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Abstract. Four-wave interactions are shown to play an important role in the evolution of
the spectrum of surface gravity waves. This follows from direct simulations of an ensem-
ble of ocean waves using the Zakharov equation. The theory of homogeneous four-wave
interactions, extended to include effects of nonresonant transfer, compares favourably with
the ensemble averaged results of the Monte Carlo simulations. In particular, there is good
agreement regarding spectral shape. Also, the kurtosis of the surface elevation probability
distribution is well-determined by theory even for waves with a narrow spectrum and large
steepness. These extreme conditions are favourable for the occurence of freak waves.
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1. Introduction

Presently, there is a considerable interest in understanding the occurrence of
freak waves. The notion of freak waves was first introduced by Draper (1965),
and this term is applied for single waves that are extremely unlikely as judged
by the Rayleigh distribution of wave heights (Dean, 1990). In practice, a wave
with wave height H (defined as the distance from crest to trough) exceeding
the significant wave height HS by a factor 2.2 is considered to be a freak
wave. It is difficult to collect hard evidence on such extreme wave phenom-
ena because they occur so rarely. Nevertheless, observational evidence from
time series collected over the past decade does suggest that for large surface
elevations the probability distribution for the surface elevation deviates sub-
stantially from the one that follows from linear theory with random phase,
namely the Gaussian distribution (cf. e.g. Wolfram and Linfoot, 2000).

There are a number of reasons why freak wave phenomena may occur. Of-
ten, extreme wave events can be explained by the presence of ocean currents
or bottom topography that may cause wave energy to focus in a small area
due to refraction, reflection and wave trapping. These mechanisms are well
understood and may be explained by linear wave theory (cf. e.g. Lavrenov,
1998).

Trulsen and Dysthe (1997) argue, however, that it is not well understood
why exceptionally large waves may occur in the open ocean away from non-
uniform currents or bathymetry. As an example they discuss the case of an
extreme wave event that happened on January 1, 1995 in the Norwegian
sector of the North Sea. Their basic premise is that these waves can be
produced by nonlinear self modulation of a slowly varying wave train. An
example of nonlinear modulation or focussing is the instability of a uniform
narrow-band wave train to side-band perturbations. This instability, known
as the side-band, modulational or Benjamin-Feir (1967) instability, will result
in focusing of wave energy in space and/or time as is illustrated by the
experiments of Lake et al (1977).

To a first approximation the evolution in time of the envelope of a narrow-
band wave train is described by the nonlinear Schrödinger equation. This
equation, which occurs in many branches of physics, was first discussed in the
general context of nonlinear dispersive waves by Benney and Newell (1967).
For water waves it was first derived by Zakharov (1968) using a spectral
method and by Hasimoto and Ono (1972) and Davey (1972) using multiple-
scale methods. The nonlinear Schrödinger equation in one-space dimension
may be solved by means of the inverse scattering transform. For vanish-
ing boundary conditions Zakharov and Shabat (1972) found that for large
times the solution consists of a combination of envelope solitons and radia-
tion modes, in analogy with the solution of the Korteweg-de Vries equation.
However, for two-dimensional propagation, Zakharov and Rubenchik (1974)
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discovered that envelope solitons are unstable to transverse perturbations,
while Cohen, Watson and West (1976) found that a random wave field would
break up envelope solitons. This meant that solitons could not be used as
building blocks of the nonlinear evolution of gravity waves.

For periodic boundary conditions the solution of the nonlinear Schrödinger
equation is more complex. Linear stability analysis of a uniform wave train
shows that close side-bands grow exponentially in time in good qualitative
agreement with the experimental results of Benjamin and Feir (1967) and
Lake et al (1977). For large times there is a considerable energy transfer
from the carrier wave to the side-bands. In one-space dimension, if there is
only one unstable side-band, Fermi-Pasta-Ulam recurrence occurs (Yuen and
Ferguson, 1978) in qualitative agreement with the experiments of Lake et
al (1977). In the presence of many unstable side-bands, the evolution of a
narrow band wave train becomes much more complex. No recurrence is then
found (Caponi et al, 1982) and these authors have termed this confined chaos
in a nonlinear wave system because most of the energy resides in the unstable
modes. Also, in two-space dimensions (2D) the phenomenon of recurrence is
the exception rather than the rule. In addition, in 2D the instability region is
unbounded in the perturbation wave vector space, resulting in energy leakage
to high wave number modes, hence there is no confined chaos in 2D (Martin
and Yuen, 1980). This suggests that the 2D nonlinear Schrödinger equation
is inadequate to describe the evolution of weakly nonlinear waves. This was
pointed out already by Longuet-Higgins (1978) who performed a stability
analysis on the exact equations and found that the instability region is finite
in extent. More realistic evolution equations such as the fourth-order evolu-
tion equation of Dysthe (1979) or the Zakharov equation (1968) are needed
to give an appropriate description of nonlinear gravity waves in two-space
dimensions.

Nevertheless, studies of the properties of the nonlinear Schrödinger equa-
tion have been vital in understanding the conditions under which freak waves
may occur. This was discussed in detail by Osborne et al (2000). For peri-
odic boundary conditions the one-dimensional nonlinear Schrödinger equa-
tion may be solved by the inverse scattering method as well. The role of the
solitons is then replaced by unstable modes. In the linear regime, these modes
just describe the evolution in time according to the Benjamin-Feir instability,
while by means of the inverse scattering transform the fate of the unstable
mode may be followed right into the nonlinear regime. Using the inverse scat-
tering transform the solution of the 1D nonlinear Schrödinger equation may
be written as a ”linear” superposition of stable modes, unstable modes and
their mutual nonlinear interactions. Here, the stable modes form a Gaussian
background wave field from which the unstable modes occasionally rise up
and subsequently disappear again, repeating the process quasi-periodically
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in time. Making use of the inverse scattering transform these authors readily
construct a few examples of giant waves from the one-dimensional nonlinear
Schrödinger equation. The question now is what happens in the case of two-
dimensional propagation. The notion of solitons is no longer useful, because
solitons are unstable in two-dimensions. Osborne et al (2000) show that un-
stable modes do indeed still exist and that in the nonlinear regime they can
take the form of large amplitude freak waves. Furthermore, the notion of un-
stable modes seems to be a generic property of deep water wave trains, as the
authors find nonlinear unstable modes in both the one and two-dimensional
versions of Dysthe’s fourth order evolution equation. To summarize this dis-
cussion, it seems that freak waves are likely to occur as long as the wave
train is subject to nonlinear focussing. In addition, we only need to study the
case of one-dimensional propagation, because it captures the essentials of the
generation of freak waves.

Therefore, in the context of the deterministic approach to wave evolu-
tion there seems to be a reasonable theoretical understanding of why in the
open ocean freak waves occur. In ocean wave forecasting practice one follows,
however, a stochastic approach, i.e. one attempts to predict the ensemble av-
erage of a spectrum of random waves, because knowledge on the phases is not
available. The main problem then is to what extent one can make statements
regarding the occurrence of freak waves in a random wave field. Of course,
in the context of wave forecasting only statements of a probablistic nature
can be made. As freak waves imply considerable deviations from the Normal,
Gaussian probability distribution function(pdf) of the surface elevation, the
main question therefore is whether we can determine in a reliable manner
the pdf of the surface elevation. Since the wave spectrum plays a central role
in the stochastic approach the question therefore is whether for given wave
spectrum the probability of extreme events may be determined.

Present day wave forecasting systems are based on the energy balance
equation (Komen et al, 1994), including a parametrised version of Hassel-
mann’s four-wave nonlinear transfer (Hasselmann, 1962). Resonant four-wave
interactions for a random, homogeneous sea play an important role in the
evolution of the spectrum of wind waves, because on the one hand they
determine the high-frequency part of the spectrum, giving rise to an ω−4

tail (Zakharov & Filonenko, 1968), while on the other hand the peak of the
spectrum is shifted towards lower frequencies. The homogeneous nonlinear
interactions give rise to deviations from the Gaussian pdf for the surface
elevation, because the third order nonlinearity generates fourth cumulants
of the pdf, while the finite fourth cumulant results in spectral change. An
important issue is, however, whether the standard homogeneous theory can
properly describe the generation of freak waves, simply because it does not
seem to incorporate the Benjamin-Feir instability mechanism (Alber, 1978,
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Alber and Saffman, 1978, Crawford et al, 1980, Janssen, 1983b). This fol-
lows from simple scaling considerations applied to the Hasselmann evolution
equation for four-wave interactions. Since the rate of change of the action
density N is proportional to N3, the nonlinear transfer occurs on the time
scale TNL = O(1/ε4ω0). Here, ε is a typical wave steepness, which is assumed
to be small, and ω0 is a typical angular frequency of the wave field. In con-
trast, the Benjamin-Feir instability occurs on the much faster timescale of
O(1/ε2ω0).

The Benjamin-Feir instability is an example of a nonresonant four-wave
interaction where the carrier wave is phase-locked with the sidebands. This
process cannot be described by a theory that assumes that the Fourier am-
plitudes are not correlated(i.e. a homogeneous wave field), and in which only
resonant four-wave interactions are considered. For an inhomogeneous, Gaus-
sian narrow-band wave train, Alber and Saffman (1978), and Alber (1978)
derived an evolution equation for the Wigner distribution of the sea state.
Inhomogeneities gave rise to a much faster energy transfer, comparable with
the typical time scale of the modulational instability. In fact, these authors
discovered the random version of the Benjamin-Feir instability: a random
narrow band wave train is unstable to side-band perturbations provided the
width of the spectrum is sufficiently narrow. Therefore, one would expect
the Alber and Saffman approach to be an ideal starting point for treating
freak waves in a random wave context. However, it is emphasized that this
approach has it limitations because deviations from Normality have not yet
been taken into account. In this paper it will be shown, using numerical sim-
ulations of an ensemble of ocean waves, that non-Gaussian effects are quite
important while inhomogeneities play only a minor role in the evolution of
the ensemble-averaged wave spectrum.

On the other hand, nonresonant interactions appear to be relevant. We
extend Hasselmann’s treatment of four-wave interactions by including the ef-
fects of nonresonant interactions. As a consequence, the resonance function is
for short times broader than the usual δ-function and depends on the angular
frequency resonance conditions ànd on time. The standard nonlinear transfer
is based on the assumption that the action density spectrum is a slowly vary-
ing function of time. It is then argued that the resonance function may be
replaced by its large time limit, giving the usual delta function. However, the
time span required for the resonance function to evolve towards a delta func-
tion is so large that considerable changes in the action density function may
have occurred in the mean time. This will be shown for the special case of
one dimensional propagation of surface gravity waves. In those circumstances
the standard approach to nonlinear wave-wave interactions would not give
rise to nonlinear transfer, whereas considerable changes of the wave spec-
trum occur in the new approach. In fact, there is close agreement between
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results on the ensemble averaged spectrum and the kurtosis of the pdf of the
surface elevation, as obtained from numerical simulations of an ensemble of
ocean waves. Since timeseries from the numerical simulations indicate the oc-
curence of freak waves when the waves are sufficiently steep (see also Trulsen
and Dysthe (1997) or Osborne et al (2000)), the implication is that an ap-
proach to nonlinear transfer, that includes nonresonant interactions seems to
capture freak wave events. However, it is strongly emphasized that such an
approach can only give statements of a probablistic nature on the occurrence
of extreme wave events.

The structure of this paper is as follows. In Section 2 we review develop-
ments regarding the evolution of a random wave field, but we discuss only
the ideas needed for understanding results in the remainder of this paper.
In particular, we extend the standard theory of four wave interactions by in-
cluding effects of nonresonant interactions and derive an explicit expression
for the kurtosis in terms of the action density spectrum. We also discuss Al-
ber and Saffman’s key result, that according to lowest order inhomogeneous
theory there is only Benjamin-Feir instability when the wave spectrum is suf-
ficiently narrow. In Section 3 we present results from Monte Carlo simulations
of the nonlinear Schrödinger equation following similar work by Onorato et
al (2000). Only one-dimensional wave propagation is discussed. Apart from
reasons of economy (we typically do runs with 500 member ensembles), the
main reason for this choice is that for one dimension the nonlinear trans-
fer according to the standard homogeneous theory of four wave interactions
vanishes identically. The ensemble averaged evolution of the wave spectrum
clearly shows that there is an irreversible energy transfer resulting in a broad-
ening of the spectrum, while the pdf of the surface elevation has considerable
deviations from the Gaussian distribution. These deviations from Normality
may be described, as expected from four-wave interactions, by means of the
fourth cumulant. In case of nonlinear focussing, the correction to the pdf is
such that there is an enhanced probability of extreme events, while in the
case of nonlinear defocusing (this was achieved by changing the sign of the
nonlinear term) the opposite occurs, namely the probability of extreme events
is reduced. This is in agreement with results by Tanaka (1991) who found
an increase in groupiness in case of nonlinear focussing while in the opposite
case of a stable wave train groupiness reduces.

Both the spectral broadening and the fourth cumulant (or kurtosis) are
found to depend on a single parameter characterising the narrow-band wave
train, namely the ratio of mean square slope to the normalised width of the
(frequency) spectrum. It is suggested to call this ratio the Benjamin-Feir
Index (BFI). If the BFI is larger than 1 then according to Alber and Saffman
(1978) the random wave field is modulationally unstable. This result would
suggest that if the BFI is less than 1 no changes in the spectrum occur, while
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in the opposite case the unstable side-bands would give rise to a broadening
of the wave spectrum. Hence, BFI = 1 is a bifurcation point. Our numerical
simulations provide no convincing evidence of a bifurcation at BFI = 1.
Rather, there is already a considerable broadening of the wave spectrum
around BFI = 1, while the dependence of the broadening on the BFI appears
to be smooth rather then abrupt (cf. Tanaka (1991)).

We continue in Section 3 by presenting results from Monte Carlo sim-
ulations of the Zakharov equation (Zakharov, 1968). Results are similar in
spirit to thoses obtained with the Nonlinear Schrödinger equation, except
that the modulational instability seems to occur for larger BFI. For the non-
linear Schrödinger equation the spectral change owing to nonlinear transfer
is symmetrical with respect to the spectral maximum, but this is not the
case for Zakharov equation. In the latter case the nonlinear transfer coeffi-
cients and the angular frequency are asymetrical with respect to the spectral
peak and as a consequence there is a down-shift of the peak of the spectrum.
It is emphasized that this down-shift occurs in the absence of dissipation,
while quantities such as action, wave momentum and total wave energy are
conserved.

In Section 4 an interpretation of the numerical results of Section 3 is
given. Firstly, it is shown that inhomogeneities only play a minor role in the
evolution of the wave spectrum, while deviations from Normality are more
relevant. Secondly, results from the numerical solution of the extended version
of Hasselmann’s wave-wave interaction approach are presented and compared
with the results from Monte-Carlo simulations. A good agreement is obtained.
Apart from the fact that we have given a direct validation of Hasselmann’s
four-wave theory, it also shows that even in extreme conditions such as occur
during the generation of freak waves, reliable estimates of deviations from
Normality can be made.

In Section 5 a summary of conclusions is given. Much to our surprise, ef-
fects of inhomogeneity only play a minor role in understanding the ensemble
averaged evolution of surface gravity waves. Homogeneous four-wave interac-
tions, albeit extended by allowing for a time dependent resonance function,
seem to capture most essential features of the averaged nonlinear wave evo-
lution. It seems now possible to estimate the enhanced occurrence of extreme
waves and freak waves on the open ocean since the kurtosis may be estimated
directly from the wave spectrum.

2. Review of the theory of a random wave field

Our starting point is the Zakharov equation, which is a deterministic evo-
lution equation for surface gravity waves in deep water. It is obtained from
the Hamiltonian for water waves, first found by Zakharov (1968). Consider
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the potential flow of an ideal fluid of infinite depth. Coordinates are chosen
in such a way that the undisturbed surface of the fluid coincides with the
x-y plane. The z-axis is pointed upward, and the acceleration of gravity g is
pointed in the negative z-direction. Let η be the shape of the surface of the
fluid, and let φ be the potential of the flow. Hence, the velocity of the flow
follows from u = −∇φ.

By choosing as canonical variables

η, and, ψ(x, t) = φ(x, z = η, t), (1)

Zakharov (1968) showed that the total energy E of the fluid may be used as
a Hamiltonian. Here,

E =
1
2

∫ ∫ η

−∞
dzdx

(
(∇φ)2 + (

∂φ

∂z
)2
)

+
g

2

∫
dxη2. (2)

The x-integrals extend over the total basin considered. If an infinite basin
is considered the resulting total energy is infinite, unless the wave motion is
localized within a finite region. This problem may be avoided by introducing
the energy per unit area by dividing (2) by the total surface L×L, where L
is the length of the basin, and taking the limit of L → ∞ afterwards. As a
consequence, integrals over wave number k are replaced by summations while
δ-functions are replaced by Kronecker δ’s. For a more complete discussion cf.
Komen et al (1994). We will adopt this approach implicitely in the remainder
of this paper.

The boundary conditions at the surface, namely the kinematic boundary
condition and Bernoulli’s equation, are then equivalent to Hamilton’s equa-
tions,

∂η

∂t
=
δE

δψ
,
∂ψ

∂t
= −δE

δη
, (3)

where δE/δψ is the functional derivative of E with respect to ψ, etc. Inside
the fluid the potential φ satifies Laplace’s equation,

∇2φ+
∂2φ

∂z2
= 0 (4)

with boundary conditions

φ(x, z = η) = ψ (5)

and

∂φ(x, z)
∂z

= 0, z →∞. (6)

If one is able to solve the potential problem, then φ may be expressed in term
of the canonical variables η and ψ. Then the energy E may be evaluated in
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terms of the canonical variables, and the evolution in time of η and ψ follows
at once from Hamilton’s equations (Eq.(3)). This was done by Zakharov
(1968), who obtained the deterministic evolution equations for deep water
waves by solving the potential problem (4-6)in an iterative fashion for small
steepness ε. In addition, the Fourier transforms of η and φ were introduced,
while results could be expressed in a concise way by use of the action variable
A(k, t). For example, in terms of A the surface elevation η becomes

η =
∫ ∞

−∞
dk
(
k

2ω

)1/2

[A(k) +A∗(−k)]eik.x. (7)

Here, k is the wave number vector, k its absolute value, and ω =
√
gk denotes

the dispersion relation of deep-water, gravity waves. Substitution of the series
solution for φ into the Hamiltonian (2) gives an expansion of the total energy
E of the fluid in terms of wave steepness,

E = ε2E2 + ε3E3 + ε4E4 +O(ε5). (8)

Retaining only the second-order term of E corresponds to the linear the-
ory of surface gravity waves, the third-order term corresponds to three-wave
interactions, and the fourth-order term corresponds to four-wave interac-
tions. Since resonant three-wave interactions are absent for deep-water grav-
ity waves, a meaningful description of the wave field is only obtained by
going to fourth order in ε. In fact, Krasitskii (1990) has shown that in the
absence of resonant three wave interactions there is a nonsingular, canonical
transformation from the action variable A to the new variable a that allows
elimination of the third order contribution to the wave energy. Loosely speak-
ing, the new variable a descibes the free wave part of the wave field. Apart
from a constant factor, the energy of the free waves becomes,

E =
∫

dk1ω1a
∗
1a1 +

1
2

∫
dk1,2,3,4T1,2,3,4a

∗
1a
∗
2a3a4δ1+2−3−4, (9)

where a1 = a(k1), etc., δ is the Dirac delta function and the interaction ma-
trix T is given by Krasitskii (1990). The interaction matrix enjoys a number of
symmetry conditions, of which the most important one is T1,2,3,4 = T3,4,1,2 as
this condition implies that E is conserved. Hamilton’s equations now become
the single equation

i
∂a

∂t
=
δE

δa∗
, (10)

and, evaluating the functional derivative of E with respect to a∗, the evolution
equation for a becomes

∂a1

∂t
+ iω1a1 = −i

∫
dk2,3,4T1,2,3,4a

∗
2a3a4δ1+2−3−4, (11)
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known as the Zakharov equation. Apart from the free wave energy (9) the
Zakharov equation admits conservation of action and of wave momentum as

a)
d

dt

∫
dk1 a1a

∗
1 = 0,

b)
d

dt

∫
dk1 k1a1a

∗
1 = 0. (12)

2.1. Comments on the Zakharov Equation

The properties of the Zakharov equation have been studied in great detail
by, for example, Crawford et al (1981) (for an overview see Yuen and Lake,
1982). Thus the nonlinear dispersion relation, first obtained by Stokes (1947),
follows from Eq.(11), while also the instability of a weakly nonlinear, uniform
wave train (the so-called Benjamin-Feir instability) is well described by the
Zakharov equation; the results on growth rates, for example, are qualitatively
in good agreement with the results of Longuet-Higgins (1978). However, these
results were obtained with a form of the interaction matrix T that did not
result in a Hamiltonian form of Eq.(11). Krasitskii (1990) found the correct
canonical transformation to eliminate the cubic interactions, which resulted
in a T that satisfied the appropriate symmetry conditions for Eq.(11) to be
Hamiltonian. Krasitskii and Kalmykov (1993) studied the differences between
the Hamiltonian and the non-Hamiltonian forms of the Zakharov equation
but only for large amplitude differences in the solution were found.

In this paper we initially use a narrow-band approximation to the Za-
kharov equation, because the main impact of the Benjamin-Feir instability
is found near the spectral peak. This approximate evolution equation is ob-
tained by means of a Taylor expansion of angular frequency ω and the interac-
tion matrix T around the carrier wave number k0. The nonlinear Schrödinger
equation is then obtained by using only the lowest order approximation to
T given by k3

0, while angular frequency ω is expanded to second order in the
modulation wave number p = k− k0. The main advantage of the use of the
nonlinear Schrödinger equation is that many properties of this equation are
known and that it can be solved numerically in an efficient way. The draw-
back is, however, that it overestimates the growth rates of the Benjamin-Feir
instability and that the nonlinear energy transfer is symmetrical with respect
to the carrier wave number. For this reason, we study solutions of the com-
plete Zakharov equation as well, using the Krasitskii (1990) expression for
the interaction matrix T . Similarly, one could study higher-order evolution
equations such as the one by Dysthe (1979), but we found that spectra may
become so broad that the narrow-band approximation becomes invalid.

Another reason for studying the nonlinear Schrödinger equation is that it
allows us to introduce an important parameter which will be used to stratify
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the numerical and theoretical results. From the physical point of view we are
basically studying a problem that concerns the balance between dispersion of
the waves and its nonlinearity. For the full Zakharov equation it will be diffi-
cult to introduce a unique measure of, for example, nonlinearity because the
nonlinear transfer matrix T is a complicated function of wave number. How-
ever, in the narrow-band approximation, giving the nonlinear Schrödinger
equation, this is more straight-forward to do. Balancing the nonlinear term
and the dispersive term in the narrow-band version of Eq.(11) therefore gives
the dimensionless number

−gT0

ω0

1
k4

0ω
′′
0

s2

σ′2ω
. (13)

Since our interest is in the dynamics of a continuous spectrum of waves
the slope parameter s and the relative width σ′ω of the frequency spectrum
relate to spectral properties, hence s = (k2

0 < η2 >)
1
2 , with < η2 > the

average surface elevation variance, and σ′ω = σω/ω0. For positive sign of the
dimensionless parameter (13) there is focussing (modulational instability)
while in the opposite case there is defocussing of the weakly nonlinear wave
train. Based on this we introduce the Benjamin-Feir(BF) Index, which, apart
from a constant, is the square root of the dimensionless number (13). Using
the dispersion relation for deep-water gravity waves and the expression for
the nonlinear interaction coefficient, T0 = k3

0, the BF Index becomes,

BFI = s
√

2/σ′ω. (14)

The BF Index turns out to be very useful in ordering the theoretical and
numerical results presented in the following Sections. For simple initial wave
spectra that only depend on the variance and on the spectral width, it can be
shown that for the nonlinear Schrödinger equation the solution is completely
characterized by the BF Index. For the Zakharov equation this is not the case,
but the BF Index is still expected to be a useful parameter for narrow-band
wave trains.

2.2. Stochastic approach

The Zakharov equation (11) predicts amplitude and phase of the waves. For
practical applications such as wave prediction, the detailed information re-
garding the phase of the waves is not available. Therefore, at best one can
hope to predict average quantities such as the second moment

B1,2 =< a1a
∗
2 >, (15)

where the angle brackets denote an ensemble average. Here, we briefly sketch
the derivation of the evolution equation for the second moment from the
Zakharov equation, assuming a zero mean value, < a1 >= 0. It is known,
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however, that because of nonlinearity, the evolution of the second moment is
determined by the fourth moment, and so on, resulting in an infinite hierarchy
of equations (Davidson, 1972). To obtain a meaningful truncation of this
hierachy, it is customary to assume that the probability distribution for a1 is
close to a Gaussian distribution, an assumption which is a reasonable one for
small wave steepness ε. In that event, higher-order moments can be expressed
in lower-order moments. In general, for a zero-mean stochastic variable a1,
one finds that the fourth moment becomes

< ajaka
∗
l a
∗
m > = Bj,lBk,m +Bj,mBk,l +Dj,k,l,m, (16)

where D is the so-called fourth cumulant, which vanishes for a Gaussian sea
state. Resonant nonlinear interactions, however, will tend to create corre-
lations in such a way that a finite fourth cumulant results. But for small
steepnes D is expected to be small, so that an approximate closure of the
infinite hierarchy of equations may be achieved.

Let us now sketch the derivation of the evolution equation for the second
moment < aia

∗
j > from the Zakharov equation (11). To that end, we multiply

Eq.(11) for ai by a∗j , add the complex conjugate with i and j interchanged,
and take the ensemble average:[

∂

∂t
+ i(ωi − ωj)

]
Bi,j =

− i
∫

dk2,3,4[Ti,2,3,4 < a∗ja
∗
2a3a4 > δi+2−3−4 − c.c.(i↔ j)], (17)

where c.c. denotes complex conjugate, and i ↔ j denotes the operation of
interchanging indices i and j in the previous term. Because of nonlinearity
the equation for the second moment involves the fourth moment. Similarly,
the equation for the fourth moment involves the sixth moment. It becomes[

∂

∂t
+ i(ωi + ωj − ωk − ωl)

]
< aiaja

∗
ka
∗
l >=

− i
∫

dk2,3,4[Ti,2,3,4 < a∗2a
∗
ka
∗
l a3a4aj > δi+2−3−4 + (i↔ j)]

+ i

∫
dk2,3,4[Tk,2,3,4 < a∗3a

∗
4a
∗
l a2aiaj > δk+2−3−4 + (k ↔ l)]. (18)

So far, no approximations have been made. In the next Section, we discuss
the implications of the assumptions of a homogeneous weakly nonlinear wave
field. Homogeneity of the wave field, however, does not allow a description
of the Benjamin-Feir instability, and therefore in the following Section we
discuss the consequences for spectral evolution when the wave field is allowed
to be inhomogeneous.
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2.3. Evolution of a homogeneous random wave field

A wave field is considered to be homogeneous if the two point correlation
function < η(x1)η(x2) > depends only on the distance x1 − x2. Using the
expression for the surface elevation, Eq.(7), it is then straightforward to verify
that a wave field is homogeneous provided that the second moment Bi,j

satisfies

Bi,j = Niδ(ki − kj), (19)

where Ni is the spectral action density, which is equivalent to a number
density because ωiNi is the spectral energy density, while kiNi is the spectral
momentum density (apart from a factor ρw).

For weakly nonlinear waves the fourth cumulant D is small compared to
the product of second-order cumulants (this may be verified afterwards, it
follows immediately from Eq.(18). Now, invoking the random-phase approxi-
mation (i.e. Eq.(16)) with D = 0) on Eq.(17), combined with the assumption
of a homogeneous wave field results in constancy of the second moment Bi,j .
Hence, the need to go to higher order; that is the fourth moment has to be
determined through Eq.(18).

Application of the random phase approximation to the sixth moment and
solving Eq.(18) for the fourth cumulant D, subject to the initial value D(t =
0) = 0, gives

Di,j,k,l =
2Ti,j,k,lδi+j−k−lG(∆ω, t) [NiNj(Nk +Nl)− (Ni +Nj)NkNl] (20)

where ∆ω is short hand for ωi+ωj−ωk−ωl, and we have made extensive use of
the symmetry properties of the nonlinear transfer matrix T , in particular the
Hamiltonian symmetry. In addition, we used the property that, according
to Eq.(17) the action density N only evolves on the slow time scale. The
function G is defined as

G(∆ω, t) = i

∫ t

0
dτei∆ω(τ−t) = Rr(∆ω, t) + iRi(∆ω, t), (21)

where

Rr(∆ω, t) =
1− cos(∆ωt)

∆ω
, (22)

while

Ri(∆ω, t) =
sin(∆ωt)

∆ω
. (23)

The function G develops for large time t into the usual generalised functions
P/∆ω, and δ(∆ω), since,

lim
t→∞

G(∆ω, t) =
P

∆ω
+ πiδ(∆ω), (24)



14 PETER JANSSEN

a relation which is, strictly speaking, only meaningful inside integrals over
wave number when multiplied by a smooth function.

Substitution of Eq.(20) into Eq.(17) eventually results in the following
evolution equation for four-wave interactions,

∂

∂t
N4 = 4

∫
dk1,2,3T

2
1,2,3,4δ(k1 + k2 − k3 − k4)Ri(∆ω, t)

× [N1N2(N3 +N4)−N3N4(N1 +N2)] , (25)

where now ∆ω = ω1 +ω2−ω3−ω4. This evolution equation is usually called
the Boltzmann equation.

Two limits of the resonance function Ri(∆ω, t) are of interest to mention.
For small times we have

lim
t→0

Ri(∆ω, t) = t (26)

while for large times we have

lim
t→∞

Ri(∆ω, t) = πδ(∆ω). (27)

Hence, according to Eq.(25), for short times the evolution of the action den-
sity N is caused by both resonant and nonresonant four-wave interactions,
while for large times, when the resonance functions evolves towards a δ-
function, only resonant interactions contribute to spectral change.

In the standard treatment of resonant wave wave interactions (cf., for ex-
ample Hasselmann (1962) and Davidson (1972)) it is argued that the res-
onance function Ri(∆ω, t) may be replaced by its time-asymptotic value
(Eq.(27)), because the action density spectrum is a slowly varying function
of time. However, the time required for the resonance function to evolve to-
wards a delta function may be so large that in the mean time considerable
changes in the action density may have occurred. For this reason we will keep
the full expression for the resonance function.

An important consequence of this choice concerns the estimation of a typi-
cal time scale TNL for the nonlinear wave-wave interactions in a homogeneous
wave field. With ε a typical wave steepness and ω0 a typical angular frequency
of the wave field, one finds from the Boltzmann equation(25) that for short
times TNL = O(1/ε2ω0), while for large times TNL = O(1/ε4ω0). Hence,
although the standard nonlinear transfer, which uses as resonance function
Eq.(27), does not capture the physics of the modulational instability (which
operates on the fast time scale 1/ε2ω0), the full resonance function does not
suffer from this defect.

It is also important to note that according to the standard theory there
is only nonlinear transfer for two-dimensional wave propagation. In the one-
dimensional case there is no nonlinear transfer in a homogeneous wave field.
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The reason for this is that only those waves interact nonlinearly that satisfy
the resonance conditions k1 + k2 = k3 + k4 and ω1 + ω2 = ω3 + ω4. In one
dimension these resonance conditions can only be met for the combinations
k1 = k3,k2 = k4 or k1 = k4,k2 = k3. Then, the rate of change of the
action density, as given by Eqns.(25 and 27), vanishes identically because
of the symmetry properties of the term involving the action densities. This
contrasts with the Benjamin-Feir instability which has its largest growth rates
for waves in one dimension. On the other hand, using the complete expression
for the resonance function, there is always an irreversible nonlinear transfer
even in the case of one-dimensional propagation.

The Boltzmann equation, Eq.(25), admits just as the deterministic Za-
kharov equation, conservation of total action, wave momentum, while the
ensemble average of the Hamiltonian (Eq. (9)) is conserved as well (The last
conservation law follows from Eqs.(25) by consistently utilizing the assump-
tion of a slowly varying action density). It is emphasized that the Hamiltonian
consists of two parts, the energy according to linear wave theory and a non-
linear interaction term. Therefore, unlike the standard theory of four-wave
interactions, the linear expression for the wave energy is not conserved. The
exception occurs for large times when the resonance function Ri has evolved
towards a δ-function, and then just as in the standard theory the linear wave
energy is conserved. This follows also from the numerical simulations pre-
sented in Section 3 which show that the ensemble average of the Hamilonian
is conserved but, in particular for short times, not the linear wave energy.
Furthermore, it should be mentioned that the Boltzmann equation (25) has
the time reversal symmetry of the original Zakharov equation, since the res-
onance function changes sign when time t changes sign. Also, as Ri vanishes
for t = 0, the time derivative of the action density spectrum is continuous
around t = 0 and does not show a cusp. (cf. Komen et al, 1994). Neverthe-
less, despite the fact that there is time reversal, Eq.(25) has the irreversibility
property: the memory of the inital conditions gets lost in the course of time
owing to phase mixing.

The standard nonlinear transfer in a homogeneous wave field has been
studied extensively in the past four decades. The JONSWAP study (Hassel-
mann et al, 1973) has shown the prominent role played by four-wave interac-
tions in shaping the wave spectrum, and in shifting the peak of the spectrum
towards lower frequencies. Modern wave forecasting systems therefore use a
parametrization of the nonlinear transfer (Komen et al, 1994).

Our main interest in this paper is in the statistical aspects of random,
weakly nonlinear waves in the context of the Zakharov equation. In particular
we are interested in the relation between the deviations from the Gaussian
distribution and four-wave interactions. Because of the symmetries of the
Zakharov equation, the first moment of interest is then the fourth moment
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and the related kurtosis. The third moment and its related skewness vanishes:
information on the odd moments can only be obtained by making explicit
use of Krasitskii’s (1990) canonical transformation. Now, the fourth moment
< η4 > may be obtained in a straightforward manner from Eq.(16) and the
expression for the fourth cumulant Eq.(20) as

< η4 >=
3

4g2

∫
dk1,2,3,4(ω1ω2ω3ω4)

1
2 < a1a2a

∗
3a
∗
4 > +c.c (28)

Denoting the second moment < η2 > by m0, deviations from Normality are
then most conveniently established by calculating the kurtosis

C4 =< η4 > /3m2
0 − 1,

since for a Gaussian pdf C4 vanishes. The result for C4 is

C4 =
4

g2m2
0

∫
dk1,2,3,4 T1,2,3,4δ1+2−3−4 (ω1ω2ω3ω4)

1
2

×Rr(∆ω, t)N1N2N3, (29)

where Rr is defined by Eq.(22). For large times, unlike the evolution of the
action density, the kurtosis does not involve a Dirac δ-function but rather
depends on P/∆ω. Therefore, the kurtosis is determined by the resonant and
nonresonant interactions. It is instructive to apply Eq.(29) to the case of a
narrow band wave spectrum in one dimension. Hence, performing the usual
Taylor expansions around the carrier wave number k0 to lowest significant
order, one finds for large times

C4 =
8ω2

0

g2m2
0

T0

ω′′0

∫
dp1,2,3,4

δ1+2−3−4

p2
1 + p2

2 − p2
3 − p2

4

N1N2N3, (30)

where p = k − k0 is the wave number with respect to the carrier. It is seen
that the sign of the kurtosis is determined by the ratio T0/ω

′′
0 , which is the

same parameter that determines whether a wave train is stable or not to
side-band perturbations. Remark that numerically the integral is found to be
negative, at least for bell-shaped spectra. Hence, from Eq.(30) it is immedi-
ately plausible that for an unstable wave system which has negative T0/ω

′′
0

the kurtosis will be positive and thus will result in an increased probability
of extreme events. On the other hand for a stable wave system there will a
reduction in the probability of extreme events.

Finally, a further simplification of the expression for the kurtosis may be
achieved if it is assumed that the wave number spectrum F (p) = ω0N(p)/g
only depends on two parameters namely, the variance m0 and the spectral
width σk. Introduce the scaled wave number x = p/σk and the correspond-
ingly scaled spectrum m0H(x)dx = F (p)dp. Then, using the deep-water dis-
persion relation and T0 = k3

0, Eq.(30) becomes

C4 = −8
(
s

σ′ω

)2

J, (31)
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where s is the significant steepness k0m
1
2
0 while σ′ω is the relative width in

angular frequency space σω/ω0 = 0.5σk/k0. The parameter J is given by the
expression

J =
∫

dx1,2,3,4
δ1+2−3−4

x2
1 + x2

2 − x2
3 − x2

4

H1H2H3,

and is independent of the spectral parameters m0 and σk. Therefore, Eq.(31)
suggests a simple dependence of the kurtosis on spectral parameters. In fact,
the kurtosis depends on the square of the BF index introduced in Eq.(13).

2.4. Evolution of an inhomogeneous random wave field

The Benjamin-Feir instability is the result of a nonlinear interaction of waves
that are phase-locked, as the carrier wave is phase-locked with the sidebands
and therefore this process cannot be described by a theory that assumes that
the Fourier amplitudes are not correlated, as expressed by the assumption
of homogeneity of the wave field (cf. Eq.(19)). Therefore, this suggests that
local nonlinear events such as freak waves could be beyond the scope of the
standard description of ocean waves.

The investigation of the effect of inhomogeneities on the nonlinear energy
transfer started with the work of Alber (1978), and Alber and Saffman (1978),
while Crawford et al (1980) combined the effects of inhomogeneity and non-
Normality on the evolution of weakly nonlinear water waves. A review of this
may be found in Yuen and Lake (1982). We will only discuss the lowest order
effects of inhomogeneity, disregarding any effects resulting from deviations
from Normality, and we only discuss one-dimensional wave propagation.

Hence, we do not impose the condition of a homogeneous wave field (cf.
Eq.(19)). Now invoking the Gaussian approximation on the fourth moment(16
with D = 0) and substituting the result in the evolution equation for the sec-
ond moment, Eq.(17), gives[

∂

∂t
+ i(ωi − ωj)

]
Bi,j =

−2i
∫

dk2,3,4[Ti,2,3,4δi+2−3−4B3,jB4,2 − Tj,2,3,4δj+2−3−4Bi,3B2,4] (32)

Here, we used the property that the second moment B is hermitian, Bi,j =
B∗j,i, and we made use of the symmetry properties of T .

In principle, Eq.(32) could be used to study the (in)stability of a homo-
geneous wave spectra, but to our knowledge this has not been done so far.
In stead of this, Alber (1978) and Alber and Saffman (1978) studied the sta-
bility of a narrow-band, homogeneous wave spectrum. Following Crawford
et al (1980) and Yuen and Lake (1982), a considerable simplification of the
evolution equation for Bi,j may be achieved by expanding angular frequency
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ω and interaction coefficient T around the carrier wave number k0. At the
same time one introduces the sum and difference wave numbers

n =
1
2
(ki + kj),m = ki − kj (33)

while we introduce the relative wave number p = n − k0. The correlation
function B is from now on regarded as a function m and n. Realising that in
the narrow band approximation n is close to k0 while m is small, one obtains
from Eq.(32) the following approximate evolution equation for B,[

∂

∂t
+ im(ω′0 + pω′′0)

]
Bn,m =

−2iT0

∫
dl[Bn− 1

2
l,m−l −Bn+ 1

2
l,m−l]

∫
dkBk,l. (34)

Here, a prime denotes differentation with respect to the carrier wave number
k0, while T0 = k3

0. A key role in the work of Alber and Saffman is played by
the envelope spectral function W (p, x, t), which is in fact a Wigner distribu-
tion (Wigner, 1932). It is related to the Fourier transform of B(n,m, t) with
respect to m,

W (p, x, t) =
2ω0

g

∫
dmeimxB(n,m, t). (35)

and a homogeneous sea state simply has a Wigner distribution which is inde-
pendent of the spatial coordinate x, in agreement with the definition of ho-
mogeneous sea given in Eq.(19). In terms of the Wigner distribution Eq.(34)
becomes a transport equation in x, p and t, which bears a similarity with the
Vlasov Equation from plasma physics. This transport equation is obtained
by means of a Taylor expansion of the difference term in the right-hand side
of (34) with respect to l, giving an infinite sum. The result is[

∂

∂t
+ (ω′0 + pω′′0)

∂

∂x

]
W =

gT0

ω0

∂ρ

∂x

∂W

∂p
+ ... , (36)

where ρ(x, t) = 2 < η2 > is the mean square envelope variance, given by

ρ(x, t) =
∫

dp W (p, x, t), (37)

while the dots on the right-hand side of Eq.(36) represent the remaining terms
of the Taylor series expansion. Note that all terms of the series are required
to properly recover the random-version of the Benjamin-Feir instability.

Alber and Saffman (1978) and Alber (1978) studied the stability of a ho-
mogeneous spectrum and found that it is unstable to long wave length per-
turbations if the width of the spectrum is sufficiently small. In other words,
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in case of instability inhomogeneities would be generated by what we term
the random version of the Benjamin-Feir instability, therefore violating the
assumption of homogeneity made in the standard theory of wave-wave inter-
actions.

To see whether a homogeneous spectrum W0(p) is stable or not, one pro-
ceeds in the usual fashion by perturbing W0(p) slightly according to

W = W0(p) +W1(p, x, t),W1 �W0. (38)

Linearizing the evolution equation for W around the equilibrium W0 and
considering normal mode perturbations one obtains a dispersion relation be-
tween the angular frequency ω and the wave number k of the perturbation.
Instability is found for Im(ω) > 0. Alber (1978) considered as special case
the Gaussian spectrum

W0(p) =
< a2

0 >

σk

√
2π
exp(− p2

2σ2
k

), (39)

where < a2
0 > is a constant envelope variance and σk is the width of the

spectrum in wave number space. Stability of the random wave train was
found when the relative width of the spectrum, σk/k0, exceeds a measure
of mean square slope. In terms of the relative width σω/ω0 of the frequency
spectrum, which is just half the relative width for the wave number spectrum,
one finds stability if

σω

ω0
> (k2

0 < a2
0 >)

1
2 , (40)

while in the opposite case there is instability of the random wave train. Note
that in terms of the BF Index the stability condition Eq.(40) simply becomes
BFI < 1.

As a consequence, one should expect to find in nature spectra with a width
larger than the right hand side of Eq.(40), because for smaller width the
random version of the Benjamin-Feir instability would occur, resulting in a
rapid broadening of the spectral shape. For a random narrow-band wave train
this broadening is an irreversible process because of phase mixing (Janssen,
1983b). The broadening of the spectrum is associated with the generation of
inhomogeneities in the wave field. To appreciate this point, we mention that
the evolution equation (36) satisfies a number of conservation laws. Using
the already introduced envelope surface elevation variance ρ(x) the first few
conservation laws are given by

a)
d

dt

∫
dx ρ(x) = 0,

b)
d

dt

∫
dxdp pW = 0, (41)
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c)
d

dt

[
ω′′0

∫
dxdp p2W +

gT0

ω0

∫
dx ρ2(x)

]
= 0,

assuming periodic boundary conditions in x-space and the vanishing of W
for large p. The first equation expresses conservation of wave variance, the
second one implies conservation of wave momentum while the last one is
the most interesting one in our present discussion because it relates the rate
of change of spectral width to the inhomogeneity of the wave field. If the
wave field is homogeneous then ρ(x) is independent of x and the second
integral in Eq.(41c) is then, because of the first conservation law, independent
of time. Therefore, for a homogeneous wavefield there is, as expected, no
change in spectral width with time; only inhomogeneities will give rise to
spectral change according to lowest order inhomogeneous theory of wave wave
interactions.

We remark that the first two conservation laws of (41) may also be ob-
tained immediately from the ensemble average of Eqns.(12), while the last
conservation law follows from the expression of the free wave energy given
in Eq.(9) by performing ensemble averaging and by invoking the narrow-
band approximation. Let us give some of the details of this last derivation.
Thus, in the first term the angular frequency is expanded around the carrier
wave number k0 up to second order, while in the second term the interaction
matrix is replaced by its value at k0. For one-dimensional propagation we
therefore get,

E =
∫

dp1 (ω0 + p1ω
′
0 +

1
2
p2
1ω
′′
0)a1a

∗
1 +

T0

2

∫
dp1,2,3,4 a

∗
1a
∗
2a3a4δ1+2−3−4.

Now, the first two terms are already conserved because of conservation of
action and momentum, so we will omit them. Performing ensemble averaging
while invoking the assumption of a Gaussian state, i.e. Eq.(16) with D = 0,
and renaming of the integration variables gives

< E >=
ω′′0
2

∫
dp1 p

2
1 < a1a

∗
1 >

+T0

∫
dp1,2,3,4 < a∗1a3 >< a∗2a4 > δ1+2−3−4.

Using the definition for the Wigner distribution, Eq.(35), one then finally
arrives at the conservation law (41c).

In order to summarize the present discussion we remark that the central
role of the BF Index is immediately evident in the context of the lowest-order
inhomogeneous theory of wave-wave interactions. According to the stability
criterion (40) there is change of stability for BFI = 1. In other words, BFI
is a bifurcation parameter: on the short time scale spectra will be stable
and therefore do not change if BFI < 1 while in the opposite case inho-
mogeneities will be generated giving rise to a broadening of the spectrum.
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However, this prediction follows from an approximate theory that neglects
deviations from Normality. In general, considerable deviations from Normal-
ity are to be expected, in particular in case of Benjamin-Feir Instability. It
is therefore of interest to explore the consequences of non-Normality. This
will be done in the next Section by means of a numerical simulation of an
ensemble of surface gravity waves.

3. Numerical Simulation of an Ensemble of Waves.

It is important to determine the range of validity of both the homogeneous
and inhomogeneous theories of four wave interactions. Both theories assume
that the wave steepness is sufficiently small, while the homogeneous theory
ignores effects of inhomogeneity, and the inhomogeneous theory assumes that
deviations from Normality are small. In order to address these questions we
simulate the evolution of an ensemble of waves by running a deterministic
model with random initial conditions. Only wave propagation in one dimen-
sion will be considered from now on.

For given wave number spectrum F (k), which is related to the action
density spectrum through F = ωN/g, initial conditions for the amplitude
and phase of the waves are drawn from a Gaussian probability distribution
of the surface elevation. The phase of the wave components is then random
between 0 and 2π while the amplitude should be drawn from a probability
distribution as well (cf. Komen et al, 1994). Regarding each wave component
as independent, narrow-band wave trains, a Rayleigh distribution seems to be
appropriate for the amplitude. We remark that both phase and amplitude of
the waves should be regarded as random variables. Choosing only the phase
as random variable would imply that the wave spectrum is known precisely,
which is in contrast with observational experience. There is a considerable
uncertainty in the wave spectrum as well, which can only be reduced by ob-
taining frequency spectra from very long time series or wave number spectra
from sufficiently large areas. It is straightforward to implement such an ap-
proach. However, since the surface elevation is only determined by a finite
number of waves, extreme states are not well-represented. As a consequence
the kurtosis of the pdf is underestimated. For example, for linear waves it
was checked that even with 51 wave components and a wave number resolu-
tion of 0.2σk the kurtosis was underestimated by more than 5%. The size of
the ensemble was varied between 500 and 5000. On the other hand, drawing
random phases but choosing the amplitudes of the waves in a determinis-
tic fashion, as is common practice, gave only an underestimation of kurtosis
by 0.1%. Since our main interest is in the proper representation of extreme
events, and since computer resources are limited, it was therefore decided to
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only take the initial phase as random variable, hence,

a(k) =
√
N(k)∆k eiθ(k). (42)

where θ(k) is a random phase = 2πxr, xr is a random number between 0 and
1, and ∆k the resolution in wave number space.

Each member of the ensemble is integrated for a long enough time to reach
equilibrium conditions, typically of the order of 60 dominant wave periods.
At every time step of interest the ensemble average of quantities such as the
correlation function B, the pdf of the surface elevation and integral param-
eters such as wave height, spectral width and kurtosis is taken. Typically,
the size of the ensemble Nens is 500 members. This choice was made to en-
sure that quantities such as the wave spectrum were sufficiently smooth and
that the statistical scatter in the spectra, which is inversely proportional to√
Nens, is small enough to give statistically significant results. We now apply

this Monte Carlo approach to the nonlinear Schrödinger equation and to the
Zakharov equation.

3.1. Nonlinear transfer according to the nonlinear Schrödinger
equation

As a starting point we choose the Zakharov equation (11) with transfer co-
efficients and dispersion relation appropriate for the nonlinear Schrödinger
equation. The action variable is written as a sum of δ-functions,

a(k) =
i=N∑

i=−N

ai δ(k − i∆k), (43)

where ∆k is the resolution in wave number space and 2N + 1 is the total
number of modes. Substitution of Eq.(43) into Eq.(11) gives the following set
of ordinary differential equations for the amplitude a1,

d

dt
a1 + iω1a1 = −i

∑
1+2−3−4=0

T1,2,3,4 a
∗
2a3a4 (44)

We have solved this set of differential equations with a Runge-Kutta 34
method with variable time step. Relative and absolute error of the solution
have been chosen in such a way that conserved quantities such as action,
wave momentum and wave energy are conserved to at least five significant
digits.

In case of the nonlinear Schrödinger equation we expand the angular fre-
quency around the carrier wave number k0 up to second order. Again using
the difference wave number p = k − k0, we find

ω = ω0 + pω′0 +
1
2
p2ω′′0
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and we eliminate the contribution of the first two terms by transforming to
a frame moving with the group velocity. Furthermore, the interaction matrix
T is replaced by its value at k0. As a result we obtain

d

dt
a1 +

i

2
p2
1ω
′′
0a1 = −iT0

∑
1+2−3−4=0

a∗2a3a4 (45)

where T0 = k3
0. Amplitude and phase needed for the initial condition for

Eq.(45) are generated by Eq.(42) where the wave number spectrum is given
by a Gaussian shape,

F (p) =
< η2 >

σk

√
2π
exp(− p2

2σ2
k

). (46)

Before results on the evolution of the spectral properties of the system
(45-46) are presented, we mention that the nonlinear Schrödinger equation
admits a straightforward scaling relation. In order to see this, let us remove
the dependence of the initial condition on the variance < η2 > and the width
σk by introducing dimensionless variables

p′ = p/σk,

t′ = (σk/k0)2ω0t, (47)

a′ = k0a/(s
√
c0),

where s is the wave steepness defined below (13) and c0 is the phase speed
corresponding to the carrier wave number, c0 = ω0/k0. Writing the nonlinear
Schrödinger equation in terms of these new variables it is immediately evident
that for large times its solution can only depend on a single parameter, namely
k0s/σk, which apart from a constant is just the BF index as defined in Eq.(13).

Initial results obtained from the ensemble average of Monte Carlo Fore-
casting did not show the simple scaling behaviour with respect to the BF
Index, until it was realised that only results should be compared for the
same dimensionless time t′, which depends in a sensitive manner on the spec-
tral width σk. We therefore integrated the system of equations (45) until a
fixed dimensionless time t′ = 15. A spectral width σk = 0.2k0 was chosen and
without loss of generality the carrier wave number k0 = 1 was taken. The
integration interval then corresponds to about 60 wave peak periods. Further-
more, the resolution in wave number space was taken as ∆k = σk/3 while
the total number of wave components was 41, therefore covering a wide range
in wave number space. As already noted this choice gave for linear waves a
reasonable simulation of the pdf of the surface elevation.
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We remark that the specification of a random initial phase has important
consequences for the evolution of a narrow-band wave train. This is immedi-
ately evident when we compare in Fig. 1 time series for the surface elevation
from a run with a fixed initial phase θ(k) = 0 with results from a run with
a random choice of the initial phase. While with a deterministic choice of
initial phase the nonlinear Schrödinger equation generates in an almost peri-
odic fashion extreme events (Fig. 1a), satisfying the criteria for freak waves,
with a random choice of initial phase (Fig. 1b) this is much less evident.
Comparing the timeseries from the two cases in detail it is clear that for
fixed phase small waves and large waves occurr more frequently than in the
random phase case. This impression is confirmed by the pdf of the surface
elevation shown in Fig. 2. For reference we have also shown the Gaussian
probability distribution. In both cases there are considerable deviations from
Normality, but in particular for deterministic phase the deviations are large.
Similar deviations from the Normal distribution were found by Janssen and
Komen (1982). Their approach was entirely analytical and they started from
the assumption that for large time the solution of the nonlinear Schrödinger
equation would evolve towards a series of envelope solitons, described by
an elliptic function. Although they only considered the pdf of the envelope
(which under normal conditions is given by the Rayleigh Distribution), one
may obtain the pdf of the surface elevation as well. The resulting analytical
pdf has similar characteristics as the pdf for the case of deterministic phase.

The Monte Carlo approach was adopted because it is not evident that for
the system under discussion the ergodic hypothesis applies. This hypothesis
implies replacement of the ensemble average by a time average. However,
if one happens to choose initial phases in a way that is favourable for the
generation of envelope solitons, then there is a high probability that the
solution stays close to the envelope soliton branch and will hardly ever visit
other parts of phase space. In order to guarantee a representative picture we
therefore decided to perform Nens runs where for each run amplitude and
phase are drawn in an independent manner. In the remainder, only ensemble
averaged results will be discussed.

In Fig. 3 we show the evolution of the spectral width σk with dimensionless
time t′ for several values of BFI. Here, σk is defined using integrals of the
wave spectrum F over wave number p:

σ2
k =

∫
dp p2F (p)∫
dp F (p)

. (48)

We remark that for simulations with the nonlinear Schrödinger equation this
turned out to give a remarkable stable estimate of the width of the spectral
peak, because the spectra vanish sufficiently rapidly for large p. According
to this simulation there is a considerable broadening of the spectrum, which
occurs on a fairly short time scale of about 10 peak wave periods. In this
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case of one-dimensional propagation the standard theory of nonlinear transfer
would give no spectral change. Note that σk shows in the early stages of time
evolution an overshoot followed by a rapid transition towards an equilibrium
value. The number of oscilations around this equilibrium value depend on
the precise details of the discretisation scheme. In particular, more, larger
amplitude oscillations are found for coarser spectral resolution. The overshoot
is in agreement with results of Janssen (1983b), who studied the evolution of
a single unstable mode in the context of inhomogeneous theory of wave-wave
interactions. For sufficiently narrow spectra, overshoot in the amplitude of
the unstable mode was found followed by a damped oscillation towards an
equilibrium value. The damping time scale was found to depend on the width
of the spectrum, vanishing for small width. Physically, the damping is caused
by phase mixing (or destructive interference) and its effect depends on wave
number resolution.

As an example of spectral evolution, we show for BFI = 1.40 in Fig. 4
initial and final time wave number spectrum. In order to give an idea about
the representativeness of the results, 95% confidence limits, based on Nens−
1 degrees of freedom, are shown as well. The broadening of the spectrum
as caused by the nonlinear interactions seems to be statistically significant.
Although the spectral change should be symmetrical with respect to the
carrier wave number, i.e p = 0, it is clear that there are asymmetries present
in the ensemble average of the numerical results. However, these deviations
are within the statistical uncertainty. To make sure of this we redid the
case for BFI = 1.40 but now with an ensemble size of 2000. As expected,
statistical uncertainty was reduced by a factor of two while asymmetries were
reduced as well.

In order to examine whether the Monte Carlo results show evidence of
a bifurcation at BFI = 1, we plot in Fig. 5 the relative increase in spec-
tral width, defined as (σk(t′∞) − σk(0))/σk(0), as function of the BF index
evaluated with the inital value for spectral width. The results suggest that
there is only evolution of the spectrum for sufficiently large BF index, but, in
contrast to inhomogeneous theory of wave-wave interactions, BFI = 1 does
not appear to be a bifurcation point, as considerable changes in the wave
spectrum already start to occur for BFI = 1/2. Although from inhomoge-
neous theory one would expect a sudden transition from no spectral change
to spectral change, Fig. 5 seems to suggest that the transition is gradual. We
attribute this discrepancy to the assumption in inhomogeneous theory that
deviations from Normality are small, as these may give rise to irreversible
changes of the spectrum as well. This will be discussed more extensively in
the next Section. It is illuminating to plot the information on spectral width
in a sligthly different manner, namely by relating the final time value of BFI
with its initial value. This is done in Fig. 6 and it clearly shows that for
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large times BFI hardly exceeds the value of 1. This seems to agree with the
conjecture given in Section 2.2 that according to inhomogeneous theory (c.f.
Eq.(40)) one should not expect spectra to have a BFI much larger than 1.
According to the Monte Carlo results (cf. Fig. 3) the time scale of change for
large BFI is, on average, only a few wave periods.

Nonlinear effects give rise to considerable changes in the probability dis-
tribution of the surface elevation from the Gaussian distribution (cf. also
Onorato et al, 2000), although the deviations are of course much less then in
the cases discussed in Fig. 2. This is shown in Fig. 7 for BFI = 1.40. To em-
phasize the occurrence of extreme events we have plotted the logarithm of the
pdf as function of the surface elevation normalised with the wave variance.
The Gaussian distribution then corresponds to a parabola. The simulated
pdf, in the range of 2-4, shows an almost linear behaviour suggesting an ex-
ponential decay of the pdf. Finally, in Fig. 8 we summarize our results on
the deviations from Normality by plotting the final time value of the kurtosis
C4 =< η4 > /3m2

0 − 1 as function of the the final time BF Index. Here, the
fourth moment < η4 > was determined from the pdf of the surface elevation
which was obtained by sampling the second half of the time series for the
surface elevation at an arbitrarily chosen location. Alternatively, the fourth
moment may be obtained from Eq.(28) giving very similar answers. For small
nonlinearity one would expect a vanishing kurtosis, but the simulation still
underestimates, as already mentioned, the kurtosis by 2%. The kurtosis de-
pends almost quadratically on the Benjamin-Feir Index up to a value close to
1. This quadratic dependence will be explained in the next Section, when an
interpretation of results is provided. Near BFI = 1, on the other hand, the
kurtosis behaves in a more singular fashion, because, in agreement with the
discussion of Fig. 6, the Benjamin-Feir Index cannot pass the barrier near 1.

The nonlinear Schrödinger equation(45) for deep water waves is an ex-
ample where nonlinearity leads to focussing of wave energy and therefore
counteracts the dispersion by the linear term which is proportional to ω′′0 .
The results from the numerical simulation do indeed suggest that when non-
linearity is sufficiently strong focussing of energy occurs giving considerable
enhancements to the probability of extreme events, at least compared to the
normal distribution. In the opposite case, when the nonlinear term has oppo-
site sign defocussing of wave energy occurs and one would expect a reduction
in the number of extreme events. In order to show this we performed simu-
lations with the nonlinear Schrödinger equation(45) but now with negative
nonlinear transfer coefficient (T0 = −k3

0). Results of this case are shown in
the Figs. 5, 6 and 8 while the logarithm of the pdf of the surface eleva-
tion is shown in Fig. 9. These plots show that in the case of defocussing
the broadening of the spectrum is less dramatic. Furthermore, the final time
Benjamin-Feir Index does not have a limiting value of about 1. On the other
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hand, the kurtosis for this case is negative, resulting, as can be seen from
Fig. 9, in a large reduction of the probability of extreme events. The depen-
dence of the kurtosis on BFI is different from the case of focussing, because
there are clear signs of saturation beyond BFI = 1, while only in the range
BFI < 0.5 there is a quadratic dependence of kurtosis C4 on BFI.

3.2. Nonlinear transfer according to the Zakharov Equation

The nonlinear Schrödinger equation gives the lowest order effects of finite
bandwidth on the evolution of a weakly nonlinear wave train. Dysthe (1979)
investigated the consequences of next order in bandwidth and he found a sur-
prisingly large impact on the results for the growth rates of the modulational
instability. Similarly, Crawford et al (1981) studied the stability of a uni-
form wave train using the complete Zakharov equation which retains all the
high-order dispersion effects. In general, growth rates are reduced compared
to results from the nonlinear Schrödinger equation, therefore according to
the Zakharov and the Dysthe equation a uniform wave train is less unstable.
In fact, growth rates and thresholds for instability were in better agreement
with experimental results of Benjamin & Feir (1967) and Lake et al (1977)
(cf. also Janssen, 1983a). The Zakharov and the Dysthe equation have, in
addition, the interesting property that the nonlinear transfer coefficient and
the angular frequencies are not symmetrical with respect to the carrier wave
number. It will be seen that this has important consequences for the spectral
shape.

The Dysthe equation follows from the Zakharov equation by expanding
angular frequency to third order in the modulation wave number p while the
interaction matrix T is expanded up to first order in p. For narrow-band wave
trains it gives an accurate description of the sea state. However, wave spectra
may become so broad that the narrow-band approximation becomes invalid,
and therefore we have chosen to study numerical results from the Zakharov
equation.

The Zakharov equation we solved was given by Eq.(44), where the nonlin-
ear transfer coefficient was from Krasitskii (1990), while the exact dispersion
relation for deep water gravity waves was taken. The initial condition was
provided by Eq.(46). The discretisation details were identical to those of the
numerical simulations with the nonlinear Schrödinger equation. Because the
Zakharov equation contains all higher-order terms in the modulation wave
number p it is not possible to prove that the large time solution of the ini-
tial value problem is determined completely by the BF Index, but in good
approximation the BF Index can still be used for this purpose as long as the
spectra are narrow-banded.

In Fig. 10 we have plotted the ensemble averaged wave number spectrum
for BFI = 1.4, and it shows a clear down-shift of the peak of the spectrum
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while also considerable amounts of energy have been pumped into the high-
wave number part of the spectrum. The wave number down-shift is caused
by the asymmetries in the nonlinear transfer coefficient and to the same
extend by the asymmetries in the angular frequency with respect to the
carrier wave number. This was checked by running Eq.(44) with constant
nonlinear transfer coefficient, and similarly looking ensemble mean spectra,
but with half the wave number down-shift, were obtained. There is also a
noticable broadening of the spectrum. However, because of the increased
spectral levels at high wave numbers use of the second moment of the wave
number spectrum, as done for the nonlinear Schrödinger equation (cf. (48)),
to measure the width of the spectral peak is not appropriate. In stead we
use here the width as obtained from fitting the peak of the spectrum with a
Gaussian shape-function.

The relation between the final time BFI versus the initial value of BFI
is shown in Fig. 11 and is compared with the corresponding one from the
nonlinear Schrödinger equation. Also, Fig. 12 shows the normalized kurtosis
versus the final time BF index. Results from the Zakharov equation are in
qualitative agreement with the ones from the nonlinear Schrödinger equation.
However, because growth rates are smaller, the broadening of the spectrum
is less, the final time BF index is higher by about 10% and the normalized
kurtosis is smaller as well. A unique feature of the Zakharov equation is the
down-shift of the peak of the wave number spectrum. This is shown in Fig.
13 where we have plotted the final time value of the peak wave number,
normalized with its initial value versus the initial BF index. For large values
of BFI reductions in peak wave number of more than 10% are found from the
results of the numerical simulations, but the dependence of the down-shift in
peak wave number on BFI is not smooth. This is caused by the fact that
the ensemble averaged spectra not always have a well-defined spectral peak.

4. Interpretation of numerical results

In the previous Section we have discussed results from the Monte Carlo sim-
ulation of the nonlinear Schrödinger equation and the Zakharov equation.
These results show that on average there is a rapid broadening of the wave
spectrum, while nonlinearity gives rise to considerable deviations from Gaus-
sian statistics. The question now is whether the average of the Monte Carlo
results may be obtained in the framework of a simple theoretical description.
In Section 2 we have discussed two attempts to achieve this. The first one is
the standard theory of wave-wave interactions, extended with the effects of
nonresonant four wave interactions. This approach assumes a homogeneous
wave field but allows for deviations from the Gaussian sea state. The second
theory is the inhomogeneous theory of wave-wave interactions which assumes
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that effects of inhomogeneity in the wave field are dominant while deviations
from Normality only play a minor role. This approach seems to be an ideal
starting point for treating inhomogeneous and nonstationary phenomena such
as freak waves because it describes the random version of the Benjamin-Feir
instability. Let us therefore first discuss the validity of inhomogeneous theory
using results from the Monte Carlo Forecasting of ocean waves obtained from
the nonlinear Schrödinger equation.

According to inhomogeneous theory the broadening of the wave spectrum
is caused by the inhomogeneity of the wave field. This is clearly expressed by
the conservation law (41c) and explained in the discussion that follows. From
this conservation law one may therefore obtain a measure of inhomogeneity
of the wave field, namely

I =
I2
I2
1

, (49)

where

I1 =
∫

dx ρ(x), (50)

and

I2 =
∫

dx ρ2(x). (51)

Here, the integrals over space are weighted by the seize of the domain, and
using the definitions for ρ (Eq.37) and the Wigner distribution (cf. Eq.(35))
one may express the inhomogeneity measure I in terms of the correlation
function B(n,m, t) as

I1 =
2ω0

g

∑
p

B(p, 0), (52)

while

I2 =
(

2ω0

g

)2 ∑
p,p′,m

B(p,m)B∗(p′,m), (53)

The correlation functions B(p,m) may be readily obtained from the numeri-
cal results for the complex amplitude a(k, t) after ensemble averaging. For a
homogeneous wave field B(p,m) = N(p)δ(m), hence I2 = I2

1 , or I = 1.
The initial conditions used in the numerical simulation of waves have been

chosen in such a way that the sea state corresponds to a Gaussian one. As
a consequence, because the complex amplitudes a(k, t) are not correlated,
this implies that initially the sea state is homogeneous as well (cf. Komen et
al, 1994). However, the wave ensemble consists of a finite number of mem-
bers, and this means that the initial probability distribution is not a perfect
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Gaussian (the kurtosis is slightly underestimated, for example) but it also
means that the initial conditions are slightly inhomogeneous. According to
the inhomogeneous theory the perturbations should grow exponentially in
time resulting in for example a broadening of the wave spectrum.

For BFI = 1.4, the evolution in time of the inhomogeneity I is shown in
Fig. 14. Initially, inhomogeneity is small but grows rapidly in the course of
time, which is then followed by an oscillation around the level 1.004. This
level of inhomogeneity and the variation with time is, however, extremely
small (note that for the case of Fig. 1a I is of the order of 3) and it cannot
explain the large changes in the wave number spectrum we have seen in the
numerical simulations.

In addition, according to the inhomogeneous theory the conservation law
(41c) should be satisfied. In Section 3.2 it was explained that this conservation
law follows from the conservation of Hamiltonian, assuming that deviations
from Normality may be ignored. It is of interest, of course, to test whether
it is justified to ignore effects of the fourth cumulant. To that end we com-
pare in Fig. 15 the evolution in time of the Hamiltonian as obtained from
the numerical simulation (this will be called the ’exact’ Hamiltonian from
now on) with the Hamiltonian according to inhomogeneous theory. While
the ’exact’ Hamiltonian is a constant (at least up to five significant digits),
it is clear that the approximate Hamiltonian is not conserved when evalu-
ated using the numerical results. In fact, there are large deviations as the
approximate Hamiltonian becomes negative, while the ’exact’ Hamiltonian is
positive definite. The disagreement between the approximate and the ’exact’
Hamiltonian is caused by the neglect of the higher order cumulants. This is
immediately clear from Fig. 15 where we have compared the nonlinear contri-
bution to the Hamiltonian according to lowest order inhomogeneous theory
(called approximate), with the corresponding nonlinear contribution that in-
cludes higher order cumulants (called ’exact’). The approximate nonlinear
contribution hardly varies with time, which is in agreement with the results
from Fig. 14 that effects of inhomogeneity are small. The ’exact’ nonlinear
contribution shows a significant variation with time. The difference between
’exact’ and approximate are considerable and therefore it is not justified to
ignore effects of deviations from Normality in a simple theoretical description
of the evolution of the sea state. As a matter of fact, the deviations from Nor-
mality are the main reason for the spectral broadening as the time-varying
nonlinear contribution to the Hamiltonian, including effects of the fourth or-
der cumulant, just compensates for the changes with time of the linear part
of the wave energy. Clearly, according to the Monte Carlo simulations the
linear wave energy is not conserved.

In summary, it has been shown that in the inhomogeneous theory of four-
wave interactions effects of the generation of the fourth cumulant cannot
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be ignored. At the same time we have shown that the numerical ensemble
of ocean waves may be regarded to good approximation as a homogeneous
ensemble. Hence, the standard theory of four-wave interactions (extended
by including nonresonant interactions), which assumes a homogeneous wave
field, may be a good candidate to explain the results of the numerical simu-
lations in Section 3.

Therefore, we used the Boltzmann equation(25) to evolve the action den-
sity N(k) for the same cases as presented in Section 3. The differential equa-
tion was solved with a Runge-Kutta 34 method with variable time step, and
the continuous problem was discretized in the same way as was done in case
of the solution of the Zakharov equation. Run times using the homogeneous
theory are typically two orders of magnitudes faster than when following the
ensemble approach.

In contrast to inhomogeneous theory, the standard theory gives a much
better approximation to the ’exact’ Hamiltonian as shown in Fig. 15. There
are, as should be, small differences because the standard theory is an approx-
imation as well, since both effects of inhomogeneity and the sixth cumulant
have been neglected. Further results from the discretized version of the ho-
mogeneous theory are compared with the ones from the simulations with the
nonlinear Schrödinger equation in the Figs. 3-8.

From Fig. 3 which shows the evolution in time of the spectral width for
several values of the Benjamin-Feir Index it is seen that for large times there is
good agreement between homogeneous theory and the ensemble averaged re-
sults from the Monte Carlo simulations. For short times it is however evident
that Eq.(25) does not show the overshoot found in the numerical simulations.
A likely reason for the absence of overshoot in the theoretical calculations is
the assumption that the action density varies slowly compared to the time
scale implied by the resonance function Ri(∆ω, t). Both the numerical sim-
ulations and homogeneous theory show on the one hand for short times a
rapid broadening of the wave spectrum which for large times is followed by
a transition towards a steady state. The evolution towards a steady state
can be understood as follows: First, it should be noted that, according to
Section 2.3, for one-dimensional propagation there is no nonlinear transfer
due to resonant nonlinear interactions. Now, initially the resonance func-
tion Ri(∆ω, t) will be wide so that nonresonant wave-wave interactions are
allowed to modify the action density spectrum. But after about 5-10 wave pe-
riods the resonance function becomes progressively narrower until it becomes
approximately a δ-function, hence only resonant waves are selected. In that
event there is no change of the action density spectrum possible anymore so
that for large times a steady state is achieved.

A example of the comparison between theoretical and simulated spectrum
is given in Fig. 4. There is a fair agreement between the two. However, it
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should be mentioned that typically the simulated spectrum is slightly more
peaked than the theoretical one despite the fact that there is a close agree-
ment in spectral width. This agreement in spectral width between theory and
simulation is also very much evident in the Figs. 5 and 6 over the full range
of the initial value of BFI. In particular note that there is close agreement
between the upper limit of the final time BFI from theory and the simula-
tion. Hence, homogeneous theory also provides an explanation of why there
is a lower bound to spectral width.

We therefore have the curious situation that both homogeneous and in-
homogeneous theory explain why there is a lower bound to spectral width as
found in the numerical simulations. However, since it has been shown that
inhomogeneities only play a minor role in the numerical simulations it fol-
lows that only homogeneous theory provides a proper explanation. In-situ
observations from the North Sea seem to indicate the presence of a lower
bound to spectral width as well (see for example Janssen, 1991). Although it
is impossible to prove at present that at sea inhomogeneities do not play a
role, homogeneous theory even seems to give a plausible explanation of the
lower bound found at sea.

As discussed in Section 2.3 nonlinearity gives rise to deviations from the
normal distribution. We determined the normalised kurtosis using Eq.(29),
which is obtained from the fourth cumulant D. Introducing the normalized
height x = η/

√
m0, the pdf of the normalized surface elevation x is then

given by

p(x) =

(
1 +

1
8
C4

d4

dx4

)
f0, (54)

where f0 is given by the normal distribution

f0(x) =
1√
2π

exp(−x
2

2
). (55)

Eq.(54) follows from an expansion of the pdf p in terms of orthogonal func-
tions (d/dx)nf0. Here, n is even because of the symmetry of the Zakharov
equation. The expansion coefficients are then obtained by determining the
first, second and fourth moment. For the range of BFI studied in this paper
it was verified that higher moments only gave a small contribution to the
shape of the pdf p(x). The pdf according to theory is compared in Fig. 7
with the simulated one, and a good agreement is obtained, even for extreme
sea state conditions. Clearly in the case of nonlinear focussing, the probabil-
ity of extreme states is, as expected, larger when compared to the normal
distribution. Finally, in Fig. 8 theoretical and simulated final time kurtosis
is plotted as function of the final time BFI. A good agreement between the
two results is obtained even close to the limiting value of the final time BFI.
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For BFI < 1 both simulated and theoretical kurtosis depend in an almost
quadratic fashion on BFI, in agreement with the simple estimates of C4
given in Section 2.3 (cf Eq.(31)).

In the case of nonlinear focussing a good agreement between the numerical
simulations and the homogeneous theory has been obtained, even for extreme
values of the Benjamin-Feir Index. Here, it should be emphasized that at sea
BFI has typical values of 0.5 or less and only occasionaly values of the order
1 are reached. We have performed simulations to values of BFI of up to
3 and even for these extreme conditions, having large values of kurtosis for
example, a reasonable agreement is obtained. This is surprising because the
homogeneous theory was derived under the assumption of small deviations
from Normality.

In the case of nonlinear defocussing the range of validity of homogeneous
theory is much more restricted. This is made plainly clear in the Figs. 5,
6, 8 and 9, where results from the simulations and homogeneous theory are
compared for the case of nonlinear defocussing. In order to be able to inter-
pret this comparison we note that homogeneous theory does not distinguish
between focussing and defocusing because the nonlinear transfer is indepen-
dent of the sign of the interaction matrix T . Only the kurtosis depends on
the sign of T . Judging from the Figs. 5, 6 and 8 the range of validity of ho-
mogeneous theory is restricted to BFI < 0.6. In particularly, for large BFI
there are large qualitative deviations in the kurtosis of the pdf: while from
the numerical simulations there are clear signs of saturation in kurtosis, there
is no indication of saturation in the results from homogeneous theory. In ad-
dition, in case of nonlinear defocussing the kurtosis is negative so that for
large normalized elevation x the pdf given in Eq.(54) may become negative.
This is clearly unrealistic and in order to correct this undesirable property
of homogeneous theory one needs, for large BFI, to take into account the
effects of higher then fourth order cumulants as well. It is believed this is
the main reason why homogeneous theory has such a restricted validity in
this case. In the opposite case of nonlinear focussing the kurtosis is positive,
giving for large x a positive correction to the normal distribution. The pdf
of the surface elevation is therefore positive, at least for the cases that have
been studied here, and as a consequence homogeneous theory has a much
larger range of validity.

Finally, we applied homogeneous theory to the Zakharov equation. Results
are compared with the numerical simulations in the Figs. 10, 11, 12 and 13.
There is a fair agreement between simulated and theoretical spectrum (cf.
Fig. 10), between simulated and theoretical final time BFI index (cf. Fig.
11) and normalized kurtosis (cf. Fig. 12). Less favourable is the agreement
between simulated and theoretical peak wave number, as show in Fig. 13.
The theoretical results show a smooth dependence of wave-number down-
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shift on BFI, giving shifts of 20% or more for large values of BFI. However,
the simulation shows more scatter while the down-shift is at most 15%. The
reason for the scatter in the simulated results is probably that the peak of the
wave number spectrum is not always well-defined. In contrast, homogeneous
theory gives a smoother spectrum and a well-defined peak of the spectrum.

5. Conclusions

Present day wave forecasting systems are based on a description of the en-
semble averaged sea state. In this approach the wave number spectrum plays
a central role and its evolution follows from the energy balance equation. The
question discussed here is whether it is possible to make statements, neces-
sarily of a statistical nature, on the occurence of extreme events such as freak
waves.

In order to show that this is possible the following approach has been
adopted. The starting point is a deterministic set of equations, namely the
Zakharov equation or its narrow-band limit the nonlinear Schrödinger equa-
tion. There is ample evidence that these equations admit freak wave type
solutions. These freak waves occur when the waves are sufficiently steep as
nonlinear focussing may then overcome the spreading of energy by linear dis-
persion. For the same reason the Benjamin-Feir instability occurs. As shown
in Fig. 1 the occurrence of freak waves depends in a sensitive manner on the
choice of the initial phase of the waves. In addition, on the open ocean waves
propagate from different locations towards a certain point of interest, and
may therefore be regarded as independent. Hence, for open ocean applica-
tions the random phase approximation seems to be appropriate. We therefore
simulated the evolution of an ensemble of ocean waves by running a deter-
ministic model with random initial phase. These Monte Carlo simulations
are expensive (typically, the size of the ensemble is 500) so that we restrict
ourselves to the case of one-dimensional propagation only.

The ensemble average of the results from the Monte Carlo simulations
shows that when the Benjamin-Feir Index is sufficiently large (as occurs
for the combination of narrow spectra and steep waves) the wave spectrum
broadens while at the same time considerable deviations from the Gaussian
pdf are found. In case of the Zakharov equation the spectral change is even
asymetrical with respect to the peak of a symmetrical spectrum giving a
down-shift of the peak wave number while as a consequence of the conser-
vation of wave action and wave energy considerable amounts of energy are
being pumped into the high-wave number part of the spectrum. These spec-
tral changes occur on a short time scale, typically of the order of ten wave
periods. This time scale is comparable with the Benjamin-Feir time scale.

The standard homogeneous theory of resonant nonlinear transfer does
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not give spectral change in the case of one-dimensional propagation. This
theory was therefore extended to allow for nonresonant interactions as well,
because the nonlinear focussing related with the Benjamin-Feir Instability
is an example of a nonresonant four-wave interaction. This nonlinear four-
wave transfer is associated with the generation of higher order cumulants
such as the kurtosis. Deviations of the surface elevation pdf from the normal
distribution can therefore be expressed in terms of a six-dimensional integral
involving the cube of the action spectrum (cf. Eq.(29)). In case of nonlinear
focussing there is, for a large range of values of the BFI, a good agreement
between the ensemble averaged results from the numerical simulations and
homogeneous theory. This is in particular true for the broadening of the
spectrum, the spectral shape and the estimation of the kurtosis. Compared
to the simulations, theory overestimates, however, the peak wave number
down-shift.

Homogeneous theory also explains why for one-dimensional propagation
the wave spectrum evolves towards a steady state. The resonance function
evolves rapidly towards a δ-function, hence for large times only resonant
wave-wave interactions are selected which in one dimension do not give rise
to spectral change. This is in sharp contrast with the case of two-dimensional
propagation. No trend towards a steady state is expected in that case because
resonant four-wave interactions do contribute to a change in the spectrum.

The extended version of the homogeneous four-wave theory has two time
scales, a fast one on which the nonresonant interactions take place and a
long time scale on which the resonant interactions occur. The nonresonant
interactions play a similar role as transients in the solution of an initial value
problem. They are simply generated because initially there is a mismatch
between the choice of the probability distribution of the waves, a Gaussian,
and between the initial choice of the wave spectrum, representing a sea state
with narrow-band, steep nonlinear waves. For example, if one could choose a
probability distribution function which is in equilibrium with the nonlinear
sea state (theoretically one can, by the way), then nonresonant interactions
would not contribute. Only resonant wave-wave interactions will then give rise
to nonlinear transfer. In the general case for which there is a finite mismatch
between pdf and wave spectrum, the nonresonant contribution will die out
very quickly owing to phase mixing, but will, nevertheless, as we have seen,
result in considerable changes in the wave spectrum. The question therefore
is whether there is a need to include effects of nonresonant interactions.
This depends on the application. In wave tank experiments, where one can
program a wave maker to produce the initial conditions used in this paper,
it seems that effects of nonresonant transfer need to be taken account for.
For the open ocean case this is not clear. The point is that in nature the
combination of steep waves and a strictly Gaussian distribution most likely
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does not occur. Changes in nature are expected to be more gradual so that the
mismatch between pdf and wave spectrum is small. Only when a wind starts
blowing suddenly, hence for short fetches and duration, effects of nonresonant
interactions are expected to be relevant. More research in this direction is,
however, required.

The results from Monte Carlo Simulations do not provide evidence that
there are significant deviations from homogeneity of the ensemble of waves.
Deviations from Normality are found to be much more important. Neverthe-
less, it cannot be concluded from the present study that the inhomogeneous
approach of Alber and Saffman (1978) is not relevant for real ocean waves.
For example, effects of inhomogeneity might be relevant in fetch-limited,
rapidly varying circumstances. However, its effects are expected to be small
and therefore only the lowest order approximation, as given explicitely in
Eq.(36), needs to be retained.

Finally, for real ocean waves not only four-wave interactions determine the
evolution of the wave spectrum. Wind input and dissipation due to white-
capping are relevant, and these processes may effect the kurtosis of the sea
surface as well. However, it has been shown in this paper that in partic-
ular the nonresonant nonlinear transfer acts on a short time scale which is
much shorter then the time scales associated with wind input and dissipation
source functions used in wave forecasting (Komen et al, 1994). Hence, one
would expect that the expression for kurtosis found in this paper (cf Eq.(29))
should be relevant in nature. Nevertheless, nonlinear focussing may result in
steep waves. If their steepness exceeds a certain threshold one would expect a
significant amount of wave breaking, thus limiting the height of these waves,
and effecting the extreme statistics. A realistic, deterministic model of wave
breaking is needed to assess the importance of wave breaking in these circum-
stances. It may be more effective, however, to try to compare results from
the present approach directly with observations of extremes collected over a
long period.
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7. Figure captions

Fig. 1 Detail of surface elevation η as function of dimensionless time t′. The
top panel a) shows the time series for a fixed choice of initial phase, θ = 0,
while the bottom panel b) shows the time series for a random choice of initial
phase.

Fig. 2 The surface elevation probability distribution as function of normalized
height, η/

√
m0 (with m0 the variance), corresponding to the cases of Fig. 1.

For reference the Gaussian distribution is shown as well.

Fig. 3 Time evolution of spectral width for several values of the BF Index.
Corresponding results from homogeneous theory are shown as well.

Fig. 4 Initial and final time wave number spectrum according to the Monte
Carlo Forecasting of Waves (MCFW) using the nonlinear Schrödinger Equa-
tion. Error bars give 95% confidence limits. Results from theory are shown
as well.

Fig. 5 Relative spectral broadening (σk(t′∞) − σk(0))/σk(0) as function of
the BF Index. Shown are results for focussing (BF) and defocussing (no BF)
from the simulations and from theory, but results from theory are identical
for these two cases.

Fig. 6 Final time versus initial time value of the BF Index for the same cases
as displayed in Fig.5.

Fig. 7 Probability distribution function for surface elevation as function of
normalized height η/

√
m0. Results from numerical simulations with the non-

linear Schrödinger equation and homogeneous theory in case of focussing (BF
Index of 1.4). For reference the Gaussian distribution is shown as well. To
emphasize the extremes the logarithm of the pdf has been plotted. Freak
waves correspond to a normalized height of 4.4 or larger, hence nonlinearity
has a dramatic impact on the occurrence of freak waves.

Fig. 8 Normalized Kurtosis as function of the BF Index. Shown are results
for focussing (BF) and defocussing (no BF) from the simulations and from
theory. The theoretical result for defocussing can be obtained from the results
of focussing by a reflection with respect to the x-axis.

Fig. 9 Probability distribution function for surface elevation as function of
normalized height η/

√
m0. Results from numerical simulations with the non-

linear Schrödinger equation and homogeneous theory in case of defocussing
(BF Index of 1.4). For reference the Gaussian distribution is shown as well.

Fig. 10 Initial and final time wave number spectrum according to Monte
Carlo Forecasting of Waves (MCFW) using the Zakharov equation. Error
bars give 95% confidence limits. Results from theory are shown as well.
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Fig. 11 Comparison of curves of final time versus initial value of the BF
Index from simulations with the nonlinear Schrödinger equation and from
the Zakharov equation. The corresponding theoretical results are shown as
well.

Fig. 12 Normalized Kurtosis as function of the BF Index. Shown are results
for focussing from simulations with the nonlinear Schrödinger equation and
with the Zakharov equation. The corresponding theoretical results are shown
as well.

Fig. 13 Final time peak wave number down-shift versus BF Index. Shown is a
comparison between numerical simulation results from the Zakharov equation
and theory.

Fig. 14 Time evolution of a measure for inhomogeneity, I, for two different
ensemble sizes, according to the nonlinear Schrödinger equation.

Fig. 15 Time evolution of Hamiltonian E of the nonlinear Schrödinger equa-
tion. Also shown are time evolution of E according to lowest order inhomo-
geneous theory (Eapprox) and according to homogeneous theory that includes
the fourth cumulant. Finally, shown are the nonlinear contribution to E for a
strictly Gaussian state (NL(C4=0)), and including all higher order cumulants
(NL+C4).
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Fig. 1. Detail of surface elevation η as function of dimensionless time t′. The top
panel a) shows the time series for a fixed choice of initial phase, θ = 0, while the
bottom panel b) shows the time series for a random choice of initial phase.
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Fig. 2. The surface elevation probability distribution as function of normalized
height, η/

√
m0 (with m0 the variance), corresponding to the cases of Fig. 1. For

reference the Gaussian distribution is shown as well.
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Fig. 3. Time evolution of spectral width for several values of the BF Index. Corre-
sponding results from homogeneous theory are shown as well.
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Fig. 5. Relative spectral broadening (σk(t′∞) − σk(0))/σk(0) as function of the
BF Index. Shown are results for focussing (BF) and defocussing (no BF) from the
simulations and from theory, but results from theory are identical for these two cases.
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Fig. 6. Final time versus initial time value of the BF Index for the same cases as
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Fig. 7. Probability distribution function for surface elevation as function of nor-
malized height η/

√
m0. Results from numerical simulations with the nonlinear

Schrödinger equation and homogeneous theory in case of focussing (BF Index of
1.4). For reference the Gaussian distribution is shown as well. Freak waves corre-
spond to a normalized height of 4.4 or larger.
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Fig. 8. Normalized Kurtosis as function of the BF Index. Shown are results for
focussing (BF) and defocussing (no BF) from the simulations and from theory. The
theoretical result for defocussing can be obtained from the results of focussing by a
reflection with respect to the x-axis.
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m0. Results from numerical simulations with the nonlinear

Schrödinger equation and homogeneous theory in case of defocussing (BF Index
of 1.4). For reference the Gaussian distribution is shown as well.
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Fig. 10. Initial and final time wave number spectrum according to Monte Carlo
Forecasting of Waves (MCFW) using the Zakharov equation. Error bars give 95%
confidence limits. Results from theory are shown as well.
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Fig. 11. Comparison of curves of final time versus initial value of the BF Index
from simulations with the nonlinear Schrödinger equation and from the Zakharov
equation. The corresponding theoretical results are shown as well.
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Fig. 12. Normalized Kurtosis as function of the BF Index. Shown are results for
focussing from simulations with the nonlinear Schrödinger equation and with the
Zakharov equation. The corresponding theoretical results are shown as well.
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Fig. 13. Final time peak wave number down-shift versus BF Index. Shown is a
comparison between numerical simulation results from the Zakharov equation and
theory.
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Fig. 14. Time evolution of a measure for inhomogeneity, I, for two different ensemble
sizes, according to the nonlinear Schrödinger equation.
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Fig. 15. Time evolution of Hamiltonian E of the nonlinear Schrödinger equation.
Also shown are time evolution of E according to lowest order inhomogeneous theory
(Eapprox) and according to homogeneous theory that includes the fourth cumulant.
Finally, shown are the nonlinear contribution to E for a strictly Gaussian state
(NL(C4=0)), and including all higher order cumulants (NL+C4).


