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ABSTRACT

In this paper, the combined effects of refraction and nonlinearity on the evolution of ocean surface wave

statistics are considered and possible implications for the likelihood of extreme waves, also known as freak or

rogue waves, are examined. A frequency-angular spectrum model is derived that accounts for cubic nonlinear

dynamics and weak lateral homogeneity of the medium. Through Monte Carlo simulations, the evolution of

wave statistics in freely developing waves, waves over an opposing shearing current, and waves refracted over

an isolated topographical feature is modeled. The simulations show that freely developing, directionally

spread wave fields generally maintain near-Gaussian statistics, which was also found in earlier model

studies. However, the enhanced nonlinearity caused by the refractive focusing of narrowband wave fields can

result locally in strongly non-Gaussian statistics and an associated increased likelihood of extreme wave

events.

1. Introduction

Stories of unexpectedly large waves rising out of no-

where and wreaking havoc in their paths have been

reported throughout maritime history (see, e.g., Draper

1964, 1971; Slocum 1999; Smith 2006; Liu 2007) but these

were invariably dismissed as part of maritime folklore,

not to be taken seriously. In part, this early skepticism

may have been due to the lack of understanding of the

‘‘randomness’’ of the ocean surface within the deter-

ministic framework of nineteenth-century fluid dynamics,

a frustration perhaps best captured by a remark as-

cribed to Lord Rayleigh (Kinsman 1965) that ‘‘the basic

law of the seaway is the apparent lack of any law.’’

It was not until after the Second World War that

stochastic process theory was successfully introduced in

ocean wave forecasting (Bates 1952; Kinsman 1965).

Major advances in our theoretical understanding of

ocean wave statistics followed (see, e.g., Hasselmann

1962; Kinsman 1965; Benney and Saffman 1966; Benney

and Newell 1969) and, with the advent of modern

computers, a rapid development of stochastic wave pre-

diction models suitable for oceanic-scale wave forecast-

ing became possible (e.g., WAMDI Group 1988; Tolman

1991; Komen et al. 1994; Booij et al. 1999; Janssen 2004;

WISE Group 2007). In this statistical framework, ex-

treme waves became a reality. After all, if—from a loose

use of the central limit theorem—we assign a (near)

Gaussian probability density function (pdf) to the ocean

surface, such extremities must occur, only with low

probability.

However, the inherent (weak) nonlinearity of water

waves causes deviations from Gaussian statistics. In

deep water, second-order nonlinearity (three-wave in-

teractions) causes small, local corrections to the sea

surface geometry, resulting in slightly peaked crests and

relatively flat troughs (Longuet-Higgins 1963; Tayfun

1980). Although such local bound modes cause (small)

deviations from Gaussian statistics (in particular, non-

zero skewness of the sea surface elevation), they do not

directly affect the heights of the waves nor are they

dynamically important on that order. However, weaker

(higher order) interactions can approach resonance and

the associated nonlinear dynamics are more intricate.

At the third order, four-wave interactions drive the

Corresponding author address: Tim T. Janssen, Department of

Geosciences, San Francisco State University, 1600 Holloway Ave.,

San Francisco, CA 94132.

E-mail: tjanssen@sfsu.edu

1948 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39

DOI: 10.1175/2009JPO4124.1

� 2009 American Meteorological Society



evolution of wave statistics on two disparate scales of

variation: a relatively fast O(e22) scale (where e is a

characteristic wave steepness)—the Benjamin–Feir

(BF) scale—and a much slower O(e24) scale—the

Hasselmann scale (Hasselmann 1962; Annenkov and

Shrira 2006). The slow scale is associated with resonant

interactions, which maintain statistics close to Gaussian

(Hasselmann 1962; Saffman 1967). The evolution on the

fast BF scale occurs when the wave field is nonlinearly

unstable, the random-wave equivalent of the well-

known Benjamin–Feir instability process for periodic

waves (e.g., Alber 1978; Onorato et al. 2001; Janssen

2003); physically, this instability is associated with near-

resonant four-wave interactions that transfer wave en-

ergy across the unstable modes and—through phase

coupling—can create coherent structures and strong

deviations from Gaussian statistics (Onorato et al. 2001;

Janssen 2003; Socquet-Juglard et al. 2005). The non-

linear instability of random waves has been studied

extensively. Alber (1978) derived a stability criterion

for narrowband random waves, which was later coined

the Benjamin–Feir index (BFI) by Janssen (2003) and

expressed as

BFI 5
ffiffiffi
2
p e

D
v

, (1)

where e 5 k0

ffiffiffiffiffiffi
m0

p
is the wave steepness, with m0

denoting the total variance of the wave field. The nor-

malized spectral width Dv 5 bv/v0, where bv is a mea-

sure of width of the wave frequency spectrum and v0

is the peak frequency. Consistent with the narrowband

approximation, Mori and Janssen (2006) show that for a

Gaussian-shaped spectrum the wave kurtosis (the nor-

malized fourth cumulant) can be approximated in terms

of the BFI as

kurtosis [
hh4i
hh2i2

� 3 ’
pffiffiffi

3
p BFI2, (2)

which, if applicable to oceanic waves, has some impli-

cations. For example, if we assume that a narrowband

wave field is neutrally stable (BFI ’ 1), then according

to (2) its kurtosis would be approximately 1.8, a con-

siderable deviation from Gaussian statistics.

However, although these narrowband relations [the

BFI as a measure of stability and (2) relating BFI to

kurtosis] seem to hold well for unidirectional waves in

deep water (see, e.g., Janssen 2003; Onorato et al. 2004;

Mori and Janssen 2006; Mori et al. 2007; appendix B),

their physical relevance to realistic oceanic waves is not

clear. First, BFI values in field observations, even for

narrowband swells, are generally much lower than unity

(also noted by Janssen 2003). Also, the relation between

BFI and kurtosis [Eq. (2)] has so far not been convinc-

ingly corroborated with field observations [see, e.g., the

kurtosis estimates in Fig. 1 obtained from buoy obser-

vations in 195-m depth off the North Carolina coast

(Ardhuin et al. 2003)]. Second, laboratory observations

(e.g., Waseda 2006) and numerical simulations (Onorato

et al. 2002a; Socquet-Juglard et al. 2005; Gramstad and

Trulsen 2007) of two-dimensional (directionally spread)

wave evolution indicate that freely developing nonlin-

ear wave fields do not retain high kurtosis values but

instead relax to a near-Gaussian state, suggesting that in

two-dimensional wave fields the nonlinear physics may

be fundamentally different.

Wave nonlinearity is not the only potential mecha-

nism for enhanced likelihood of extreme waves at sea.

For instance, when in 1967 the Suez Canal closure

resulted in an increase in shipping off the southeast

coast of South Africa, this led to an alarming number of

incidents involving extremely large waves (see, e.g.,

Mallory 1974). This regional ‘‘hot spot’’ was linked

to the refractive focusing of northbound swell fields

opposed by the Agulhas Current, a strong southward-

flowing coastal current on the outer edge of the conti-

nental shelf (Smith 1976; White and Fornberg 1998).

Such focusing effects, induced by either an ocean current

or seafloor topography, provide a plausible explanation

for the occurrence of regional hot spots of intensified

wave energy. However, it does not explain the transient

features of extreme waves that are generally reported

(Draper 1964, 1971; Slocum 1999; Smith 2006; Liu 2007).

Moreover, extreme waves are observed even in loca-

tions where no currents or strong topography are pres-

ent (Haver 2004).

FIG. 1. BFI and kurtosis computed from buoy observations (cir-

cles) on the North Carolina shelf in about 195-m water depth

(Ardhuin et al. 2003) and the theoretical relation (solid line) by

Mori and Janssen (2006). Kurtosis and BFI values were estimated

based on 2-h time series collected during October–December 1999.
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Although both nonlinearity and refractive focusing

have been identified as mechanisms for extreme wave

generation, these processes are generally concomitant

in the ocean and can potentially act together to create

not only much larger average wave energy levels locally

(focusing) but also an increased likelihood of extreme

waves (nonlinear instability) in an already intensified

sea state. The principal question we would like to ad-

dress here is whether focusing of wave energy because

of medium variations (e.g., currents or bathymetric

variations) can force a stable random wave field into an

unstable state where nonlinearity causes the develop-

ment of non-Gaussian statistics (and an associated in-

crease in extreme wave probability). This hypothesis, if

confirmed, would provide a basis for understanding the

observed transient character of extreme wave events in

focal regions.

To address these questions, we develop an angular

spectrum model for nonlinear waves and include the

effects of a spatially varying medium (section 2) to de-

scribe the refractive effects of shear currents and sea-

floor topography. The model is suitable for wideband

wave evolution in the half plane (forward-scattering

approximation) and accounts for both nonresonant qua-

dratic nonlinearity (bound waves) and near-resonant

cubic nonlinear dynamics. Lateral medium inhomoge-

neities are treated through a scattering term, much in

the same way as two-dimensional topography is treated

in Janssen et al. (2006). We use standard pseudospectral

techniques in our evaluation of refraction and nonline-

arity to allow for efficient Monte Carlo simulations of

the nonlinear evolution of wave statistics over an op-

posing shear current and an isolated shoal (section 3). In

section 4 we discuss our findings and their implications,

followed by conclusions in section 5.

2. A frequency-angular spectrum model

To study the evolution of nonlinear wave statistics we

employ a frequency-angular spectrum model (see, e.g.,

Suh et al. 1990; Janssen et al. 2006) that is suitable for

directionally spread random waves, propagating in the

half plane of the positive principal coordinate (forward-

scattering approximation). We account for weak lateral

medium variations to include refractive focusing effects

of an ambient current or seafloor topography on the

evolution of wave statistics. The purpose of this study is

not to discuss the intricacies of wave–current and wave–

bottom interactions in great detail, but rather to provide

a principal test of the effects of wave focusing on non-

linear wave statistics. Therefore, we will consider ide-

alized conditions of waves over an opposing shearing

current and wave propagation over an isolated bottom

feature in otherwise deep water (section 3). In the

present work, we include only the lowest-order terms

for the lateral medium inhomogeneities to capture the

principal refractive effects; higher-order extensions can

be derived along the same lines (see, e.g., Suh et al.

1990; Janssen et al. 2006), but this is not pursued here.

Throughout, we refer to x and y as the principal and

lateral coordinates in the horizontal plane, respectively.

The vertical coordinate is z, positive pointing upward

from the still-water level. In anticipation of nonlinearity

in the free-surface boundary conditions, which will re-

sult in quadratically coupled modes at second order in

wave steepness [O(e2)] and near resonances at O(e3),

we write the wave field velocity potential, F, as the

sum of primary components and second-order bound

waves:

F(x, z, t) 5 F(1)(x, z, t) 1 F(2)(x, z, t). (3)

Further, to exploit the fact that the medium variations

are one-dimensional to leading order, we decompose

the primary wave velocity potential, F(1)(x, y, z, t), as a

Fourier sum over (absolute) frequencies and lateral

wavenumbers, both of which are conserved in a sta-

tionary and (to leading order) laterally homogeneous

medium

F(1)(x, y, z, t) 5 �
‘

p
1
,q

1
5�‘

f1
1(x, z) exp[i(l

1
y� v

1
t)]. (4)

Here, v1 5 p1Dv and l1 5 q1Dl, where Dv and Dl

denote the frequency and lateral wavenumber spacing,

respectively. The numerical sub and superscripts on

wave variables refer to frequency and lateral wave-

numbers, respectively (e.g., f1
1 5 f

l1
v1

).

We consider the wave field as a sum of forward-

propagating plane waves, slowly modulated along the

principal direction. The Wentzel–Kramers–Brillouin

(WKB) approximation precludes the possibility of wave

reflections and does not include exponentially decaying

(evanescent) modes; the latter can be important locally

in the near-field (a few wavelengths) of their generation

source, but away from such regions the wave field can

be accurately represented by the propagating modes

alone (see, e.g., Stamnes 1986; Janssen et al. 2006).

Lateral wave field variations are accounted for by the

summation of the angular wave components and this

representation includes rapid modulations such as those

associated with wide-angle diffraction effects in a caustic

region (Suh et al. 1990; Janssen et al. 2006) or other

abrupt lateral variations of the wave field (Dalrymple

and Kirby 1988; Dalrymple et al. 1989; Janssen et al.

2008).
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To study the principal effects of an opposing shear

current, we include an idealized ambient current field,

U, along the principal direction (no lateral flow). We

assume that the current is laterally homogeneous to

leading order and we decompose it in a laterally aver-

aged component U and a small two-dimensional resid-

ual current eU written as

U(x, y, z) 5 U(x, z) 1 eU(x, y, z), (5)

where we assume eU(x, y, z) is O(b) with b � 1. The

current is assumed stationary and spatially slowly

varying such that (›x, ›y, ›z)U ; O(b, b2, b2). From

continuity, the vertical velocity W is thus O(b) and the

vorticity vector is O(b2). Upon setting O(b) 5 O(e2),

and because the highest-order terms in our wave model

are O(e3) cubic near resonances, we neglect the current

vorticity and derive wave evolution equations from

potential flow theory. Although we do not explicitly

restrict U to be small, our WKB description of the pri-

mary wave field (see below) requires a nonblocking

current, which thus poses implicit restrictions on the

magnitude of the laterally averaged current. Finally,

because we consider narrowband (in directional space)

waves propagating along the principal (current) axis, we

use a small-angle approximation for the wave–current

interaction.

With these assumptions, and upon solving the bound-

ary value problem for waves on the surface of an irro-

tational, inviscid, and incompressible fluid (see, e.g., Chu

and Mei 1970; Liu and Dingemans 1989; Janssen et al.

2006; and many other references) while assuming small

wave steepness (e) and deep water, we find at the lowest

order the familiar vertical structure

f1
1 5 u1

1(x) exp[k
1
(z� h)], (6)

where h is the wave-averaged free-surface elevation and

k1 is a wavenumber related to frequency, v1, and in-

trinsic frequency, s1, through the dispersion relation

s
1

5
ffiffiffiffiffiffiffi
gk

1

q
5 v

1
� k

1
U. (7)

Weak lateral medium variations, resulting from either a

spatially varying current field or a topographical fea-

ture, are included through higher-order scattering terms

in the evolution equations for the frequency-angular

components (along the lines of, e.g., Dalrymple et al.

1989; Suh et al. 1990; Janssen et al. 2006). The evolu-

tion of the frequency-angular components on account of

such inhomogeneities, as well as cubic nonlinear forc-

ing, is described through a solvability condition on the

primary wave field (see, e.g., Chu and Mei 1970; Mei

1989, chapters 3 and 12; Liu and Dingemans 1989; and

many others), which can be written as (see, e.g., Suh

et al. 1990; Janssen et al. 2006, 2008)

d

dx
� iH1

1

� �
A1

1(x) 5
ig

2g1
1

F
l1

ek
1
F(1)

n o
1 J

1,(nl)
1

, (8)

where the principal wavenumber component H1
1 5

sgn(v
1
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k

1
)2 � (l

1
)2

q
and

A1
1 5 g1

1u
1
1, g1

1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(V1

1 1 U )s
1
,

q
V1

1 5
H1

1

k
1

g

2s
1

. (9)

Equation (8) governs the evolution of the spectral

components of the primary wave field; the left-hand side

implies the conservation of action of a stationary wave

field in a laterally uniform domain. Lateral medium

variations are represented by the first term on the right

in (8) involving ek1(x, y), a two-dimensional correction

to the (one dimensional) reference wavenumber k1. We

include only the lowest-order correction to k1, which

implies that formally ek1/k1 is assumed O(e2). Explicit

expressions for ek
1
(x, y) depend on the nature of the

lateral inhomogeneity (viz., current or topography) and

will be given below where they are needed. The non-

linear term in (8) accounts for near-resonant terms at

the third order in nonlinearity and can be written as

J
1,(nl)
1

5� i

2g1
1

F
v1
F

l1
2

D

Dt

�
(u(1) � u(2))

��
� 1

g

DF(1)

Dt
LfF(2)g

z
� 1

g

DF(1)

Dt

D

Dt
(ju(1)j2)

z

1
1

2
(u(1) � $)(ju(1)j2)

�
z5h

��
. (10)

Here and in (8), F
l1

and F
v1

denote the discrete Fourier

transform operator with respect to y and t, defined as

F
v1
fF

l1
fgg5

1

L
t
L

y

ðL
t
/2

�L
t
/2

ðL
y
/2

�L
y
/2

exp[i(v
1
t � l

1
y)]dy dt,

(11)

where Lt and Ly denote the time and lateral extent of

the domain, respectively. The J
1, (nl)
1

thus represents the

(v1, l1) contribution of the nonlinear terms. Further, in

(10) we used the notation

D

Dt
5

›

›t
1 U

›

›x
, L5

D2

Dt2
1 g

›

›z
, u(i) 5 =F(i),

$ 5 (›
x
, ›

y
, ›

z
).

(12)

The off-resonant second-order modes F(2), which are

required to evaluate the cubic nonlinear terms in (10),
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can be obtained from the second-order forcing problem

(e.g., Hasselmann 1962; Mei 1989; Janssen et al. 2006)

and can be written as

F(2) 5 �
‘

p
1
,q

1

p
2
,q

2

5�‘

f
12

u12
12

expfi[(l
1

1 l
2
)y� (s

1
1 s

2
) t]g, (13)

where

f
12

5 exp[k12
12(z� h)], k12

12 5 jk1
1 1 k2

2j,
kj

i 5 (Hj
i, l

j
), and (14)

u12
12 5 i

D12
12

gk12
12 � (s

12
)2

u1
1u

2
2. (15)

Here, s12 5 s1 1 s2 and the quadratic wave–wave in-

teraction coefficient D12
12 can be written as

D12
12 5 (s

1
1 s

2
)(k

1
k

2
� k1

1 � k2
2), (16)

which is the deep-water asymptote of the expression in

Janssen et al. (2006) with absolute frequencies (v) re-

placed by intrinsic frequencies (s) and use made of the

dispersion relation (7).

Finally, the wave field free-surface elevation h, in-

cluding local second-order corrections, follows from the

dynamic free-surface boundary condition

h5�1

g

D

Dt
[F(1) 1F(2)]1

1

2
ju(1)j2 � 1

g

›

›z

DF(1)

Dt

 !2
24 35

z5h

.

(17)

The nonlinear wave model thus consists of the evolution

equation (8) for the primary frequency-angular com-

ponents of the velocity potential, the expressions (13),

(14), and (15) for the second-order bound modes, and

the explicit relation (17) for the free-surface elevation

(including local second-order corrections).

3. Nonlinear evolution of wave statistics

To evaluate the evolution of wave statistics, we per-

form Monte Carlo simulations with the frequency-

angular spectrum model, initializing each realization with

a random upwave boundary condition. The wave field

is initialized along the line x 5 0 with a frequency-

directional spectrum of the form

S(v, u) 5S(v)D(u). (18)

For the frequency spectrum S(v) we use a simple

(double sided) Gaussian distribution, given for positive

frequencies by

S(v) 5
H2

s

32b
v

ffiffiffiffiffiffi
2p
p exp �

(v� v
0
)2

2b2
v

" #
. (19)

Here, H
s

5 4
ffiffiffiffiffiffi
m

0

p
denotes the significant wave height

(m0 is the sea surface variance), bv is a spectral width

parameter, and v0 is the peak (angular) frequency. The

normalized directional spreading function D(u) is pa-

rameterized as a wrapped normal distribution (e.g.,

Vincent and Briggs 1989; Mardia and Jupp 2000)

D(u) 5
1

2p
1

1

p
�
N

n51
exp � 1

2
(ns

D
)2

� �
cosn(u� u

m
).

(20)

Here, u represents the wave angle, um is the mean wave

angle, N is the number of harmonics in the series (set at

250 here), and sD is the directional spreading parameter

in radians. The phases are drawn randomly (uniform

distribution) between 0 and 2p, but the Fourier mode

amplitudes (modulus) are taken deterministically from

the spectral variance in each bin. Choosing the ampli-

tudes deterministically instead of according to the theo-

retical Rayleigh distribution is numerically convenient

(stability) and introduces only a very slight deviation from

pure Gaussianity in the initial condition, which is of no

concern here (see, e.g., Tucker et al. 1984; Janssen 2003).

We numerically integrate (8) along x using a variable

step-size Runge–Kutta code (Matlab ODE45 routine)

and ensemble average the results. For numerical effi-

ciency, we solve the second-order bound waves (15)

through an (approximate) spectral method instead of

direct evaluation of the convolution (see appendix A).

The convolution terms for the bound waves [Eq. (15)]

require O(N2) operations (with N the number of spec-

tral components), whereas the spectral implementation

requires only N log2N operations (see, e.g., Canuto et al.

1987; Bredmose et al. 2004; Janssen et al. 2006). The

spectral approximation is excellent for narrowband

waves (see appendix A). Verification with the full con-

volution (see appendix A) suggests that the accuracy of

the spectral method for the evaluation of the bound

modes is generally very good, even for wider-banded

spectra than considered here.

Finally, to prevent energy buildup at the high-end

cutoff of the frequency domain, the nonlinear forcing

term in (8) is computed up until component 2v0,

whereas at higher frequencies the model accounts only

for linear propagation and bound-wave contributions.

In this manner the model thus absorbs energy cascading
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through the tail of the spectrum, which cumulatively is a

small fraction of the initial wave energy for the propa-

gation distances considered here. In appendix B, this

model implementation is verified deterministically

against observations of one-dimensional wave evolution

in a flume (Shemer et al. 2001), and statistical simula-

tions are compared to one-dimensional nonlinear sta-

tistical theory (Janssen 2003; Mori and Janssen 2006).

a. Freely developing waves

To provide a context for our discussion of the com-

bined effect of wave nonlinearity and refractive focus-

ing, we first consider a nonlinear wave field evolving

through a homogeneous medium (no topography or cur-

rent; U 5 0, ek1 5 0). The initial two-dimensional wave

field has a narrowband spectrum (bv 5 0.025 rad s21 and

sD 5 28) centered around v0 5 0.2p rad s21 (peak period

10 s) and um 5 0, and it has steepness e ’ 0.06 (Hs 5

5.9 m). For such small initial spreading, the BFI is a suit-

able measure of the (initial) stability of the wave field

(Socquet-Juglard et al. 2005; Waseda 2006; Gramstad

and Trulsen 2007) and we thus anticipate the wave field

to be nonlinearly unstable (BFI ’ 2.1 . 1). The spectral

domain is discretized with Dv 5 0.0157 rad s21 and Dl 5

0.0031 rad m21, and we evolve 80 realizations over 160

wavelengths L0 of the (initial) spectral peak component.

The nonlinear evolution of the random wave field is

characterized by a rapid buildup of kurtosis over the

first 20–30 wavelengths (Fig. 2) on account of the initial

instability of the wave field. The kurtosis peaks at

around 30 wavelengths after which the wave field re-

turns, first rapid then gradual, to a near-Gaussian state.

The directional spread at the peak of the frequency

spectrum, which is computed from the spectral direc-

tional moments using standard definitions (see, e.g.,

Kuik et al. 1988; O’Reilly et al. 1996; Ardhuin et al.

2003), gradually increases from 28 initially to approxi-

mately 11.58 after 160 wavelengths. Although this di-

rectional spread is still relatively small for natural wave

fields (see, e.g., O’Reilly et al. 1996), it continues to

increase, albeit fairly gradually, after the instability has

ceased and the statistics are already close to Gaussian.

Large positive values of the kurtosis in the course of

the evolution indicate an enhancement of the tails (or

‘‘heavy’’ tails; see, e.g., Moors 1986) of the pdf (as seen

in Fig. 3), and thus an increased likelihood of extreme

waves (see also Socquet-Juglard et al. 2005; Gramstad

and Trulsen 2007). The surface elevation pdf at x/L0 5 26

(inside the region of instability) indeed has much

heavier tails than the Gaussian, whereas at x/L0 5 160

the pdf is merely skewed toward positive values, thus

differing from a Gaussian primarily because of skew-

ness of the surface elevation on account of locally forced

second-order bound waves. The pdfs computed from

the Monte Carlo time series are in good agreement

with the four-term Gram–Charlier expansion (Longuet-

Higgins 1963), which for a zero-mean process can be

written as

p(z) 5
R(z, K

3
, K

4
)ffiffiffiffiffiffi

2p
p exp � 1

2
z2

� �
. (21)

Here, z 5 h/
ffiffiffiffiffiffi
m0

p
, and the polynomial R depends on K3

and K4, the coefficients of skewness and kurtosis, re-

spectively (for algebraic details of R, see, e.g., Longuet-

Higgins 1963; Huang and Long 1980). If the sea state is

linear (cumulants beyond the second are zero) R is unity

and the probability density function (21) is Gaussian.

The spectral evolution is characterized by a rapid

widening in frequency space of the initial spectrum (Fig. 5),

which effectively stabilizes the wave field. After this, the

wave field continues to gradually widen in directional

space (Figs. 2, 4) and the frequency spectrum develops

an v24 tail (Fig. 5), as expected from theory (Zakharov

and Filonenko 1966) and seen in other numerical sim-

ulations (e.g., Onorato et al. 2002b; Socquet-Juglard

et al. 2005).

FIG. 2. Evolution of (top) kurtosis and (bottom) peak directional

spread for two-dimensional wave field (solid line with circles) with

initial steepness e ’ 0.06, peak frequency v0 5 0.2p rad s21,

spectral width bv 5 0.025 rad s21, and directional spreading sD 5

0.035 rad (approx 28). Kurtosis values for the corresponding uni-

directional wave field (same frequency spectrum with no direc-

tional spreading) are also shown (thin solid line). The horizontal

coordinate x is normalized by the wavelength at the initial peak of

the spectrum L0.
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The evolution of the nonlinear statistics in two hori-

zontal dimensions is quite disparate from unidirectional

wave propagation (see Fig. 2). Although the initial in-

stability effects are very similar, the two-dimensional

wave field does not retain large kurtosis values but in-

stead evolves to a near-Gaussian state (see Figs. 2, 3).

The predicted strong deviations from Gaussianity in the

first 40–50 wavelengths are on account of the unstable

(unrealistic) boundary condition at x 5 0. In nature, a

freely developing swell field, gradually narrowing under

the effects of dispersion, is unlikely to develop into such

an unstable state, because nonlinearity continuously

enforces a return to a stable state.

Because ocean waves always exhibit some degree of

directional spreading, this result—which confirms ear-

lier findings with other models (Onorato et al. 2002a;

Socquet-Juglard et al. 2005; Gramstad and Trulsen

2007)—suggests that freely developing swell fields in

homogeneous media exhibit statistics that are close to

Gaussian, which is in agreement with what is usually

observed in the ocean. Thus, for freely developing wave

fields in deep water and in absence of wind and medium

FIG. 3. Pdf of normalized surface elevation (z 5 h/
ffiffiffiffiffiffi
m0

p
) for the same wave field as in Fig. 2. The Monte Carlo result (circles), Gaussian

pdf (solid line), and the nonlinear pdf [Eq. (21); dashed line] are shown.

FIG. 4. The frequency-directional spectrum S(v, u) at (left) x 5 0 and (right) x/L0 5 160 for the same wave field as in Fig. 2. Shade

scaling is logarithmic.
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inhomogeneities, nonlinearity is a determining factor

for naturally occurring (stable) spectrum shapes, but is

not expected to produce strongly non-Gaussian sea

states.

b. Waves in a focal zone

Ocean waves are generally not freely developing.

Along their propagation paths, they are acted upon by

winds, currents, and—on the continental margins—seafloor

topography. In particular, spatial variations in current

velocities and water depth can cause wave focusing; if the

transformation is sufficiently fast to overcome non-

linearity, they can potentially force a wave field into an

unstable state followed by the occurrence of large (pos-

itive) kurtosis values and an increased likelihood of ex-

treme waves.

To investigate this hypothesis, we consider refractive

wave focusing and the associated nonlinear evolution of

statistics (in particular, we consider kurtosis values) for

waves propagating against an opposing shear current

(current refraction) and waves over a submerged shoal in

otherwise deep water (bottom refraction). In both cases

we let a narrow wave field propagate into a region with

varying medium properties. The incident waves are the

same as before (sd 5 28, v0 5 0.2p rad s21, and um 5 0),

but the initial frequency spectrum is slightly wider (bv 5

0.08 rad s21) and the steepness lower (e ’ 0.045, wave

height Hs 5 4.6 m) so that the wave field is initially stable

(BFI ’ 0.5). The spectral domain is discretized with

Dv 5 0.0157 rad s21 and Dl 5 0.0031 rad m21, and we

evolve 80 realizations over 80 wavelengths.

1) REFRACTIVE FOCUSING: OPPOSING SHEAR

CURRENT

Here, we consider the refractive effects of an oppos-

ing current parameterized as

U(x) 5�û

2
erf

x� x
c

x
w

� �
1 1

� �
exp

(y� y
c
)2

2y2
w

" #
, (22)

where we set (xc, yc)/L0 5 (6.4, 6.4), (xw, yw)/L0 5 (1.3,

1.9), and û 5 l m s21. The maximum laterally averaged

current speed jUj is 0.36 m s21; although U and eU are of

the same order here, both are relatively weak (U/c� 1)

for the energetic part of the wave spectrum. From

geometrical optics (Fig. 6), we estimate that, for a 10-s

wave (the peak period of the random wave field), the

current field induces a refractive caustic along the

principal current axis (y/L0 5 6.4) at around x/L0 ’ 19.

For this case, the leading-order laterally uniform

wavenumber k1 is obtained from the dispersion relation

(7), thus including the effect of the laterally averaged

current on the wave dispersion characteristics (for small-

angle wave–current geometry). The two-dimensional

perturbation ek
1

can be expressed in terms of the later-

ally varying part of the current eU [see Eq. (5)] as

ek
1

5�2

g
eUk

1
s

1
. (23)

The nonlinear angular spectrum model predicts a max-

imum wave height around x/L0 5 19.5 along y/L0 5 6.4

(Fig. 7, top panel), which is close to the caustic predicted

by geometrical optics (Fig. 6). The directional spreading

at the peak1 su, p increases rapidly in the caustic region

from roughly 28 to 148 in and behind the focal region.

At the location where the wave height is maximum

(x/L0 ’ 19.5), the kurtosis dips down slightly, followed

by a rapid buildup to a value exceeding unity at around

x/L0 5 25. After this increase, kurtosis drops to fairly

small values (near-Gaussian statistics) in about the

same distance as required for the buildup. In this region

of large positive kurtosis, the probability of the occur-

rence of large waves is considerably enhanced.

In contrast, in absence of the ambient current, kur-

tosis remains small throughout the domain (Fig. 7),

consistent with the presumed initial stability of the

wave field. Linear simulations including the current field

(not shown) produce—as expected—near-zero kurtosis

FIG. 5. Frequency spectra of the same wave field as in Fig. 2 for

the initial spectrum (dashed–dotted line), spectrum at x/L0 5 80

(solid line with diamond markers), spectrum at x/L0 5 160 (solid

line with circles), and the theoretical v24 slope (dashed line).

1 Directional spread is computed as before, but for laterally in-

homogeneous wave fields the directional moments are taken over

the absolute value of the coupled mode spectrum (or Wigner

distribution) as defined in Janssen et al. (2008), instead of the

variance density spectrum.
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throughout, which confirms that the increase in kurtosis

immediately following the caustic is the result of the

nonlinear instability of the waves induced by the fo-

cusing current.

Example time series of the normalized surface ele-

vation (Fig. 8) illustrate the difference in the wave field

structure before and right after the caustic. Positive

kurtosis values are reflected in the heavy tails of the

probability density functions (Fig. 8); the Monte Carlo

data are in good agreement with the Gram–Charlier

expansion (21) for these skewness and kurtosis values.

This example illustrates that, in the presence of a

focusing current, nonlinearity in the wave field can in-

deed result in strongly non-Gaussian statistics. Notably,

in this example, the strongest deviations from Gaussianity

do not coincide with the region of maximum wave

height. Although nonlinear focusing effects will likely

be strongest close to the maximum wave height, the

higher-order correlations require a finite distance to

develop; we return to that in section 4.

2) REFRACTIVE FOCUSING: SEAFLOOR

TOPOGRAPHY

As a second example of wave focusing, we consider a

simple bottom topography consisting of a circular shoal

in an otherwise deep area described by

h 5 h
0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r

1
)2 � (x� x

c
)2 � (y� y

c
)2

q
1 r

2
, (24)

where h0 is the surrounding depth (arbitrarily set at 500 m;

k0h0 ’ 20), the shoal center coordinates are (xc/L0 5 6.4,

yc/L0 5 6.4), and the radii r1 5 3000 m and r2 5 2512 m,

so that the minimum depth on top of the circular shoal is

12 m. Ray trajectories of a 10-s monochromatic wave

over this topography indicate that a caustic occurs along

the principal axis (y/L0 5 6.4) behind the center of the

shoal at around x/L0 5 8 (Fig. 9).

For this wave–bottom case, we assume that there is no

ambient current (U 5 0). The wavenumber ek
1

is defined

here as ek
1

5 kh
1 � k

1
, (25)

where kh
1 is the local wavenumber satisfying the linear

dispersion relation for finite depth [v2
1 5 gkh

1 tanh(kh
1h)]

and the deep-water reference wavenumber k1 5 v2
1/g.

The simulated wave height is maximum around x/L0 5 8

(Fig. 10, top panel), consistent with the geometrical

optics estimate (Fig. 9). The maximum wave height is

followed by a peak in the kurtosis value, indicating an

increase in likelihood of extreme waves at that location.

The spread at the peak of the spectrum increases

abruptly from roughly 28 to 258 in the focal zone and

remains almost constant after that.

4. Discussion

A freely developing, directionally spread wave field,

even when initially too narrowbanded to be stable, does

not retain the high kurtosis values observed in unidi-

rectional wave propagation (see Fig. 2 and appendix B).

FIG. 6. (top) Plan view wave field (crests) and current (arrows;

longest arrows are 1 m s21). (bottom) Ray trajectories for 0.1-Hz

swell incident from left on opposing current.
FIG. 7. Evolution of (top) kurtosis and (bottom) peak directional

spread su,p along center transect (y/L0 5 6.4) for 2D wave field

with initial steepness e ’ 0.046, peak frequency v0 5 0.2p rad s21

(peak period 10 s), and spectral width parameters bv 5 0.08 rad s21

and sD 5 0.035 rad (’28). Shown are evolution for waves with

current (solid line with circles) and waves without current (solid

line with diamond markers). Dashed line in (top) indicates nor-

malized wave height (right axis).
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Instead, the initially unstable wave field evolves through

a strongly non-Gaussian region, after which the statis-

tics return to a near-Gaussian state. The remaining de-

viations from Gaussianity are due to the (locally forced)

second-order bound-wave components, which affect the

free-surface geometry but are without dynamical con-

sequences. In other words, unidirectional waves can

develop into a stable but strongly non-Gaussian state,

but in our simulations such a state appears unavailable

to directionally spread waves. From this, it would follow

that in freely developing ocean waves, gradually nar-

rowing under the effects of dispersion, nonlinear insta-

bility can be a determining factor in the spectral shape,

but the statistics can be expected to remain close to

Gaussian, in accordance with what is invariably ob-

served.

We hypothesized that the transformation of a wave

field in a focal zone can, if fast and strong enough to

counter the stabilizing efforts of the nonlinear cou-

pling, destabilize the wave field and result in strongly

FIG. 8. Time series of normalized surface elevation h/
ffiffiffiffiffiffi
m0

p
at (a) x 5 0 and (b) x/L0 5 25.6 (along center transect, y/L0 5 6.4) and pdfs at

(c) x 5 0 and (d) x/L0 5 25.6 for the same initial wave field as in Fig. 7. Shown in the figure are the Monte Carlo result (circles), Gaussian

pdf (solid line), and the nonlinear pdf [Eq. (21); dashed line].
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non-Gaussian features with associated increased likeli-

hood of extreme waves (positive kurtosis). To test this,

we considered the propagation of an initially narrow-

band (but stable) wave field through a focal region and

modeled the evolution of the statistics through Monte

Carlo simulations. Our examples obviously do not

mimic the full complexity of ocean waves over natural

seafloor topography or ocean currents; rather, they test

the possibility of wave instabilities in a wave conver-

gence zone. We showed two cases, an opposing current

and a circular shoal, in which the focusing effects were

strong enough for the waves to develop into a non-

linearly unstable state with high kurtosis values and

associated increase in likelihood of extreme waves.

Although the precise threshold for instability in ran-

dom, directionally spread waves is unknown, numerical

simulations with various initial conditions and medium

variations (not shown) suggest a fairly abrupt transition

between conditions for which such an instability occurs

and conditions where the wave statistics remain close to

Gaussian. For example, if we revisit the shoal case of

section 3 but increase the water depth on top of the

shoal from 12 to 30 m (r1 5 3000 m and r2 5 2530 m),

there is still considerable focusing of wave energy (Fig. 11),

but kurtosis values remain very small throughout the

domain. BFI values for both the current-focusing and

topography examples in section 3 exceed unity in the

focal zone (Fig. 12), whereas the reduction of focusing

for the case in Fig. 11 results in much lower BFI values.

For these initially narrow (in directional space) cases,

BFI ’ 1 indeed appears a critical threshold for insta-

bility to develop (see Fig. 12). Because we only consider

initially fairly long-crested wave conditions, this does

not contradict the recent finding (Waseda 2006; Gram-

stad and Trulsen 2007) that, in general, stability also

depends on the directional spreading, a variable of

course not represented in the BFI, which after all is a

normalized measure of nonlinearity relative to disper-

sion in a unidirectional wave field.

The fact that the location of maximum kurtosis along

the center transect spatially lags the wave energy focal

point (Figs. 7, 10) suggests that higher-order corre-

lations induced by the wave nonlinearity in the focal

zone require some distance to develop high kurtosis

values in the wave field. In some ways, this is consis-

tent with observations of nonlinear self-focusing effects

in breaking waves (Babanin et al. 2007). Also, in the

presence of refractive focusing, in particular for the

case involving the topographic focusing, we note that

changes in kurtosis are more abrupt than for typical

FIG. 10. Evolution of (top) kurtosis and (bottom) peak direc-

tional spread su,p along the center transect (y/L0 5 6.4) for 2D

wave field. Same initial wave field as in Fig. 7. Shown are the ev-

olution for waves over shoal (solid line with circles) and waves

without shoal (line with diamond markers). Dashed line in (top)

indicates normalized wave height (right axis).

FIG. 11. Evolution of kurtosis for same wave field as in Fig. 10

and over similar shoal but with minimum water depth over shoal

increased to 30 m (r1 5 3000 m and r2 5 2530 m). Shown are

kurtosis values for waves over shoal (solid line with circles) and

evolution in homogeneous medium (line with diamond markers).

Dashed line indicates normalized wave height (right axis).

FIG. 9. Ray trajectories 0.1-Hz swell incident from left over

submerged shoal. Depth contours on the shoal for 20, 40, 60, 80,

and 100 m are shown.

1958 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



homogeneous conditions (cf. the rates of change of

kurtosis in Figs. 2 and 10). We suspect that the more

rapid evolution of kurtosis seen in the cases including

refraction is on account of the fact that the wave field in

the focal zone is strongly inhomogeneous (see, e.g.,

Janssen et al. 2008), which will affect the nonlinear

development of higher-order correlations and thus the

evolution of the kurtosis. Note, however, that these

(rapid) variations in kurtosis (or in wave height for that

matter) are not on account of rapid variations of the

individual wave components themselves (which would

violate our assumptions) but rather the result of the

coherent superposition of many wave components, with

their mutual phase relations determined by the corre-

lations in the wave field. This is somewhat similar, for

instance, to the (linear) refractive focusing in a slowly

varying medium in which the individual wave compo-

nents are slowly varying but the refraction-induced

correlations can result in rapid changes in the wave

statistics near a caustic.

The representation of the wave field as a sum of

forward-scattering WKB modes is nonisotropic and

thus restrictive for general ocean fields. Moreover, we

included only the lowest-order (phase) corrections to

account for lateral medium variations (see section 2),

which generally results in underestimation of the actual

focusing strength (Janssen 2006). However, the model-

ing approach presented here is an efficient and intuitive

framework for the study of wave statistics in focal re-

gions; if needed, higher-order approximations for the

lateral medium inhomogeneities can be included (Suh

et al. 1990; Janssen et al. 2006, 2008). Moreover, because

we consider the evolution of the directional spectrum

in space (rather than time), the model can be initialized

with a point measurement (such as a buoy) and com-

parison with observations at other locations in the

computational footprint can be made. This is of some

practical importance, in particular for regions of variable

currents or depth that are common on the continental

shelf and in coastal areas. Also, the frequency-angular

spectrum model can be readily extended to include

varying depth (Dalrymple et al. 1989; Suh et al. 1990;

Janssen et al. 2006) and shallow-water nonlinearity

(Janssen et al. 2006) to study wave statistics over coastal

topography and near the shore.

Extension of efficient models to finite and variable

depth is an important step toward understanding cubic

nonlinear dynamics and the associated statistics. Al-

though for narrowband waves it is well known (see, e.g.,

Whitham 1974; Peregrine 1983; Janssen and Onorato

2007) that cubic nonlinear effects transition from a fo-

cusing (positive kurtosis) to a defocusing (negative

kurtosis) regime when kh , 1.363, it is not clear what

this implies for more realistic two-dimensional random

waves propagating in areas with variable depth. In other

words, extreme waves are not an exclusively deep-water

phenomenon, a point perhaps best illustrated by the fact

that the Draupner wave (Haver 2004), undoubtedly one

of the best documented ‘‘freaks’’, was observed in

roughly 70-m water depth (kh ’ 1.5). But despite the

obvious importance for offshore and coastal engineer-

ing (offshore structures are almost exclusively situated

in moderate water depths on the continental shelf), the

nonlinear dynamics of random waves in variable depth,

as well as the consequences for wave statistics and ex-

treme wave events, are poorly understood.

Near the shore, nonlinear wave evolution is further

complicated by the transition from a dispersive Stokes

regime to a weakly dispersive Boussinesq regime (Janssen

et al. 2006), with near resonance at the second order

that allows a much faster [O(e21)] nonlinear evolution

of the wave field. However, whether these shallow-

water nonlinear dynamics play a role in coastal freak

waves (Dean and Dalrymple 2002; Didenkulova et al.

2006) is unknown.

5. Conclusions

To study the effects of a focal region on nonlinear

wave statistics, we have developed a frequency-angular

spectrum model for waves in a slowly varying medium

in which the lateral variations are weak. The model

describes the forward propagation of slowly varying

spectral components while accounting for quadratic and

cubic nonlinearity. Monte Carlo simulations for freely

developing, directionally spread random waves, in the

absence of currents or topography, confirm that such

wave fields, even if initially unstable, do not retain high

kurtosis values but return to a near-Gaussian state in-

stead. This behavior, at variance with what is seen in

FIG. 12. Evolution of BFI for wave field over current (line with

circles; same case as in Fig. 7), over shoal (line with diamonds;

same case as in Fig. 10), and over shoal with minimum water depth

increased to 30 m (line with stars; same case as in Fig. 11). Dashed

line indicates theoretical instability threshold BFI 5 1.
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unidirectional waves, confirms previous findings by

other authors using different models. To investigate the

evolution of wave statistics in a focal region, we con-

sider the propagation of an initially narrow (but stable)

wave field through a caustic. If the focusing effects are

strong enough, the waves are forced into an unstable

state, followed by the development of strongly non-

Gaussian statistics and an increased likelihood of ex-

treme events (positive kurtosis). Although the waves

are steepest (and most unstable) near the caustic, the

maximum kurtosis values are found down-wave of that

location. The observed nonlinear effects in a focal zone

suggest that, in principle, the concomitant effects of

focusing and nonlinearity can produce strongly non-

Gaussian statistics in an already intensified sea state.

Although we have considered idealized examples to test

a principle, the coexistence of a focal zone with strong

deviations from Gaussianity could explain the obser-

vation that extreme wave events, described as transient

features of exceptional magnitude relative to their

background, occur predominantly in regions where en-

ergetic swells encounter ocean currents and/or seafloor

topography.
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APPENDIX A

An Efficient Approximation for the Second-Order
Wave Field

To solve (15) through direct convolution is straight-

forward but computationally very intensive (for a large

number of spectral components, say N, this convolution

is nearly a factor N slower than the remaining terms

in the evolution equation). Unfortunately, these off-

resonant modes cannot be treated by spectral methods

in an exact manner (see, e.g., Bredmose et al. 2005;

Janssen 2006; Janssen et al. 2006), and instead we pur-

sue an approximation. The purpose of this approxima-

tion is to reduce the number of operations from O(N2)

to O(N log2N).

The second-order velocity potential function can be

expressed as [combining Eqs. (13) and (15)]
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To evaluate this through a spectral method, we assume a

narrowband primary wave field that is centered around

(s0, l0 5 0) and split the second-order potential am-

plitude into sum and difference interaction contribu-

tions

F(2) 5 F(2,1) 1 F(2,�). (A2)

Here, the sum interactions, F(2,1), are computed in the

double-frequency range, nominally [3s0/2 . . . 3s0], and

the difference contributions F(2,2) in the infragravity

(below subharmonic) range, [0 . . . s0/2]. In this ap-

proximation, the second-order sum and difference

contributions can be written as

F(2,6)j
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where F
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l fg
	 


de-

note discrete Fourier transform and inverse transform

operators with respect to the subscripted variables re-

spectively.

The D1
1 in (A3) is obtained through Taylor expanding

the denominator in (A1) around (s0, l0 5 0), which, for

the difference interactions D
1,(�)
1

, we write as

D
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FIG. A1. Comparison time series of subharmonic bound-wave

velocity potential amplitude computed through direct convolution

(solid line) and (more efficient) pseudospectral method (dashed

line with circles). Also shown are the primary waves (thin dotted

line); the (arbitrary) vertical scale is a factor of 10 different to

make both signals visible. The wave field has a directional spread

sD 5 208, frequency width bv 5 0.15 rad s21, and peak frequency

v0 5 0.4p rad s21; the current velocity was set at U 5 �0.2 m s21.
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where Cg,0 5 g/(2s0). For the sum interactions, D
1,(1)
1

can be approximated as

D
1,(1)
1

5 2gk
0
� (v

1
� 2k

0
U)2. (A5)

A comparison between the full convolution (A1) and

the narrowband approximation (A3) is shown in Fig. A1

for a wave field with (parameters defined in section 3)

sD 5 208, bv 5 0.15 rad s21, and v0 5 0.4p rad s21. The

ambient (opposing) current velocity was set at U 5 �0.2

m s21 and the spectral resolution is Dv 5 0.03 rad s21

and Dl 5 0.063 rad m21. The good agreement between

the convolution and spectral method (see Fig. A1) jus-

tifies the use of the narrowband spectral approximation

to compute the bound-wave contributions.

APPENDIX B

One-Dimensional Verification of Evolution Model

a. One-dimensional deterministic evolution

To verify our third-order model derivation and im-

plementation, and to illustrate the implied wideband

capability, we compare model simulations of wave ev-

olution to observations of periodic wave groups prop-

agating in relatively deep water reported by Shemer

et al. (2001). The experiments were conducted in a wave

flume with uniform water depth of 0.60 m. The positive

x axis is in the direction of propagation, with the origin

at the wave generator. For more detailed information

on the experimental setup and the complete set of ex-

periments conducted, we refer to Shemer et al. (1998,

2001).

At the wave maker, the wave field consists of a peri-

odically modulated carrier wave with period T0 5 0.9 s,

of the form

s(t) 5 s
0
jcos(V

0
t)jcos(v

0
t), V

0
5

v
0

20
, (B1)

where v0 5 2p/T0. The spectrum of this signal is char-

acterized by a maximum at v0 and sidebands at integer

multiples of 2V0, with the two nearest to v0 being the

most significant. For the case considered here, k0a0 ’ 0.21,

FIG. B1. Time series comparison of observed and predicted nonlinear wave group evolution in uniform depth [with v0 5 2p/(0.9 s)

rad s21 and steepness e ’ 0.21] for (a) X 5 0 and (b) X 5 8.425 m. Circles denote observed surface elevations from Shemer et al. (1998,

2001); solid line denotes model result.

FIG. B2. Evolution of ratio of numerically predicted and theo-

retical kurtosis (solid line with circles; left axis) and BFI (dashed

line; right axis) of unidirectional wave field with e ’ 0.06, peak

frequency v0 5 0.2p rad s21, and bv 5 0.025 rad s21. Theoretical

kurtosis values are obtained from (2) utilizing the BFI values from

the computed time series (filtered to include only the primary

waves consistent with the definition).
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where k0 is related to v0 through the linear dispersion

relation and a0 is taken (after Shemer et al. 1998) as the

maximum amplitude of the carrier wave in a group close

to the wave generator.

The model is initialized with the spectral components

at v0 and v0 6 2V0 of a time series of 18-s (i.e., 20 wave

periods) duration observed at x 5 0.245 m. Second-

order components are included in the upwave boundary

condition. We compute the evolution of an equidistant

array of 65 frequencies with Dv 5 0.35 rad s21.

In Fig. B1, we compare the observed (circles) and

predicted (solid line) time series at x 5 0.245 m (ini-

tial condition) and x 5 8.425 m. The initially near-

symmetrical wave groups develop strong left–right

asymmetry of the envelope with steep fronts and gently

sloping rears. The details of the nonlinear evolution are

well represented in the model (see Fig. B1).

b. One-dimensional nonlinear statistics

To illustrate the Monte Carlo simulation for one-

dimensional wave evolution, we compare the evolution

of an initially unstable wave field (BFI ’ 2.1 . 1) to

theoretical predictions (Janssen 2003; Mori and Janssen

2006). The initially narrowband wave field (with steep-

ness e ’ 0.06, peak frequency v0 5 0.2p rad s21, and

bv 5 0.025 rad s21) shows a rapid increase of the kur-

tosis (see Fig. B2) accompanied by spectral widening

and a downshift of the spectral peak (not shown).

Consequently, during this initial evolution, BFI values

decrease and eventually the wave field stabilizes after

about 60 wavelengths (after which location BFI values

remain close to unity).

High kurtosis values are retained (Fig. B2), in good

agreement with what is theoretically predicted by

Eq. (2). The surface elevation pdf (Fig. B3) changes

from near-Gaussian but skewed (second-order bound

waves) to a strongly non-Gaussian pdf with heavy tails

(Fig. B3, right panel) because of the high kurtosis built

up in the nonlinear instability process. The truncated

Gram–Charlier distribution function [Eq. (21)] is in

good agreement with the simulated pdf, even for these

large kurtosis values (which are formally outside of the

validity range of that distribution).

Overall, the evolution of the wave field statistics con-

firms that the BFI stability criterion, based on narrow-

band unidirectional theory, captures the characteristics

of the nonlinear evolution in the wideband unidirectional

model and that theoretical kurtosis values from (2) (Mori

and Janssen 2006) are in reasonable quantitative agree-

ment with kurtosis values retained in the neutrally stable

wave field (after roughly 60 wavelengths). This inde-

pendently confirms earlier results (Janssen 2003; Mori

and Janssen 2006; Mori et al. 2007) and provides some

validation of our modeling approach.

FIG. B3. Probability distribution of normalized surface elevation (z 5 h/
ffiffiffiffiffiffi
m0

p
) for unidirectional wave evolution (same wave field as in

Fig. B2). Shown in the figure are the Monte Carlo result (circles), Gaussian pdf (solid line), and the nonlinear pdf [Eq. (21); dashed line].

Pdfs at (a) X/L0 5 0 and (b) X/L0 5 160.
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