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Abstract

The authors of the present paper present an iterative scheme to calculate the nonlinear wave

profiles [Jang, T.S., Kwon, S.H., 2005. Application of nonlinear iteration scheme to the

nonlinear water wave problem: Stokian wave. Ocean Engineering, in press]. The nonlinear

operator was constructed from the dynamic boundary condition of the free surface. The initial

input of the iterative process was linear potential. The linear dispersion relation was utilized.

The authors of the present paper suggest an improved scheme in terms of accuracy and speed

of convergence by utilizing the nonlinear dispersion relation. The existence and uniqueness of

the improved scheme are illustrated in this paper. The calculation results together with Fast

Fourier transform revealed that the improved scheme made it possible to predict higher-order

nonlinear characteristics of the Stokes’ wave.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A considerable number of studies have been made on the nonlinear water wave
profiles. Most of the nonlinear water wave profiles have been treated based on the
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perturbation theory and computational fluid dynamics (CFD) methods ever since
the appearance of Stokes’ nonlinear wave theory (Stokes, 1847). For example,
computational and theoretical studies of the nonlinear wave profiles could be found
(Tsai and Yue, 1996; Dias and Kharif, 1999; Clamond, 2001; Nicholls, 2001). On the
other hand, there has been a fixed-point approach to water wave problem. One
example of the application of the fixed-point theorem to the wave problem is given in
Bona and Bose (1974). They examined the question of the existence of solitary wave
solutions to simple one-dimensional models for long waves in nonlinear dispersive
systems.

With the help of the fixed-point theorem, Jang and Kwon (2005) proposed an
iterative method to estimate nonlinear wave profiles, which was quite different from
the traditional perturbation theory. The present paper is aimed at improving
accuracy and speed of convergence of the previous iterative scheme suggested by the
present authors. The improvement was accomplished by adopting nonlinear
dispersion relation. The change in the dispersion relation changes a whole picture
of the uniqueness, existence and stability. The uniqueness and existence result in the
modification were illustrated in this paper. An equation which defines stable region
in terms of wave number times amplitude of the wave was derived. The
corresponding stability chart was drawn. The improvement achieved in the present
scheme was demonstrated by analyzing the Fast Fourier transform (FFT) results.
The FFT analysis revealed that the improved iterative scheme yielded high-order
nonlinear Fourier components, which could be found in Stokes’ high-order
nonlinear wave theory.

In the study, we began with the derivation of the contraction operator from
the Bernoulli equation. The detailed construction of the operator in the case
of deep water is shown in Section 3. Section 4 discusses the condition for stability
of the improved method. The existence and uniqueness of the solutions are examined
in Section 5. The numerical results including FFT analysis for several wave slopes
are shown in order to demonstrate the effectiveness of the improved scheme,
in Section 6. To test the efficiency of the scheme, the results were compared
with high-order Stokes’ wave profiles. Numerical convergence tests were con-
ducted based on sup-norm errors in order to examine the characteristics of the
numerical convergences of the nonlinear iterative solutions. The comparison
revealed that the results showed quite a good agreement with each other. The rate
of convergence for the proposed operator was also very fast. As a result, all the
computations achieved convergence in less than 10 iterations with respect to a
specific tolerance.
2. Bernoulli’s equation and Banach fixed-point theorem

Based on nonlinear contraction mapping (Zeidler, 1986), the Banach fixed-point
theorem has been successfully applied to many fields, especially nonlinear pro-
blems. Through this study, we have found that Bernoulli’s equation has a Banach
fixed-point.
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The fluid is assumed to be homogeneous, incompressible and inviscid. In addition,
the fluid motion is irrotational, such that a velocity potential function exists.
Suppose that we consider a free surface flow. A Cartesian coordinate system ðx; y; zÞ
is adopted, with z ¼ 0 the plane of the undisturbed free surface and the z-axis
positive upwards. The vertical elevation of any point on the free surface may be
defined by a function z ¼ Zðx; y; tÞ. The surface tension being negligible, then,
Bernoulli’s equation applied on the free surface is

jt þ
1

2
rj � rjþ

Pa

r
þ zg ¼ f ðtÞ, (1)

where j, Pa and r stand for the velocity potential, the pressure of the atmosphere,
and the constant fluid density, respectively. Taking Bernoulli’s constant f ðtÞ ¼ Pa=r,
we have the expression for the free surface:

Z ¼ �
1

g
jt þ

1

2
rj � rj

� �����
z¼Z

. (2)

The right-hand side of (2) may be viewed as an operator for the free surface Z, in
such a way that we can define a new operator B, which shall be called a Bernoulli’s
operator in this study:

BðZÞ � �
1

g
jt þ

1

2
rj � rj

� �����
z¼Z

. (3)

Then Bernoulli’s operator B can be easily conformed to be nonlinear, and (2) can
be simply written as

Z ¼ BðZÞ. (4)

As shown in (4), the free surface Z is invariant under the nonlinear operator B: it is
called a Banach fixed point (or function) Z. Because (4) has a Banach fixed point,
Bernoulli’s equations (1) and (2), which are equivalent to (4), should have a Banach
fixed point. If the operator B satisfies the following inequality:

jjBðZ1Þ � BðZ2Þjj1pbjjZ1 � Z2jj1; 0obo1, (5)

then B is considered a contraction and the fixed point is realized as the limit of the
following sequence:

Zkþ1 ¼ BðZkÞ (6)

with the initial condition for zero function Z0 ¼ 0 (Roman, 1975).
3. Construction of Bernoulli operator BðZÞ

We shall restrict the discussion to plane harmonic waves that travel in the
x-axis. To construct the nonlinear Bernoulli operator B, we begin with the Stokes
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third-order solution for periodic plane waves in deep water:

jðy; zÞ ¼ �aC0e
kz sin yþ

a3k2C0

8
ekz sin y; C0 ¼

g

k

� �1=2
, (7)

where k, a, and o represent the wave number, the wave amplitude and frequency,
respectively. The product ka, the wave slope, is assumed small. The symbol y denotes
the phase function kx�ot, where the nonlinear amplitude dispersion relation in deep
water is assumed: o2 ¼ gkð1þ a2k2

Þ.
Using the nonlinear amplitude dispersion relation, the combining of (7) and (3)

and a simple calculation yield the explicit form of Bernoulli’s operator:

BðZÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2k2

p
1þ

3

8
a2k2
�

1

16
a4k4

� �
ekZ cos y

�
1

2
a2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2k2

p
1þ

a4k4

64

� �
e2kZ. ð8Þ

If we consider the second-order quantity for the contraction coefficient b in (11),
then b would have an approximation as follows:

BðZÞ � aekZ cos y� 1
2

a2ke2kZ. (9)

Eq. (9) is identical with the result (Jang and Kwon, 2005), where the linear
progressive wave potential and the linear dispersion relation were assumed.
4. Condition for contraction

Because Z represents the free surface, it must be continuous. Therefore, it is
convenient to introduce the sup-norm jj � jj1 into this study (Roman, 1975).
Furthermore, it is sufficient to consider 0pyp2p, since we are restricted to plane
harmonic waves.

Suppose that two different wave elevations Z1, Z2, then their metric
jjBðZ1Þ � BðZ2Þjj1, that is, the distance between them, is represented as

jjBðZ1Þ � BðZ2Þjj1 ¼ sup
y2½0;2p�

jBðZ1Þ � BðZ2Þj. (10)

If we employ triangle inequality and smallness of kZ1 and kZ2 in (10), then we arrive
at the inequality (11).

jjBðZ1Þ � BðZ2Þjj1pak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2k2

p
1þ ak þ 3

8
a2k2
� 1

16
a4k4
þ 1

64
a5k5

	 

� jjZ1 � Z2jj1. ð11Þ

Comparing (11) with (5), the contraction coefficient b becomes

b ¼ ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2k2

p
1þ ak þ 3

8
a2k2
� 1

16
a4k4
þ 1

64
a5k5

	 

. (12)
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Fig. 1. Contour line for the contraction coefficient.
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If we consider the second-order quantity for the contraction coefficient b in (12),
then b would be b ¼ akð1þ akÞ, which is identical with the result of Jang and Kwon
(2004), where the linear dispersion relation was assumed.

From Contraction mapping theorem (Zeidler, 1986), it is well known that the
iteration (6) converges when 0obo1: that is, the condition for the iteration to
converge requires the following inequality:

0oak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2k2

p
1þ ak þ 3

8
a2k2
� 1

16
a4k4
þ 1

64
a5k5

	 

o1. (13)

Fig. 1 shows the contour line for the contraction coefficient b, where the solid line
is corresponding to the case of (12) and the dotted line to the case of b ¼ akð1þ akÞ.
It is easily seen that the convergence region 0obo1 described by solid line is reduced
compared to that by dotted line.
5. Uniqueness and existence of the wave profiles

Now the necessary time to discuss a unique solution of (4) for Stokes wave profile.
Suppose that we have two solutions of wave profiles Za, Zb. Then we have

Za ¼ BðZaÞ and Zb ¼ BðZbÞ (14)

because Za, Zb are invariant under nonlinear operator B for Stokes wave. From (14),
we have

jjZa � Zbjj1 ¼ jjBðZaÞ � BðZbÞjj1pbjjZa � Zbjj1 (15)



ARTICLE IN PRESS

T.S. Jang et al. / Ocean Engineering 33 (2006) 1552–1564 1557
which, for ZaaZb, can be divided by the norm jjZa � Zbjj1 to yield the contradiction
bX1 because contraction mapping (13) is assumed in the study. Thus, Za ¼ Zb and
(6) has at most one solution of wave profile.

Using the null initial condition, we consider the following inequality:

jjZnþ1 � Znjj1 ¼ jjEZn � EZn�1jj1pbjjZn � Zn�1jj1p � � �pbn
jjZ1 � Z0jj1

¼ bn
jjZ1jj1,

and hence for p4m,

jjZp � Zmjj1 ¼ jjðZp � Zp�1Þ þ ðZp�1 � Zp�2Þ þ � � � þ ðZmþ1 � ZmÞjj1

pjjZp � Zp�1jj1 þ jjZp�1 � Zp�2jj1 þ � � � þ jjZmþ1 � Zmjj1

p½bp�1
þ � � � þ bm

�jjZ1 � Z0jj1
pbm
½1þ bþ b2 þ � � ��jjZ1 � Z0jj1

¼
bm

1� b
jjZ1jj1.

The first inequality in the chain stems from the polygonal inequality. Thus for all
p, m, we have a formulation for mathematical convergence rate as follows
(Kolmogorv and Fomin, 1970):

jjZp � Zmjj1p
jjZ1jj1
1� b

bminðm;pÞ (16)

and since the right-hand side can be arbitrarily small for sufficiently large p, m, fZkg is
a Cauchy sequence (Roman, 1975). Because fZkg is Cauchy sequence and Z0 ¼ 0 is
continuous, fZkg converges to a continuous function Z (Stakgold, 1998). Let us take
limit on both sides of (6), then

lim
n!1

Znþ1 ¼ lim
n!1

BðZnÞ or Z ¼ lim
n!1

BðZnÞ.

Because contraction B is continuous, the lim notation and the operator are
interchangeable (Stakgold, 1998):

Z ¼ E lim
n!1

Zn

� �
.

We obtain Z ¼ BðZÞ as required. Therefore, it is concluded Stokes wave profile (6)
is expressed as Z ¼ limk!1 Zk; furthermore, its existence of continuous wave profile
is always guaranteed under the condition for contraction (13).
6. Numerical results

In this section, we will present the numerical results of the nonlinear Stokes wave
profile. For the solution of the unknown free surface of the nonlinear equation (4),
(6) is iterated with an initial condition for zero function (for n ¼ 0), that is, Z0 ¼ 0. In
this paper, the three different wave slopes ka are taken as 0.01, 0.1, 0.2, and 0.3,
respectively. For the numerical convergence test, we calculate the following
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coefficient of norm error m1 ¼ jjZST � Znjj1=jjZSTjj1, as a function of the number of
iterations n. Here ZST stands for Stokes wave profile of third order:

ZST ¼ a cos kx� o 1þ
a2k2

2

� �
t

� �
þ

1

2
a2k cos 2 kx� o 1þ

a2k2

2

� �
t

� �� �

þ
3

8
a3k2 cos 3 kx� o 1þ

a2k2

2

� �
t

� �� �
.

The coefficient value for m1 is plotted in Fig. 2 for the four different wave
slopes, where the symbol n represents the number of iterations. It shows that
our solution strategy Zn is converging to the Stokes nonlinear solution ZST
regardless of the wave slopes. From this analysis, it is clear that the norm error of
m1 is reduced as n increases. High convergence rates are found for all cases of
wave slopes.

The convergence behavior of Zn for ka ¼ 0:2 is illustrated in Fig. 3. From the
figure, we can observe that the zero line (corresponding to the zero-initial wave form)
approaches the nonlinear wave solution. It was only a few iterations which gave a
dramatically converged wave profile.

The obtained converged solutions are compared with the corresponding Stokes
and linear waves, as shown in Figs. 4–6. When ka ¼ 0:01, the comparison indicates
that it is difficult to distinguish the converged solution from the Stokes profile. As the
wave slope becomes larger, we can examine the nonlinear wave characteristics of the
actual shapes of waves, that is, the crests are steeper and the troughs are flatter.
There are little differences of wave profiles between the converged solutions
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Fig. 2. Test for numerical convergence using m1 ¼ jjZST � Znjj1=jjZSTjj1.
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(or improved solutions) and the Stokes profiles in the all cases of ka ¼ 0:1, 0.2 and
0.3. Compared with the Stokes profiles, the result of Jang and Kwon (2005) has some
errors of differences between wave profiles, especially in parts of the crests, when the
larger wave slope is considered as shown in Fig. 7.

The Fourier transform analysis was done on the wave profiles which were
generated by the improved iterative scheme to investigate the frequency contents
(Figs. 8–11). Here wave amplitude a is normalized to be unit (i.e., a ¼ 1).
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When wave slope is very small as in Fig. 8, the significant peak is observed at
k ¼ 0:01. It is the main wave number component. We can see the peak due to the
double wave number component at 0.02 even though its magnitude is very small
compared to that of the main wave number component.

As the wave slope becomes larger, we can investigate nonlinear wave characteristics
of Stokes’ wave, that is, nonlinear higher frequencies of wave number: three peaks of
wave number can be examined in Fig. 9 (wave slope ka ¼ 0:1), four peaks in Fig. 10
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(wave slope ka ¼ 0:2), and five peaks in Fig. 11 (wave slope ka ¼ 0:3). Eq. (8) for
Stokes’ third-order perturbation theory cannot predict the results for Figs. 10 and 11:
that is, it was possible to predict higher-order nonlinear Stokes’ wave number
components by using the improved iterative scheme. It is not hard to see that these
peak points shown in Figs. 10 and 11 are exactly same as Stokes’ nonlinear higher
frequencies of wave number (Debnath, 1994).
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7. Conclusions

Combining the contraction mapping theorem with the nonlinear dispersion
relation, a nonlinear iterative scheme was proposed to achieve higher-order Stokes’
wave profile in deep water. The stability of the proposed scheme was analyzed. The
existence and uniqueness of the solution were also discussed. Although the proposed
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iterative scheme was based on Stokes’ third-order perturbation theory, the solution
of the scheme enabled us to investigate higher-order nonlinear characteristic of
Stokes’ wave profile. In addition to that, it provided more accurate numerical results
of Stokes’ profiles when compared to the previous iterative scheme based on the
linear dispersion relation (Jang and Kwon, 2005). Furthermore, the convergence rate
was shown to be very fast in the present scheme.
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