by sines times a ‘minus’ sign. Alternatively, one may obtain ζ
using (A 15) by inferring from (A 16) that

Zbound = a
(

1− ε
2

8

)
eiθ + a

2
ε e2iθ + 3a

8
ε2 e3iθ . (A 17)

In order to obtain in the main text the p.d.f. of envelope wave height the evaluation
of a number of skewness and kurtosis terms is required. To that end we follow the
method used in Janssen (2009) (cf. § A.3 therein) which means that it is assumed that
the wave amplitude a has a Rayleigh distribution while the phase is uniform. The
ensemble average is then simply an integration of the joint p.d.f. of amplitude and
phase, i.e.

〈 f 〉 =
∫

f p(a, φ)dadφ, (A 18)

where f is an arbitrary function of amplitude and phase.
With σ 2 = 〈a2〉 the wave variance and ∆ = k0σ the so-called significant slope

parameter, it is then found that the relevant skewness terms become

κ30 = 3∆, κ12 =∆, κ21 = κ03 = 0, (A 19a−c)

while the relevant kurtosis terms become

κ40 = 18∆2, κ22 = 3∆2, κ04 = 0. (A 20a−c)
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It is striking to see that the statistical properties for η and ζ are so different. Whilst
η is a nonlinear signal with finite skewness and kurtosis, its Hilbert transform ζ is
also a nonlinear signal but with vanishing third and fourth cumulant.
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