998

JOURNAL OF PHYSICAL OCEANOGRAPHY

YoLuMmE 19

Effective Roughness Length for Turbulent Flow over a8 Wavy Surface

S. J. JacOBS

Department of Atmospheric, Oceanic, and Space Sciences and Department of Mechanical Engineering and Applied Mechanics,
The University of Michigan, Ann Arbor, Michigan

(Manuscript received 16 April 1987, in final form 23 November 1988)

ABSTRACT

A two-equation turbulence model is used to calculate the effective roughness length for two-dimensional
turbulent flow over small amplitude, wavy surface topography. The governing equations are solved using the
method of matched asymptotic expansions for the case ¢ < 1, & <€ 1, where ¢ is the square root of a characteristic
drag coefficient for flow over a plane surface and § is the wave slope. Analytical expressions are derived for the
effective roughness length and drag coefficient for flow over stationary topography and over a progressive wave.
The results are used to determine the drag coefficient and the form drag for flow over a progressive water wave,

and are found to be consistent with observations,

1. Introduction

According to meteorological observations (Garratt
1977), the wind speed for neutrally stratified turbulent
flow over an uneven surface can be represented with
good accuracy by alogarithmic velocity profile in which
the roughness length is given an empirical value de-
pending on the characteristics of the surface topogra-
phy. Defining the effective surface shear stress as the
horizontally averaged streamwise surface force per unit
horizontal area and u, as the corresponding friction
velocity, the velocity profile for flow over surface to-
pography takes the form

U=5‘—’1n(3‘3),

X n,

(L.1)

where U is the horizontally averaged wind speed, x; is

the vertical distance from the mean surface level, « is

the von Karmén constant, and n, is the effective

roughness length. The drag coefficient C, relating the

ebﬁ'ective stress to the wind speed at elevation x; is given
Yy

Co =( (12)

K )2
In(xs/n.)) ’
and increases monotonically with #,.

In this paper we are concerned with calculating the
effective roughness length for two-dimensional tur-
bulent flow over a wavy surface. Because observed
roughness lengths for such flows are often several orders
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of magnitude larger than the intrinsic roughness length,
ny, for flow over a plane surface composed of the same
material, the resulting increase in the drag coefficient,
shown here in Fig. 1, is significant in the calculation
of the wind stress on the sea surface in the presence of
water waves (Wu 1980), and in other flows of geo-
physical interest. The neglect of studies of this effect
in the turbulence modeling literature and the practical
importance of the problem provide the motivation for
the present study.

Our main result can be derived intuitively by con-
sidering the momentum balance equation

———

- oh
'r+pax‘ 70, (1.3)
in which 7o = p(u,)? is the stress corresponding to u,,
h is the surface elevation, p and r are the pressure and
the x; component of the surface shear stress, respec-
tively, and the overbar denotes a horizontal average.
Using this equation, defining the form drag coefficient
by

C = p(0h/dx,)
P u,)?

and assuming that C, is small, we find that the friction
velocity at the surface is given approximately by

" =+fp-te]

Now defining n, as the intrinsic roughness length and
assuming that the velocity profile U(x;) is given by a
logarithmic law in which the roughness length is taken
as ny and the friction velocity as its surface value, it
follows from (1.5) that

(1.4)

(1.5)
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FiG. 1. Cp for elevation 10 m as function of velocity Uy, for flow
over wind waves. Curve G from Garratt’s data compilation, curve S
for flow over an aerodynamically smooth surface.

LT P AN PP
U(x;3) =~ K{ln(no) 2Cpln(no)], (1.6)

in which the second term in the brackets is a small
correction. To the accuracy of this approximation the
logarithm multiplying C, can be evaluated at some
representative elevation, say at x3 = L, where 1/L is
the wavenumber for a monochromatic wave, and
comparing the result of this last approximation with
(1.1) suggests that the effective roughness length, »,,

satisfies
n, 1 L
ln(no) 2 C, In(no) .
In the present study our aim is to verify this derivation
by a formal analysis, to calculate the form drag coef-
ficient C, as a function of the parameters, and to use
(1.7) to determine the effective roughness length.

In studies of turbulent flow over aerodynamically
rough surfaces (Perry et al. 1969), the form drag is
caused primarily by boundary layer separation at the
top of the roughness elements. This may also be true
for flow over water waves, as suggested by Wu. How-
ever, experiments by Zilker et al. (1977) on nonsep-
arated flow over a smooth wavy surface show that about
25% of the horizontal force on the surface is associated
with form drag, which agrees closely with values quoted
for flow over wind-driven waves (Phillips 1977, pp.
189-191). In view of this result, it seems reasonable
to investigate the possibility that form drag due to non-
separated flow is the major cause of the large effective
roughness lengths observed for turbulent flow over wa-
ter waves.

Carrying out an investigation of this type necessarily
requires the use of a turbulence model to obtain a
closed set of equations for the Reynolds averaged ve-
locity and pressure. The present study is based on the
use of an eddy viscosity model, as in previous treat-
ments of flow over rigid surface topography (Jackson

(1.7)
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and Hunt 1975; Taylor et al. 1976; Thorsness et al.
1978; McLean 1983; Beljaars et al. 1987), over water
waves (Gent and Taylor 1976; Knight 1977; Al-Zan-
aidy and Hui 1984; Jacobs 1987), and under water
waves ( Dvoryaninov and Zhuravlev 1980). In the cal-
culation reported below we employ the two-equation
turbulence model of Launder and Spalding, as
amended by Singhal and Spalding (1981). This is at
least as accurate as the one-equation models used in
most previous work on the subject, and in any event
the asymptotic analysis of our earlier paper and the
numerical calculations of Beljaars et al. indicate that
the choice of eddy viscosity model is not crucial to our
main results. Studies by Sykes (1980) and Newley
(1985) based on the use of second-order closure theory
will be discussed later in the paper.

In the following sections the equations of the Laun-
der-Spalding model are treated by expanding the de-
pendent variables in powers of the wave slope for flow
over small amplitude topography. The theory is math-
ematically complicated but conceptually simple; the
lowest order term in the expansion of the x; component
of the Reynolds averaged velocity is a basic solution
U, for flow over a plane surface, the next term is a
sinusoidal correction to the basic flow, and the qua-
dratic term is the sum of a second harmonic and a
correction to the horizontally averaged velocity, the
latter of which is determined explicitly. The resulting
horizontally averaged velocity can be approximated by
an expression of the form (1.1), and Eq. (1.7) yields
a formula for the effective roughness length as a func-
tion of the intrinsic roughness length, 7y, the topo-
graphic wavenumber, the wave slope, and the friction
velocity. The analysis is carried out for steady flow, but
is extended to the case of flow over a progressive wave
by use of results obtained in our earlier paper.

As an application, the variation of the drag coefh-
cient with wind speed and the fraction of momentum
transfer to the water associated with form drag for flow
over progressive water waves are calculated and com-
pared with observations. The comparison shows a sat-
isfactory degree of agreement between the results of
the calculation and measurements, but indicates that
a more complete specification of the energy spectrum
of wind waves is needed to verify the theory.

2. Formulation

Consider steady, constant density, two-dimensional
turbulent flow in the semi-infinite region x3 > h(x,),
with 7% and P denoting the Reynolds-averaged velocity
and pressure, and 7’ the fluctuating part of the veloc-
ity. Letting angle brackets denote the Reynolds average,
define the turbulent energy E, the dissipation rate D,
and a pressure-like variable p by

u [ ou; ous

1
E=- 'y == — —— .
5 (uiatiey, D p <an axk> ,  (2.1)
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" (2
p=pP+ ﬂ(;E—gkxk), (2.2)
where g, p, and g are the shear viscosity, the density,
and the kth component of the gravitational vector.
Then the Reynolds-averaged continuity and momen-
tum equations become

auk
— =0, 2.
axk ( 3)
u; 18p Iy
Ly R 24
k 8xk p 6x,- axk ’ ( )

where the viscous force is neglected and where 7 is
defined by

2
Tik = §E5ik -

(ululy.

According to the Launder-Spalding turbulence
model, 7; is expressed in the form

(2.5)

_ au, Ouy
Tie = V(axk o, ) (2.6)
where v is an eddy viscosity given by
_(AE)?
v= D’ (2.7)
and where, for steady flow, Eand D satisfy
JoE Ou;  Oui\ du; i) oE
— = + =)=+ —
Mk ot ”( axk ax,-') X Oxg ( axk) D,
(2.8)
oD A2 ; 6uk ou;
— E —_—
U 6 Cl (6 Xk 6xi 6Xk
d (v aD 02
— C .o(2.
axk (0’ axk) ’E ( 9)

The constants appearing in the above equations take
the values A = 0.3, C, = 1.44, C, = 1.92, and

K2

a=m (2.10)

in which x = 0.4 is von Karman’s constant.

To express the boundary conditions at a rigid surface,
we let n(X) denote the normal distance from the surface
to a pointX in the fluid, 7 the surface roughness length,
and ¢ the tangential part of the kinematic surface stress.
Then, defining the vector friction velocity § by

T =313, (2.11)
the dependent variables satisfy
= <2 213
'zi—»iln(ﬁ), >80 5L B0 G
K no A Kn
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as n = 0. Other boundary conditions depend on the
nature of the flow. In the present study we take these
as

uU—>e — Y [ln(x"') - C] ,
K Ry
2 3
R I R T
A KX3
as x3 —> oo, where e; is the unit vector pointing in the
x;-direction, %, is a prescribed constant, and C is a
constant to be calculated as part of the solution.

If 1 = 0 the governing equations admit (2.13) as a
solution, with C = 0 and with 3 = (u,)e,. To consider
flow over small amplitude sinusoidal topography, we
express i as h = 8Lh*, where & is the dimensionless
wave slope, treated here as a small parameter, L is the
reciprocal of the topographic wave number, and A* is
the dimensionless surface elevation. Then, anticipating
that C = O(4%), introducing dimensionless variables
by

%= L¥% #@=-2u%
€
2 2
p= p("—) p* E=%) px
A
3
D (ulfl) D*, v= Lu L
S=u3* C= 62C*, (2.14)

and omitting the asterisks, we obtain the dimensionless
equations

6uk
—= 2.1
o, (2.15)
au, 6p 5) ou; 6uk
—=e—|y—+-—)], (2.16
6‘xk ax; € axx [”(axk ox; )] ( )
BB 2o (G, S du
axk axk ax,- Oxk
a OF
—|v—|—e\D, (2.17
€ axk (V axk) € ( )
0 3D _ CAE (o | du) ou
k axk € 9x;, 0x; | 9xy
e d aD D?
+-——|rv— | —eAC—, (2.18
aaxk("axk) AGg. (218)
where the dimensionless eddy viscosity is given by
E2
=" (2.19)
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and where
K
€= —, 2.20
In(L/no) (2:20)
The boundary conditions are
- € =12 IEIB
U= 3l +~-In(n)|, E—>|3|°, D—> ,
K Kn
(2.21)
as x3 —» 6h, and
7 el[l + < [In(xs) — 62C]],
K
E->1, D-»— 6 (222)
KX3

as x3 > o0.

To complete the formulation, we note that the de-
pendent variables are periodic in x; with period 2w,
and that § takes the form

“e; + 6(dh/dx )e;

[1 + 82(dh/dx,)*]'/*"
Using (2.23), integrating the x;-component of the
momentum equation over the area 0 < x; < 27, oA

< x3 < H, where H is large, and applying the boundary
conditions (2.21) and (2.22), we find that

T=s (2.23)

$ 27 h 2
:EJ; ng‘;dxl +J; s%dx; = 2w, (2.24)

which can be recognized as the dimensionless version
of (1.3). We note also that if the velocity far from the
surface is expressed in the form (1.1), the effective sur-
face roughness is given by

n. = ng exp(8%C). (2.25)

The simplest method of treating the above equations
when § < 1 is to expand the solution in the form

F=FOX)+8F(X) + > FP(X) + - - -,
(2.26)

where F stands for any of the dependent variables, and
to transfer the boundary conditions at x; = 64 to the
mean surface level, x; = 0. As noted by Joseph (1973)
in another context, the transfer of boundary conditions
is often invalid because the field variables cannot be
continued analytically outside their domain of defi-
nition. Therefore, we follow Joseph by introducing a
change of independent variables of the form

X=J+0(F)+80(P)+ -+, (2.27)

where the new coordinates are chosen so that the
boundary has a simple shape in V-space, thus allow-
ing (2.21) to be applied at the exact location of the
boundary.
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Substituting (2.27) into (2.26 ) and rearranging terms
yields

(0)

] + 62[F(2)(j7)

oF
F=FO®F)+ a[ﬂ“@) Iy
OV

(1) 0) aZF(O)
OFD , F 1 ¢

Vi e 2% a0y

+ ok

(2.28)

and the boundary conditions are satisfied by substi-
tuting (2.28) into (2.21). It is shown in Joseph’s paper
that the partial differential equations satisfied by
F®(7) have the same form in J-space as the equa-
tions in X-space obtained by substituting (2.26) into
the original field equations, and the solution for F as
a function of X is obtained by solving for the terms
F®(3) and using the same functional forms for
F®(X)in (2.26).

In carrying out this procedure it is convenient to
define the new coordinates as (x, z), where

B 8(dh/x)z
[1 + 6%(dh/dx)*]1V/*’

X1 =X

X3 (2.29)

=0h + 2 - 211722
[ + 62(dh/dx)?]

so that x = x; on the boundary, and z = n, the normal
distance from the boundary to a point in the fluid. The
leading term in the expansion (2.28) is a function of
z, where, letting u and w denote the velocity compo-
nents in the x; and x; directions,

u®=1+In(z)=U(z), w®=0, p©@=0,
K

DO = _1_
kz’

Hence, (2.28) takes the form

E© = 1, 0 = Kz, s@ =, (2.30)

dz
dh 9F M AFWM
E dx + oz
_ L (dn A 1 &FO

dx dz?

0)
F=F9(2)+ 6[F(”('x, 2)+h ar ]

+ BZ[F(Z)(x, zZ)—z

22 p 3 ], (2.31)

with an O(43) error, and the coefficients v in the
expansion of the eddy viscosity are given by
pM) = 2kzEM — (KZ)ZD“),
v® = kz[2E@ + (EM)?)
— (x2)*[2EDDWM + DD + (x2)3(DM)3. (2.32)

p® =gz,
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Using (2.32) and defining V? by

9 92
V2=a—xz'+é?, (2.33)
the O(4) equations are given by
™ ow®
o + 5 =0, (2.34)
u®  ew®  gp»
ox * Kz ox
du'V

(1)
= e[KZVzu(l) + K(—az— + 9;)7)]

a
+ €2 py [2EM — xkzDDM], (2.35)

9
+ e~ [2E0 —xzDV),  (2.36)

ou® m ) '
)\[2( 2 +i"f——)+2e(E —D“))]
az ax KZ

w9
+ e[szzE“) + « 6EZ ] , (2.37)

dE™

v ox

ox KZ KZ 9z ax

DM w® {2cl (au“> aw“))
e Y e s
EM
+— [(c. +C)—— 2021)(')”
KZ KZ

)
+< [sz20<“ + 2k 3 (D“’ - E—)] , (2.38)
4z KZ

g

with boundary conditions

u® > s‘”[l .- 1n(z)] _
K KZ

w® — % [1 +3 ln(z)] , EW - 25,
K .

s h
+ —3,
KZ KZ

D 3

(2.39)

asz= 0, and
u -0, w0, EM—>0, DV >0,

(2.40)
as z = oo. It can also be shown using (2.24) that
sM =y, (2.41)

where the overbar denotes the horizontal average.
The formulation of the O(42) problem is lengthy,
and we quote only the equations needed to determine
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the topographically induced correction to the horizon-
tally averaged x,-component of 7. These are the hor-
izontal averages of the x;-momentum equation and of
the boundary conditions on u, and are given by

- § —
2O = o . 27D
a9z

Y  gwV S
+ w)(%— + ;’—x) +— u<2>] , (2.42)
u?=0 (2.43)
at z =0, and
a® € (2.44)
K
as z —» oo, where
) dh ou'V u®
Q= lim {de ax az

(&) + G o[ -2 (&)
X [1 +£ln(z)]}. (2.45)

We also need the O(4?) contribution to (2.24),

e 1 dh

SN2 3 2@ = _ —_ p &8

(s*)” 2P 5

As in our earlier paper, we consider the case ¢ < 1,

which holds for all wavenumbers (1/L) satisfying g

< L, and we treat the above equations using the method
of matched asymptotic expansions.

(2.46)

3. Solution of the O(8) equations

We consider now flow over sinusoidal topography
described by /# = cos(x), and we omit the superscripts
in writing the dependent variables for the O(é)
problem.

As the small parameter ¢ multiplies the most highly
differentiated terms in the O(é) momentum equations,
the flow has a boundary layer structure consisting of
an outer solution valid for z = O(1) and an inner so-
lution with dimensionless length scale ¢ which holds
near the boundary. The solution for #, w, p, and E in
each region takes the form

u={u + {eln(e)u"+ e} + .-+, (3.1)

while the solution for D is of the form (3.1) in the
outer region but involves terms O(1/¢) and O(1/¢?)
in the inner region. In the following calculation u, w,
and p will be computed to the order shown in (3.1),
while E and D will be determined to lowest order. For
purposes of matching, each bracketed expression in
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(3.1) must be treated as a single term (cf. Van Dyke
1975, p. 221).

Turning first to the outer problem, we express # and
w in terms of a streamfunction, ¥, through

¥ W
iz’ w_ax’

and expand ¢, p, E, and D in the form (3.1). It follows
that 1] satisfies Laplace’s equation for k = 0, 1, that

u=— (3.2)

[k] (k]
W= W s g W
P iz ’ ax ’
e (N,Ikl ¢[kl
Dl = —1 2 , 3.3
kz 0x xz2 (3.3)
again for k = 0, 1, that ¢[?! is the solution of
oo
vy = Y (3.4)
KZ
and that
[2] [0} 1 (2) a‘plol 1[/[01
2] = a4 + 44 + n X _
p 9z 2 Ix k 0z kz
(3.5)

For the surface elevation 2 = cos(x), the solution
for y [¥] satisfying the boundary condition y ¥ = 0 as
Z—> 0 is

POl = 4% cos(x)e, il = A cos(x)e?,
(0]

Y121 = 4121 cos(x)e™* — cos(x)

e’E(2z),
(3.6)
where
{<s] -t
E(z) = f ert

is the exponential integral (Olver 1974, p. 40), with
small argument expansion

(3.7)

l)n— Z—': (3.8)

E(z) = —In(z) — Z

in which 4 = 0.57722 is Euler’s constant.
Matching with the inner solution discussed below
yields
A[ol = 1’

A =0, A2 = , (39)

v + 1n(2)
K

and hence, in the outer region,

u = cos(x)e % + i cos(x)[e’E,(Zz)

'e: (v + ln(2))e"] . (3.10)

§.J. JACOBS
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w = —sin(x)e™*

+ E sin(x)[e’E (2z) + (v + In(2))e™%], (3.11)

€
p = —cos(x)e™* — 2ke sin(x)e ™ — - cos(x)

X [€*E{(22) + In(z)e™* — (v + In(2))e 7], (3.12)
with an error O[¢2 In(¢)], and
E = —4) sin(x)e™?,

D= [-—1—2 cos(x) — 4Gy sin(x)]e‘z (3.13)
Kz z
with an error O[e¢ In(¢)].
In treating the inner equations we define a stretched
boundary layer coordinate { = z/e and introduce the
variables Q,, Q,, P, E, and D through

h w=‘—iﬂU+eQZ,

u=Qx_Es dx D =D,
E=E, D= k +11§ (3.14)
i ke e ’
Since
U=1 +£[ln(e) +1n(5)] (3.15)

in the inner region, the boundary conditions are ex-
pressed in terms of these variables by

5101
> s0+¢ ln(e)[s“] + T]
510
+ e[sm +— ln(g')] ,
K

Ww—>0, E->2"° D- 73; s (3.16)
as { —» 0, where the boundary conditions on F and D
are given only to lowest order. The matching conditions
will be stated later, and the equations needed to deter-
mine the inner solution to lowest order for £ and D
and up to and including O(e¢) terms for Q,, Q;, and p
are

aQ" + aaQ; =0, (3.17)
s B i) 2]

+ ea—g_ [2E — k¢D], (3.18)

g?= —e%, (3.19)
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OF _ \[19Qc [ E 5 dh) 9 ( O
E’”‘[e 3 +K§ D+dx2J+xa§_(§‘ag_),
(3.20)
D Q. _2MC[18Q,  d°h
ox k{2 k¢ [e o ]
\ P
—r [(cl +G,) —§ - 2C2D}
D (. E
[3’6—{2+2 f(D—;?)]. (3.21)

It can be seen by inspection that the O(1) and
O[ e In(€)] contributions to O, and p are independent
of {, and so these quantities can be determiried by
matching with the outer solution. The boundary con-
ditions and (3.17) then provide the corresponding
contributions to s and Q,. Carrying out the calculation
to O(e) yields the inner solution for the original vari-
ables in the form

1 eln(e)
K

5 + [1—2

u= cos(x){l -
~21In(2) — k¢ — ln(f)]] + ei(x, ¢), (3.22)
w = sin(x){—'l - # + e(§~ 111_(5_)_)] , (3.23)

p = —cos(x) + e[cos(x)[g‘ + % (v + 1ﬂ(2))]

- 2k sin(x)} , (3.24)

E=E(x,¢), D= °°zs(;2) +-D(x,¢), (325)
s = cos(x)[l - 361—2(—6)-] + e§(x), (3.26)

where #, E, D, and § remain to be determined.

These quantities are computed by substituting
(3.22)-(3.26) into the field equations, the boundary
conditions, and the matching conditions to obtain the
system

o 9 a6 9 _
&‘a;(fa;)"Lar(ZE kD), (3.27)
OE_ 3 ( 0E
ax a;(" ag)
oh E 1
+2}‘[6_§‘+E—D (2+ g_)cos(x)], (3.28)
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oD _sin(x)  «[.9*D 3 (. E
o« +a[§arz w25 (-]

+—§_[(C1+C2) - 2G.D ]

2XCi[od 5
k¢ (a¢
with boundary conditions
i 2
Qf - — cos(x),

a  «$

+ —) cos(x)] , (3.29)
k§

E — 2 cos(x),

D~ i cos(x), (3.30)
k¢ .

as { = 0, and matching conditions
#—>0, E— —4rsin(x),
D — —[cos(x) + 4XC; sin(x)]/«¢,  (3.31)
as { & oo. The O(e) contribution to § is given by
;= lim[‘ b S(x)

=0

[2In(28) + 2y — 1]}. (3.32)

Before presenting the solution to this system, we note
that the main result of the analysis given above is the
expression (3.24) for the pressure in the inner region,
since this can be used to determine the form drag
p(dh/dx) discussed earlier. Furthermore, as shown in
our earlier paper, the same result for the form drag is
obtained using any eddy viscosity model for which the
eddy viscosity tends to k| ¥ |#n as n — 0, where T is the
vector friction velocity.

To solve the system.(3.27)-(3.31) we define Z .
= In(¢) as a new independent variable and express #
in the form

i =F(Z)cos(x)+ G(Z)sin(x) (3.33)

with a similar decomposition for £, D, and §. Then
the problem can be expressed as a system of first-order
differential equations of the general form

aw
d—Z_H(w Z), a<Z<b (3.34)
with boundary conditions

R(w)=0 at Z=0b,
(3.35)

f(w)=0 at Z=a,

where w is the state vector.

If (3.34) is approximated using the implicit midpoint
rule and if Z; and W are defined as the grid points
and the matrix w[(Zk), respectively, then the system
(3.34)-(3.35) is replaced by the algebraic system
S( W) 0. Similarly, a pseudospectral approximation
to (3.34)—-(3.35) yields the algebraic system T( W)



JuLy 1989

= (. The algebraic system obtained using the implicit
midpoint rule can be solved efficiently by Newton it-
eration because the Jacobian matrix for .S has a narrow
bandwidth, while the much more accurate pseudo-
spectral solution is difficult to compute because the
Jacobian matrix for T is dense.

In order to obtain spectral accuracy at a compar-
atively low computational cost, we express the equation
T(W) = 0 in the form

S(w) = S(W) — T(W),

and solve (3.36) iteratively using the defect correction
scheme

(3.36)

S(Wp) =0, S(Wpyy) =3(W,) — T(W,),

n=0,1,+--, (3.37)
in which VV,, for n = 0 is calculated using Newton it-
eration. As noted by the author (Jacobs 1989), the
iteration (3.37) converges rapidly, and its accuracy can
be monitored by calculating the spectral coeficients in
an expansion of w in Chebyshev polynomials and by
increasing the number of grid points until the coeffi-
cients of the highest order Chebyshev polynomials are
sufficiently small.

The present calculation was carried out using 65 grid
points, with end points Z = —9, corresponding to {
= 1.234 X 107*, and Z = 3, for which { = 20.086.
Although the solution for F and G as shown in Figs. 2
and 3 is not in close agreement with the results obtained
in our earlier paper using the simple eddy viscosity
model » = «|$|n, the expressions obtained here and
in our earlier paper for the pressure are identical.

The quantity p,, defined here as the surface pressure
nondimensionalized using p(u,)?, can be compared
with numerical results obtained by Taylor et al. using
a one-equation turbulence model. Their model is non-
linear, and so we limit our comparison to the smallest
values of the wave slope given in their Table 1. The

FIG. 2. Function F(Z).
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F1G. 3. Function G(Z).

flow treated in their study corresponds in the present
notation to the case ¢ = 0.056. The comparison is
shown in our Table 1, in which J refers to our results
and T to those of Taylor et al., and where the phase is
defined by writing p;, in the form

"A+B cos({x — phase).

As expected, the present results agree well with those
of Taylor et al. for small values of 8, but are less accurate
for larger slopes.

The form drag for the surface pressure (3.24) is given
in terms of our original scaling by

~dh
D— = €K,

dx

which, when substituted into (2.46), yields the solution
for the O(82) contribution to the horizontally averaged
friction velocity in the form

(3.38)

5D = — = 1 0(1).

% (3.39)

This important result can be checked by calculating
the dimensionless horizontally averaged surface shear
stress,

62

€

=1

(3.40)

TaBLE 1. Amplitude and phase of p, as function of slope 8.

Phase (J) Phase (T)
8 P ) (deg) P (T) (deg)
0.031 6.67 184 6.8 186
0.063 13.38 184 12.6 187
0.094 19.97 184 173 189
0.126 16.77 184 20.6 191
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TABLE 2. Dimensionless mean shear stress as function of slope 6.

JOURNAL OF PHYSICAL OCEANOGRAPHY

6 - 7(J) 7(T)
0.031 0.99 0.99
0.063 0.97 0.96
0.094 0.94 0.92
0.126 0.88 0.86

according to the present theory, and comparing the
results with those of Taylor et al. for the parameter
values used earlier in Table 1. The comparison is given
in Table 2, and shows little difference between our re-
sults and those of Taylor et al.

Turning now to a comparison of our results with
observations, we temporarily express the pressure in
dimensional terms and find that the surface pressure
is given to lowest order by

rp___3% (X
)y & cos(L )(, (3.41)
and the drag coefficient for form drag by
p(dh/dx,) % _
C”z——le—:T' (342)

These quantities have been measured by Zilker et al.
and Zilker and Hanratty (1979), and computed theo-
retically in papers cited earlier by Taylor et al. using
both a one-equation turbulence model and mixing
length theory, by McLean using mixing length theory,
by Knight using a two-equation model, by Sykes using
the second-order turbulence closure theory of Launder
et al. (1975), and, most recently, by Newley using a
modified version of this model. As indicated earlier,
calculation of the form drag coefficient is necessary in
the computation of the wave-induced correction to the
mean horizontal flow.

In the experiments the wave length A = (27L) is
5.08 cm, and, as an extreme test of our theory, we
consider the case 6 = 0.157. This corresponds to the
wave (2a/A) = 0.05 in the experimental papers, for
which the boundary layer is on the verge of separating.
The observed surface pressure is of the form (3.41) but
is larger by a factor 1.242, and the coefficient C, takes
the value 0.206 according to (3.42), and 0.26 according
to observations. The present theory is therefore in rea-
sonable quantitative agreement with the measurements
of Hanratty and colleagues, but, for this large amplitude
wave, the observed form drag is larger than our theo-
retical result by a factor of about 1.25.

In previous theoretical calculations of the form drag
using an eddy viscosity model, Knight obtains the same
expression as ours using an asymptotic theory similar
to that given here, and finds by a comparison with an
older set of experiments that his theory underestimates
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the form drag by 15%. The same expression for C,,
(3.42), is obtained from an asymptotic analysis of the
one-equation model treated by Taylor et al. However,
their numerical calculation for the case 6 = 0.157, ¢
= 0.054, yields a value of the form drag larger than
ours by a factor of about 1.2. Taylor et al. also present
results for this case calculated using mixing length the-
ory, and obtain a value for C, larger than ours by a
factor of 1.4. McLean’s numerical calculations of the
form drag are in good agreement with those of Taylor
et al.

As regards the calculation of the form drag by Sykes
and by Newley, a sample of their computations of the
quantity

(3.43)

is given in Table 3, in which Newley’s results are taken
from his Table 6.11, the mixing length results in Table
3 are calculated by Newley, and Sykes’ results are sum-
marized in Newley’s Chapter 6. The runs reported in
Table 3 correspond to an amplitude of 20 m, a wave-
length of 2000 m, and various intrinsic roughness
lengths. Although the values of ¢ for runs X and Y are
probably too large for our theory to be accurate, values
for A computed using (3.42) are included in Table 3
for the sake of completeness.

Newley also presents a comparison of his results and
those obtained using mixing length theory with the
measurements of Zilker and Hanratty in his Fig. 6.32.
This figure and the values of 4 in Table 3 suggest that
the calculation of the form drag using mixing length
theory is in reasonably good agreement with the mea-
surements, but, for small wave slopes, Newley’s theory
underestimates A as compared to the measurements
by about a factor of two and Sykes’ theory by a factor
of five or six. This is disconcerting because Sykes and
Newley present strong theoretical arguments in support
of their use of a second-order turbulence model in
preference to an eddy viscosity model. The rather large
difference between Sykes’ analytical and Newley’s nu-
merical results for A4 is equally upsetting because of the
close similarity of their turbulence models.

We are unable to provide any good explanation for
the latter discrepancy. With regard to the differences

TABLE 3. 4 = C, /8. (S) Sykes asymptotic calculation using second
order turbulence model; (N) Newley numerical calculation using sec-
ond order turbulence model; (J) Present theory; (ML) Newley nu-
merical calculation using mixing length theory.

Run 1 (cm) A AN) AQ) A (ML)
X 30 2.00 6.31 6.96 12.4
Y 10 2.00 6.10 8.07 12.6
z 3 2.00 5.74 9.27 14.7
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between measured values of C, and the calculations of
Sykes and Newley, it should be noted that both authors
use a form of the model of Launder et al. in which the
wall proximity contribution to the pressure strain term
is omitted. Since the resulting approximated equations
employed by Sykes and Newley are incompatible with
the turbulent law of the wall for equilibrium flow over
a plane boundary, this neglect leads to an error in their
calculation, the magnitude of which can only be esti-
mated by redoing their analysis.

In view of the above discussion, it appears that for
reasons as yet unknown the calculation of the form
drag by Sykes and by Newley disagrees with measure-
ments by an unacceptably large amount, and that the
present theory underestimates the form drag by about
25%, either because of our neglect of nonlinearity or
because higher order terms in the expansion (3.1) are
needed to obtain an accurate result, Therefore, we will
treat the O(82) contribution to the mean flow in the
next section using the present turbulence model in
preference to the model employed by Sykes and New-
ley, with the understanding that our theory underes-
timates the form drag and therefore necessarily under-
estimates the effective roughness length.

4. Calculation of the horizontally averaged flow

In discussing the horizontally averaged flow we revert
to the use of superscripts to denote the order of a term
in an expansion in powers of 6. The equations needed
to determine the topographically induced correction
to the averaged horizontal velocity are (2.42)-(2.45),
in which, by reference to (3.39) and the boundary con-
dition at z = 0, #® has an O(¢™!) contribution. Anal-
ysis of (2.42) shows that the term (e?/«z)»® is O(e)
in both the inner and outer regions, as is the left side
of the equation, while the term involving » (! is given
to lowest order by

) ‘9““)+§l"2 -_L
Y N\ Tz T ax 202

in the inner region and is O(¢) in the outer region.
It follows that the O(e™!) contribution to u® is
constant in the outer region and satisfies

(4.1)

d-m__1

El—f 2ex 3

in the inner region. An analogous analysis of the
boundary conditions yields

(4.2)

s, _x__1

2¢  dexl?

as (=0,

{—> oo, (4.3)

—33 eC
u® > —— as
K
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and so the composite solution for u@ takes the form
=————, (4.4)

and the constant C is given by

K
= . 4.5
2 (4.5)
Restricting our attention now to flow in the outer
region, using dimensional variables, and defining U as
the horizontally averaged x, component of velocity,
we find that to lowest order

U= E‘:m(ﬁ), (46)
K n,

where, substituting (4.5) into (2.25), the effective

roughness length is given according to the present the-

ory by
F 2
He = Ng exp[I‘(—f) ] ,

in which I' = 2. To extend this result to flow over a
monochromatic progressive water wave, we let ¢ denote
the phase speed of the wave and use the calculation of
the surface pressure given in our earlier paper to find
that in this case n, is given by (4.7) with T replaced by

1, _&«
p-2(1-5).
The formula for the effective roughness length can also
be expressed in the form

ey 1 _[_4
()= 1Gn().

derived earlier in the paper, where L is the ratio of the
wave length A to 2n and where C, is given for the
progressive wave case by

L
C, = az[m(_—) - 55} :
o u,

In the case of flow over progressive water waves, to
which we now restrict our attention, we assume that
the intrinsic roughness length can be approximated by
use of a result for flow over an aerodynamically smooth
surface,

(4.7)

(4.8)

(4.9)

(4.10)

o = exp(—S.SK)Ea—, (4.11)

T

(Schlichting 1979, pp. 616-619), where v, is the ki-
nematic viscosity of air. The calculation of the effective
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roughness length then reduces to evaluating (4.9) and
(4.10). Theoretically, this can be accomplished by re-
doing the calculation in a form allowing the replace-
ment of the various horizontal averages by spectral av-
erages. In practice, these averages depend strongly on
the large frequency tail of the slope spectrum for wind-
driven water waves, which is not known with sufficient
accuracy for the calculation of reliable results. Accord-
ingly, the method used here to compute the effective
roughness length is an approximation in which 82
on the right side of (4.10) is replaced by an empirical
value for the mean square slope 42 and the rest of the

expression is evaluated at a representative wave fre-

quency.
The value used here for the mean square slope is
82 = 5.326 X 103Uy, (4.12)
(Cox and Munk 1954), where U, is the wind speed
in m s™! at 10 m elevation and where (4.12) applies
for wind speeds less than about 14 m s™*. The consensus
in the literature is that form drag is associated primarily
with short waves, for which the frequency is large com-
pared to w = (g/Ujo), where U, is the wind speed at
10 m elevation. Evaluation of the logarithm in (4.9)
and (4.10) shows it to be relatively constant for values
of the frequency in the range w to 10w, and we even-
tually took 1/L as the wavenumber corresponding to
a frequency Sw. Although this method is somewhat
crude, it has the advantage that it takes the contribution
of small-scale waves to the form drag into account
through use of the empirical expression (4.12) for the
mean square slopé. Nevertheless, it would be better if
the large frequency behavior of the slope spectrum were
known with sufficient accuracy to evaluate the spectral
averages discussed above.
In carrying out this procedure, the effective rough-
ness length n, was eliminated between (4.9) and (1.2)

2.5

s
Cpx 10

0.5 ' -

9
U, (m/s)

F1G. 4. Cp as function of Uyy. Curve G from Garratt’s
data compilation, curve J from present theory.
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FIG. 5. Cp as function of Ujy. Curve C from Charnock relation
"with @ = 0.011, curve J from present theory.

to obtain a relation F(Cp, Uig) = 0, where Cp is now
defined as the drag coefficient for winds at 10 m ele-

-vation. Solving this equation numerically yields Cp as

a function of U,g, and the effective roughness length
can then be calculated as a function of Uyj,.

Empirical relations between the drag coeflicient and
the wind speed are usually expressed either by fitting
the drag coefficient by

C[o = 10_3A(U10)B, (413)

where 4 and B are constants and U, is giveninm s},

or by assuming a Charnock relation

(u,)?

g

(4.14)

ne=a

where « is the Charnock constant. Wu finds the em-
pirical values 4 = 0.5, B = 0.5, « = 0.0185, and Garratt
suggests the values 4 = 0.51, B = 0.46, o = 0.0144.
The difference between Wu'’s results and Garratt’s is
not large, and in Fig. 4 we show a comparison between
our values for the drag coefficient and those computed
using (4.13) and Garratt’s values for 4 and B. In Fig.
5 we show a comparison of the drag coefficient com-
puted here with the drag coefficient obtained using
Charnock’s formula, with « given the value 0.011 sug-
gested by Phillips (1977, p. 195).

As can be seen, the present theory is extremely ac-
curate if Phillips’ value for the Charnock constant is
correct, but is low by as much as 25% as compared to
the results of Wu and Garratt. Since our theory for the
form drag has been shown earlier to provide an un-
derestimate for this quantity, it appears that our values
of Cp are on the low side as compared to measured
drag coefficients. However, the drag coefficient data
analyzed by Wu and Garratt is too highly scattered to
form any firm conclusions on this point.
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Another quantity of interest is the pressure drag coef-
ficient given theoretically by (4.10). Phillips (1977, p.
190) suggests that C, is about 0.23 for typical wind
speeds. Use of the method used here yields the theo-
retical values for C, shown in Fig. 6. Unrealistically
small values for both C, and the drag coefficient Cp
are obtained if C, is evaluated for a dominant wave
with an amplitude given by the rms amplitude pre-
dicted by the Pierson-Moskowitz spectrum and a fre-
quency equal to the peak frequency of the spectrum.
This suggests that short waves play a large role in sup-
porting the form drag, in accord with comments by
Phillips and Wu.

We have also attempted to compare our results with
Wu’s laboratory measurements of flow over a pro-
gressive wave (Wu 1975), but have been frustrated by
the anomalous behavior of Wu'’s drag coefficient, which
decreases with increasing wind speed except for excep-
tionally strong winds. It appears necessary, therefore,
to accept Wu'’s conclusion that his wind data has no
general application because of the difference in scales
between laboratory and field conditions. For wind
speeds comparable to those encountered in typical
oceanic conditions, the form drags computed using the
present theory are considerably smaller than those
measured by Wu, probably because, for the short waves
observed by Wu, the form drag is unusually large owing
to boundary layer separation in his experiments.

This is in accord with the results of our earlier paper,
in which the growth rate of wind waves was predicted
using the present model, and in which the theory was
shown to agree reasonably well with Plant’s empirical
results (Plant 1982) for oceanic waves but to under-
estimate the growth rate for very short waves in a wave
tank. It seems plausible, therefore, that boundary layer
separation is a more important mechanism for induc-
ing form drag in wave tanks than in oceanic waves,
but that in both cases short waves contribute dispro-
portionally to the pressure force on the surface.

0.8 -

0.6 ° -

0.2 9 -

L]
U, (m/s)

FIG. 6. Theoretical form drag coefficient C, as function of U,,.
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5. Discussion

The underlying premise of the present calculation
is that form drag on a wavy surface can be attributed
to a phase shift between the wave-induced pressure os-
cillation and the surface wave rather than to boundary
layer separation, and can therefore be treated using
standard boundary layer methods. As regards meth-
odology, we have relied on the asymptotic results of
our earlier paper and on the numerical calculations of
Beljaars et al. in choosing a simple eddy viscosity
model, since these studies indicate that there is little
difference between such models in terms of their ac-
curacy in calculating the surface pressure.

The good agreement noted earlier between our
theoretical results and observations of the surface pres-
sure for nonseparated flow serves to confirm the use-
fulness of the present method of turbulence modeling
for treating flows of this type. However, the strong ar-
guments made by Wu in his observational papers sup-
porting the idea that boundary layer separation is the
primary mechanism for form drag deserves further
study, both in theories concerning the drag coefficient
and in the closely related field of the generating mech-
anism for the growth of wind waves. Therefore, al-
though the results of the present study appear to be
consistent with measurements of the drag coefficient
for flow over ocean waves, further observational work
is needed to clarify the causes of the pressure force on
the surface.
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