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A four-frequency moment characterization of backscatter from the near-vertical is applied to 
an analysis of the short pulse (SP) and dual frequency (DF) microwave techniques. It is found 
that (1)the range reflectivity modulation spectrum closely approximates the directional wave slope 
spectrum. Harmonic distortion is small and is a minimum near 10 ø incidence. (2) The SP measurement 
SNR (signal-to-noise ratio) is typically 20-30 dB greater than the narrowband DF SNR. The difference 
in SNR is the ratio of the range beam extent to pulse length, minus the ratio of beam-limited 
to pulse-limited Doppler spreads. It is concluded that narrowband DF measurements are basically 
impractical. To be practical, the DF technique must be 'widebanded.' SP measurements on the 
other hand are found to be practical, using existing space-qualified microwave hardware. 

INTRODUCTION 

In this paper we consider the possibility of mea- 
suring the directional height spectrum of ocean 
wind-waves using relatively simple, scanning-beam 
microwave radars. With reference to Figure 1, 
consider a radar translating with velocity V over 
a statistically homogeneous sea, its beam pointing 
downward at some angle 0 from the vertical and 
executing a slow conical scan. If the antenna beam 
spot on the surface is broad compared with the 
scale of the waves, then, obviously, unless one 
resorts to synthetic aperture, the waves cannot be 
resolved in azimuth. Rather, the reflectivity varia- 
tions associated with the large wave structure will 
be averaged laterally across the beam. Now imagine 
a Fourier decomposition of the reflectivity pattern 
into component plane waves; recognize that the 
effect of the lateral averaging will be to eliminate 
or 'cancel out' any plane surface contrast wave 
that is not aligned with the beam direction. In other 
words, only that surface wave whose phase front 
is 'matched' to the electromagnetic phase front can 
survive the lateral averaging. Thus an harmonic 
component of the range reflectivity modulation 
detected by the radar must be due to a plane surface 
contrast wave having a wave vector K that is parallel 
to the radar line of sight. Further, the frequency 
of the modulation to and the surface wave number 
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K = [K[ must be related by the two-way time delay: 

K = (2to/c) sin 0 (1) 

Now, what is the mechanism of reflectivity varia- 
tion, and how do we propose to detect the range 
reflectivity modulation or measure its spectrum? 
The reflectivity modulation mechanism depends on 
incidence angle. Near vertical incidence 0 •< 15 ø, 
microwave backscatter from the sea occurs by 
means of quasi-specular retroreflections from wave 
facets oriented normal to the radar line of sight. 
At large angles 0 •> 25 ø, the backscatter is due 
to a Bragg-type of resonant diffraction from short 
gravity or gravity-capillary waves whose wave vec- 
tors satisfy the identical relationship (1) if to is 
understood to be the carrier frequency rather than 
the modulation frequency. In the transition region 
0 • 15ø-25 ø, both specular reflection and diffraction 
are important in the backscatter process. For a 
recent review of the theory of radar sea-return see 
Valenzuela [ 1978]. 

Now it is important to realize that the phase-front 
matching results in very high directional resolution 
(• 1 ø in azimuth typically as we shah see). Hence, 
the range reflectivity modulation spectrum Pmoa (K, 
ß ) in any given azimuth direction represents only 
a very narrow slice through the two-dimensional 
surface wave number spectrum, and a complete 
picture of the surface spectrum can therefore only 
be obtained by scanning the radar in azimuth. At 
satellite altitudes this scan can easily occupy many 
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Fig. 1. Overall geometry and coordinate definition. 

hundreds of kilometers if the nadir angle 0 is not 
small. If the wavefield is not homogeneous over 
this distance, it will be impossible to assemble from 
the various azimuth looks a meaningful directional 
spectrum representative of a given ocean area. To 
be reasonably assured of homogeneous conditions 
the nadir angle must be small. For example, if 0 
= 10 ø and the altitude is 600 km then the radius 
of the scan is -100 km. Since the wave number 

spectrum is polar-symmetric, it can be mapped in 
a --- 1 ø square by scanning (at a 4 rpm rate, or greater) 
180 ø on either side of the subsatellite track. A 1 ø 

square is a reasonably small area for the open ocean 
and happens to be the basic grid spacing of opera- 
tional wave forecast models. 

Thus our concern in this work is with small angles 
of incidence, and here we find ourselves fortunate 
for the reflectivity modulation mcchansim in small- 
angle, specular backscatter is basically a purely 
geometrical tilting effect and is therefore amenable 
to accurate modeling without resort to empirical 
hydrodynamic modulation transfer functions. This 
is because the population of spccularly reflecting 
facets derives from the entire wave ensemble, 
including waves on all scales, from the scale of 

the dominant waves wc scck to measure down to 

the scale of the diffraction limit. For this large 
ensemble of waves it is reasonable to suppose that 
hydrodynamic forcing and wave-wave interaction 
effects are negligible, at least in the first order of 
approximation, and that therefore the surface 
should be describable as a free-wave superposition 
possessing Gaussian statistics. This situation is to 
be contrasted with large-angle backscatter, where 
strong and essentially unpredictable hydrodynamic 
modulation of the ccntimctric Bragg water wave 
is chiefly responsible for the electromagnetic modu- 
lation [Wright et al., 1980]. The geometrical tilt 
mechanism in near-vertical backscatter is illustrated 

in Figure 2. According to this model, the reflectivity 
modulation is proportional to the large-wave slope 
component in the plane of incidence. It follows 
then that the range reflectivity modulation spectrum 
Pmod (K, •) is directly proportional to the large-wave 
directional slope spectrum K2F(K, •), where F 
is the directional height spectrum. In this work we 
will show that the simple tilt model of Figure 2 
provides a basically correct description of the mod- 
ulation mechanism. It will be shown that the tilt 

model corresponds to the first and dominant term 
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Fig. 2. Simple tilt model of reflectivity modulation. 

in a geometrical optics series expansion of Pmoa 
in which the large-wave steepness is the fundamen- 
tal ordering parameter. 

In principle, the range modulation spectrum can 
be measured by either short pulse (SP) or dual 
frequency (DF) techniques. In the SP technique, 
very short pulses are used to resolve the wave 
structure in range. Most simply, Pmoa(to, •) is 
obtained by spectrum-analyzing the video output 
of an envelope detector. In the DF technique first 
proposed by Ruck et al. [1972], quasi-mono- 
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chromatic waveforms that entirely fill the beam 
spot on the surface are transmitted at two closely 
separated microwave frequencies. An harmonic 
surface contrast modulation is detected through the 
interaction of the 'beat wave' with the surface. 

Most simply, Pmoa(to, •) is obtained by cross 
correlating the powers backscattered in the two 
frequencies v and v - to. Jackson [1974] pointed 
out that on account of the narrowband nature of 

the transmitted waveforms, the DF signal, the 
covariance of powers, will be small compared with 
the variance of power in either frequency. This is 
because the sea-slope spectrum is basically broad- 
band, having a bandwidth of 50-100% of the peak 
frequency, whereas the analysis bandwidth 8K in 
the DF measurement is comparatively narrowband, 
being equal to the reciprocal of the range beam 
extentsthe 'record length.' Hence the correlation 
coefficient, orthe SNR --- Pmoa(K)•K, will be quite 
small when the footprint dimensions are large. 
Borrowing from the detection theory work of Parzen 
and $hiren [1956], Jackson [1974] showed how 
the SNR (signal-to-noise ratio) in the DF measure- 
ment technique could be greatly enhanced by using 
wideband signals (e.g., by using short pulses). By 
widening the analysis bandwidth, Jackson showed 
that the DF SNR could be raised to levels compara- 
ble to typical SP SNRs. 

Alpers and Hasselmann [ 1978] (hereinafter re- 
ferred to as A-H), rather than using wideband signals 
to improve the DF SNR as suggested by Jackson 
[1974] instead introduced the idea of slow-time 
faltering the complex DF signal, 

Eo(P, t ) = 

E r( 

S(v, t) 

S(v - co, t) 

S (v, t) E o (v) 

SLOW TIME 
SPECTRUM 
ANALYZER 

2•r foTlnt elK.Vt [ 2 •l•l-t rv(co, t) dt 

•SFC TRANSFER FUNCTION S(•,t) 

Fig. 3. Schematic of a dual frequency system. 
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eo(r ) eS(T,t) [ p(T, t) •'(T) P•'"(co ) 

.Tint 

'es' 2 I Ti• •p (T+'t,t) dt '.•T) e-itø T dT' 2 
• I , o. 2 dr wnere T ---- •'• 

Eo r(t i •s(v,t) = S(v,t) Eo(v) 
• SFC TRANSFER FUNCTION S(u,t) 

Fig. 4. Possible realization of a short pulse system. x denotes 
fast signal time and t slow signal time. The slow time filter 
can be realized by a sample-and-hold that is triggered at succes- 
sive delays given by it, followed by an accumulator. The 
spectrum analyzer can be realized by digitally fast Fourier 
transforming the slow time filtered pulse return, and squaring 
the magnitude. 

..•(o0, t) - S(v, t)S*(v- o•, t) (2) 

where the S are the signals backscattered at the 
two frequencies. A-H showed that if •(to, t) is 
filtered at the Doppler shift frequency of the modu- 
lation 12 = K ß V, then (according to their large-angle 
analysis) satellite measurement SNRs typically of 
---+3 dB could be obtained. Hence satellite mea- 

surement feasibility was indicated. A DF system 
employing the A-H filtering concept is schematically 
illustrated in Figure 3. 

In this work we show that the A-H filtering is 
functionally identical to pulse integration in a SP 
system. Thus, to drive down the level of random 
signal fading caused by the waveform coherehey, 
backscattered pulses are integrated in surface-fixed 
range bins prior to spectrum analysis for the range 
modulation. An illustration of such a SP system 
is given in Figure 4. Following, the DF and SP 
systems of Figures 3 and 4 are analyzed in the 
frequency domain. (Space does not permit a like 
analysis of various possible wideband DF systems.) 
The ensemble average outputs of the two systems 
are expressed in terms of the common 'four- 
frequency' moment of the surface scattering 
transfer function. A solution for the moment is 

obtained by using physical optics in the high- 
frequency, geometrical optics scattering limit, and 
this solution is applied to an SNR analysis of the 
two systems. 

SYSTEMS ANALYSIS 

As the narrowband DF analysis results follow 
immediately from the moment results in the wide- 

band analysis problem, let us first consider the SP 
system of Figure 4. Let ß denote fast signal time 
(time scale of microseconds), and let t denote slow 
signal time (time scale of milliseconds). Let eo(•) 
represent the incident field waveform arriving at 
the beam spot center, and let the Fourier transform 
(FT) of eo be 

1 I e-•' Eo(v ) = • eo('r ) d'r (3) 
The backscattered field %(% t) is a duration-limited 
random process in fast time x (the duration being 
determ'med by the round-trip travel time of an 
impulse across the beam spot on the surface) and 
is assumed to be a stationary random process in 
slow time t. Stationarity in t follows if the beam 
is translating at a uniform velocity across the 
surface. Thus it is implicitly assumed that the 
azimuth • is fixed during the measurement integra- 
tion time. Further, it is assumed that the pulse 
repetition frequency (PRF)is greater than the 
Doppler fading rate so that %(% t) can be treated 
as a continuous function of t. If the FT of e•(x, 
t) with respect to x is E•(v, t) then 

E,(v, t) = S(v, t)Eo(v) (4) 

where S(v, t) is the surface scattering transfer 
function. The output of the square-law detector 
is p(x, t) = le,(x, t)[ •. If •(to, t) is the FT of 
p with respect to x, then 

..•(o0, t) = E,(v, t)E•* (v - o•, t) dv (5) 

where the asterisk denotes the complex conjugate. 
The pulse spectrum is defined as P(to) = ([ •(to, 
012 ) where the angle brackets denote ensemble 
average. The filter in Figure 4 functions to integrate 
pulse returns in surface-fixed range bins. The output 
of the filter after an integration time T•., is 

1 I Tint = p('r + +t, t)dt (6) 1•(•) •t o 
where the rate of change of signal delay + = (2/c) 
dr / dt, r being the range to the surface. The spectrum 
of the filtered pulse return/•(to) is defined as P(to) 
= <1 • ( o,)1 • > where • (to) is the FT of/•('r). The 
spectrum P(to) can be expressed as 

P(to) = W(II- K. V)P(to, fl)dfl (7) 

where the Doppler frequency 12 = K ß V = to+ 
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and where the filter window 

[ sin (•Tint/2) ] • w(n) = (8) 
( nTi•,/ 2) 

and P(to, f/) is the post-detection pulse-Doppler 
spectrum defined by 

P(to, 12) = • (•(to, t)•*(to, t + At))einatdAt 
(9) 

If the generalized, 'four-frequency' moment is de- 
fined as 

M(v, v', to; At) = (S(to, t)S*(v- to, t) 

ß S* (v', t + At)S(v' - to, t + At)) (t0) 

and the FT of M with respect to At, 

N(v, v', to; 12)=•-• M(v, v', to; At)e i•a'dAt 

then 

(tt) 

P(to, 12): IIN(v,v',to;12)Eo(v) 
ß E•(v - to)E•(v')Eo(v' - to)dr dr' (12) 

Now consider the DF system of Figure 3. If the 
incident fields Eo(v ) and Eo(v - to) are assumed 
to have unit amplitudes, then the complex signal 
out of the mixer •(to, t) is given by (2). From 
the definitions (9)-(11) the spectrum of the DF signal 
•(to, t) is evidently given by N with v = v'. If 
a finite record of length Tin t is passed to the spectrum 
analyzer, then the ensemble average output will 
be 

P(to) = W(12- K. V)N(v, v, to; 12)a12 (13) 

MOMENT SOLUTION (FAR ZONE) 

Here it is convenient to deal in terms of wave 

number k = v/c, etc. For now and for future 
reference let us establish the identities 

v = kc, v • =k •c, to = Kc 

Av = v- v', Ak = Av/c = k - k' (14) 

We will move freely in the remainder of this paper 

between wave number and frequency domain 
representations and will not bother to modify func- 
tional forms (e.g., $(k) is taken to be the same 
as $(v)). The physical optics integral solution for 
the transfer function is (e.g., assuming perfect 
conductivity [cf. Beckmann and $pizzichino, 
1963]): 

ik sec 0 I $(k, t) = • G(x - Vt) exp [-i2kr(x, t)] dx 
2'rrr o 

(15) 

where G is the illumination pattern, x = (x I , x2) 
is the coordinate vector of surface points in a 
surface-fixed reference frame, dx = dx I dx 2 is the 
element of horizontal area, and where the integra- 
tion extends over the illuminated area. The origin 
of the coordinate system x = 0 is taken to coincide 
with the center oftthe beam spot at t = 0. For 
small t, the Fresnel approximation to the phase 
is valid, 

-2kr(x, t) = -2kro + 2k cos 0{(x) - 2k sin0• 

ß (x - Vt) + (k/ro)(Ix - Vtl 2 - sin20 

ß [b' (x - Vt)] 2 + [2(x)) (16) 

where g(x) is the random wave height and • is 
the unit vector in the horizontal pointing in the 
direction of increasing range. 

Before we attempt a calculation of the time-lagged 
moment (10) in the Fresnel approximation, let us 
first consider the simpler problem of calculating 
the moment for zero time lag only in the far-zone 
approximation to the phase. By starting with the 
simpler problem, we will be able to comprehend 
the basic scattering physics more clearly; also, once 
having the far-zone solution in hand we will be 
better able to deal with the complications introduced 
by the Fresnel phase factors. Retaining only the 
first three plane wave terms in (16) we get on forming 
the moment M -= M(k, k', e; 0) assuming the 
interchangeability of expectation and integration 
operations, and ignoring the time dependence which 
is trivial without the Fresnel terms: 

M(k, Ak, •) .... G(x') ''' G(x 4) 
2'rrro 

ß (exp {i2 cos0 [k(g • - • - •3 + •4) + Ak(g3 _ •4) 

+ •(• _ •4)] }) . exp {-i2 sin 0b 

ß [k(x I - x 2 _ x 3 + x 4) + Ak(x 3 -- x 4) 

'•- K( x2 -- X4)] } dx • '" dx 4 (17) 
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where [1 = [(X 1 ) etc. The geometrical optics k 
--> oo limit of (17) is taken according to a method 
described by Barrick [1968] in connection with the 
limit of the second moment <lS(k)l> (i.e., the 
average backscattered power). For large k (i.e., for 
large rms phase variation 2k cos 0([2) 1/2), it is 
apparent that appreciable contributions to the mo- 
ment are made only in the neighborhoods of two 
sets of stationary points, viz., 

•1' x l -" X2• X3 -" X4 

•2' x l -- X3' x2 -- x4 (18) 

Except wherex I = x • = x 3 = x 4 the sets•and 
•2 are distinct and yield distinct contributions to 
the moment; i.e., M = M• + M: where M 1 and 
M e , respectively, derive from integrations over the 
small volumes surrounding • and •2. Consider 
the integration over the volume containing •9•. Let 

u = 2k cos0(x •- x :) 

v = 2k cos0(x 3- x 4) 
2 4 

W'-X •X 

X '"' X 4 (19) 

Now expand the height differences in the neighbor- 
hoods of the stationary points • in a Taylor series, 

2k cos 0([ • - ['•) = V ['•. u + O(u'•/k) 

2k cos 0([3 _ •4 ) __ •7 •4. ¾ _[_ 0(112 / k) (20) 

where V -= (O/x I , O/Ox2). Then the contribution 
M l to M for large k becomes 

M 1 --- (2r o cos 2 0)-4•A(w) exp (-i2k sin 0b ß w)dw 

X {(2'rr)-4 [ [ {exp {i[•7•2' u- •7•4 ' ¾ 

'•- 21{ COS 0(• 2 -- •4) .•_ 0((U 2 .•_ v2)/k) .•_ 0(mkv/k)] } ) 

ß exp {i[tan0b ß (u - v) + O(Akv/k)]}dudv} (21) 

where in (21) we have already taken the large k 
limit in the products of the gains, i.e., we have 
let G(x •) ... G(x 4) --• G2(x + w) and where we 
have integrated over the remaining space variable 
x, letting A (w) represent the convolved two-way 
gain pattern' 

A (w) = G '• (x) G '• (x + w) dx (22) 

Now consider the limit of the factor in braces as 

k --> oo. Let • denote the random six-vector, 

• --' (V •2, V •4, •2, •4) (23a) 

and let t denote the associated six-dimensional 

characteristic vector, 

t = (u, -v, 2n cos 0, -2n cos 0) (23b) 

The characteristic function of g is defined as 

q•g(t; w)= (e "'g) = [e"'•pg(g; w)dg (24) 

where pg is the pdf (probability density function) 
of g. Since [(x) is a stationary process, the pdf 
and characteristic function depend only on the 
separation, or lag vector w = x • - x 4. From these 
definitions we have for M l in the high-frequency 
limit, 

lim M• m M• (K) = (2ro cos 0 )-4 

ß [ A(w) exp (-i2K sin 0b ß w)dw 

x {(2-rr) -4 [ [ q•e (t; w) exp [-i tan 0b 

ß (u - v)] auav} (25) 

Since M• in the large k limit is a function of n 
only and the total moment M = M• + M2, and 
since M is symmetric with respect to a n and Ak 
interchange, then we must have 

lira M(k, Ak, •c; 0) = M 10c) + Ml(Ak ) (26) 
k--*•o 

Note that the limit does not have to be taken in 

order that (26) hold true approximately. 
Now let us define the surface wave vector K 

and specular slope vector s, 

K = 2n sin 0b 

s = tan 0b (27) 

and let us write the solution (26) as 

M1 (K) = (2ro cos • 0) -• 

ß A(w)_•(K; w) exp (-iK ß w)dw (28) 

where E represents the factor in braces, viz., 

•(K; w) = (2'rr) -4 • (u, -v, K cot 0, 

-K cot 0' w) exp [-is ß (u - v)] dudv (29) 

An alternative form of the solution may be obtained 
by using (24) for q•e and integrating. over u and 
¾.. 
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•(K; w) = pc(s ' $, •2, •4; W) 

ß exp [iK cot 0(•2 _ •4)] d•:,d•4 (30) 

For future reference let us write down here the 

result for the second moment. Using the same 
method we have used for the limit of the fourth 

moment, we have 

Ao sec4 0 ) tim <lS(k)l> = 
k--,oo 4r o 

(31) 

where Ao = ] G 2 dx. The limiting form (31) provides 
a good fit to near vertical backscatter data provided 
some account is made of diffraction for finite k. 

Diffraction can be accounted for by treating P v• 
as though it were the pdf of slopes in a smoothed 
sea surface in which waves smaller than the diffrac- 

tion limit have been removed by a spatial filter 
[Brown, 1978]. If the limiting cross section form 
•r ø = ,r sec 4 0p v• (s)is fitted to the 2-cm cross-sec- 
tion data of Jones et al. [1977] one finds that p v• 
is approximately Gaussian with a slope variance 

2 2 

mo-- (I v > thatis approximately a linear function 
of windspeed U, 

2 

mo • 0.0025 U[m s -l] + 0.01 (32) 
(Ku-band) 

Equation (32) gives slope variances in the windspeed 
range 10-25 m s -• that are •60% of the optical 
values reported by Cox andMunk [ 1954] and which, 
interestingly, lie between their 'clean' and 'slick' 
surface observations. 

EXPANSION OF M•(K) 

We seek an expansion of the moment solution 
(27)-(30), basically in powers of the large wave 
steepness 80, such that the first-order term gives 
us what we are after, namely, the directional slope 
spectrum, and the higher-order terms give us the 
departure from direct proportionality to the slope 
spectrum. We will discover a posteriori that such 
an expansion is valid (i.e., that it converges rapidly 
for a sizeable range of the parameter values 0, m o, 
and 80). M, (K) is expanded by first expanding •(K; 
w) as given by (29) and then term-by-term Fourier 
transforming with respect to w. • is expanded 
according to Longuet-Higgins' [ 1963] method for 
generating the non-Gaussian pdfs of variables in 
a weakly nonlinear sea. 

As is well known, sea surface height and slope 

distributions are nearly Gaussian; what departures 
there are from normality can be accurately modelled 
with Gram-Charlier series representations. Lon- 
guet-Higgins' [ 1963] theory provides a rational 
means for generating these series based on the 
cumulant-generating and characteristic functions. 
Further, Longuet-Higgins [1963] shows how the 
coefficients of these series may be derived from 
the nonlinear water wave equations. For simplicity, 
we consider here statistics only up to third order. 
Then the characteristic function of • (cf. (23)-(25)) 
assumes the simple form, 

[l ,• (t; w) = exp - -•- Ix u(W) t,tj 

[ i3 ] X 1 + •.. • i•t,(w) tit•tk (33) 

where the covariances ix i• = (•i•j) and the third 
moments X iik = ((,(i(k). It is assumed that mean 
water level is zero so that (•) = 0. The characteris- 
tic vector t = (ti) = (u, -v, K cot 0, -K cot 0) 
and the Einstein summation convention applies to 
repeated indices.. We note the obvious, that if • 
is perfectly normally distributed then the third 
moments •kij k vanish, and q• is given by the normal 
form exp (•). The elements of the covariance 
matrix ix can be expressed in terms of the wave 
height covariance function, 

R(w) = {•2•4) __ {•(x -[-- w)•(x)) (34) 

or various derivatives thereof, as can be verified, 
for example, using methods outlined in Papoulis 
[1965]' 

m.• - R,•,o 0 -R,•, 

m •,• R,•, 0 (35) I&"- 2 
•r R 

symmetric cr 2 

where we have defined •r 2 = R (0), R.• = OR (w) / Ow• 
etc. and m• = -R.• (0), and where a and 13 range 
from 1 to 2. The mean square slope mo 2 = m,•,• 
= m• + m22. 

Let the large wave steepness 8o = Ko•r where 
Ko is the wave number of the dominant wave. 
Characteristically •o = 0.05 for fully aroused seas, 
8o = 0.1 for developing seas, and 8o < 0.05 for 
decaying seas. If U = 10 m s -• then by (32) m o 
= 0.2 and so typically •o/mo • 0.25. Let ix = 
ixa + ixo where d and o stand for the diagonal and 
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off-diagonal blocks of (35). For lags w removed 
from the origin, e.g., on the order of a quarter 
of a wavelength ix ø = 0(•)whereas ixa= 0(too:), 
and so we can expand the normal form in (33) 

o 

for small •x ß 

1 atit j X 1 -- øtit j ß a-- exp -- 7 •Li, 7•Li, 

i ho•t,t•t• + ø•tøt,t•t•t t + (36) - 6 

Now similarly to (35) we expect that the hvk are 
derivable from a knowledge of the lagged product 
function Q(r, s) = (•(x + r)•(x + s)•(x)), the 
FT of which with respect to r and s is known as 
the bispectrum [Hasselmann et al., 1963]. In prin- 
ciple, one may derive the bispectrum and hence 
the hvk from the height spectrum, the FT of R(w), 
using a Stokes' perturbation expansion of the non- 
linear water wave equations according to the 
theories of Longuet-Higgins [1963] and Hassel- 
mann et al. [1963]. The successful application of 
these theories to the prediction of the average 
impulse response at vertical incidence to 3 cm 
radiation by Jackson [1979] leads us to suppose 
that these theories may be useful in the present 
context. However, for obvious reasons, we will 
not attempt to model the h satistics here. We merely 
point out their existence and call attention to their 
importance. For example, consider small values of 
tan 0/m o . Then the height terms tend to dominate 
and the second-order ix ø term is then 0(K 4 cot 4 
00 '4) = 0(•04 cot 4 0). The corresponding h term 
is 0(K 3 cot 3 0)k00. 3) where h o = (•3)0.-3 is the 
height skewhess coefficient. In general ho and •o 
are proportional to each other. From Longuet-Hig- 
gins' theory, if one assumes a Phillips spectral form, 
then h o = 4• o. This follows from Jackson [1979] 
if an error of a factor of 2 in the second-order 

height profile is corrected for, i.e., if [2 •- [2/2. 
Thus the h term is 0(4•o 4 cot 3 0) and is comparable 
to the second-order term in ix ø. Hence, a priori 
the neglect of the skewhess statistics is unjustified. 
Nevertheless, to get on with the analysis we will 
assume a Gaussian surface model. 

Writing out the characteristic function using (35) 
for the elements of Ix, we have 

• --- •v•(U) •v•(-v) exp [-(K•r cot 0) 2 ] 
x { 1 + (K cot 0)2R q- K cot OR,,,,(u,,,- v,,,) 

- R,• u• v• + second-order terms in Ix ø } (37) 

I m where q• v •(u) = exp (-5 •ou •u o). The second- 
order terms are carried in the appendix. Now making 
use of the identities, 

œv•(S) - (2•r)2 qSv• (u)e-'•'Udu 

&Pv• _ -i Os• (.•-'r7') 2 U•v•(u)e-'S'Udu (38) 
and so forth, we have for •. (29) on integrating 
over u and v: 

-• --- pv• 2 (s) exp [-(Ktr cot 0) 2 ] 

ß [ 1 + (K cot 0)2R + 2iK cot 0 
2 • R..• + second-order terms in •x ø } (39) 

where the two-dimensional Fourier transform, 

FT {'" } d½__f. 1 I -i•.,,, (2•r)2 {" .}e dw (41) 
Let the reference axes X l and x 2 be fixed in the 
antenna beam; that is let x• be the surface range 
coordinate, parallel to • and K, and let x 2 be the 
orthogonal azimuthal coordinate. Assume a Gaus- 
sian gain pattern, 

G(x) = exp -•- (x,/L,, - -•- (x2/L, (42) 
Then from (22) 

FT {A (w)} = (2•r)-2 

' IIA(w,,w2)exp(-iKw,)dw•dw2 

ß FT {linear + higher-order terms in (39)} ] (40) 

where for short in the series part of (39) we have 
let p --- p v• (s) and p., -- Op / Os,, etc. 

The moment M•(K)as given by (28)is the FT 
of ,E as seen through the lag window A (w). If A (w) 
is broad compared to the correlation scale of the 
waves (as will always be the case in satellite 
measurements), then the effect of the finite window 
on the modulation spectrum can be ignored and 
we can write M• as 

M•(K) = (•r/2ro 2 cos 4 0)2pv•2(s) 

ß exp [-(gcr cot 0) 2 ] x [FT {A (w)} + A (0) 
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I 1 ),.] = (LoL,/2)'. exp -•- (KLo (43) 

Making use of the second-moment result (31) noting 
that A(0) = ,/1o/2 = ,rLoL,/2 we write (40) in 
the form 

x/2•r 
M• (K) - [( IS (k)l '' >l '' 

ß X/• exp - -•- (KL ø )'' + Pmod(K) (44) 
where the modulation spectrum 

Pmod(K) = (¾/2•/L, ) exp [-(K•r cot0 
ß FT {linear + higher-order terms in (40)} (45) 

The directional height spectrum is defined by 

F(K) = FT {R(w)} (46) 

Then, since FT{R.•} = iK•F(K)and FT{R.•} 
= -K•K•F(K) the expansion for Pmoa becomes 

x/2•r 
--(K•rcot0) 2 Pmod (K) - e 

L, 

{[cot''0 2cot0 p'• K• p.•p.• K•K• ] ß 

.... + p'' p K 

ß K''F(K)+ ...} (47) 

or 

X//2•r 
--(K•cot0) 2 Pmod (K) - e 

L, 

ß { (cot K''F(K) + ... 
Os 

(48) 

where O In p/as --- (K,•/ K) ß (p.,•/p) -- 0 ' VsP. 
Note that if the exponential factor is neglected 
(which neglect is consistent with the neglect of the 
second-order terms) then the linear term of the 
solution agrees with the simple tilt model of Figure 
2. The L, -l dependence of the solution is a conse- 
quence of the large footprint assumption, KL, >> 
1, and can be interpreted simply as follows: in a 
real short-crested sea, the waves are running out- 
of-step so that the wave modulation signal power 
adds noncoherently as L, 1/2 across the footprint. 
The total backscattered power on the other hand 
adds directly as L,. Hence, the relative range 

modulation power goes as L, 1/2 and its spectrum 
asL, i. 

To gain some feel for the effect of the second- 
order terms, sample calculations have been carded 
out by using (A5) of the appendix assuming a 
simplified two-dimensional scattering geometry. 
The results shown in Figure 5 indicate that the 
second-order terms are generally small. The modu- 
lation spectrum bears good fidelity to the surface 
slope spectrum in the incidence angle range 8ø-15 ø 
for windspeeds •>5 m s-l and significant wave slopes 
5o • 0.1. 

MOMENT SOLUTION (FRESNEL ZONE) 

We now calculate the moment (10) with $(k, t) 
given by the physical optics integral in the Fresnel 
approximation to the phase where we neglect the 
term in height, k[2/ro . Proceeding exactly as in 
the far-zone solution, we form the moment as the . 
four-fold integral over the dummy space variables 
x I ... x 4 and interchange expectation and integra- 
tion operations. Again we recognize that for large 
k, significant contributions to the moment are made 
only in the vicinity of the 'stationary' points defined 
by (18). The moment M is thus decomposable as 
M -• Ml + M2 where Ml and M 2 represent the 
contributions from • and •2. Again, we consider 
the integration over the volume surrounding the 
• points. Transforming to the lag variables u, v, 
and w as per (19) and taking the limit, we get for 
the contribution from • 

lim M• -- M•(K; At) = (2ro cos'- 0) --4 
k--•oo 

ß [[ G''(x + w)G''(x - VAt) 

ß •(K; w)exp [-iK ß (w + VAt)] exp {i(K/ro) 

ß [cos'' 0((x• + w•)''- (x,- V•At)'') 

+ (x,. + w,.) e- (x,.- V,.At)''] } dxdw (49) 

where we have taken the coordinates X l and x 2 
of x to be radar-fixed coordinates (Xl in the plane 
of incidence). Let G be the separable Gaussian 
pattern given by (42). Then integrating over x we 
get 

M• (K; At) = (2ro cos'- 0) -4 [ B(K; w + VAt) 

ß •(K; w)exp [-iK. (w + VAt)] dw 

where 

(5O) 



1394 F. C. JACKSON 

• 1.0 

0 

z 0 

--10 

-- 20 

I 

I 

I 

I 

I 

d o =0.1 

•, e = 15 ø 
• U = 5ms -• 

•\• -- K•F(K) 
\\'•,_ -- Pmod 

1 2 3 4 

K/Ko 
I 

I 

I 

I 

I 

IM 

, I 

Im 

REFERENCE 
POINT 

do =0.1 

0 = 15 ø 

U =5 ms -• 

2 3 

REFERENCE 
POINT 

(a) 

(b) 

-10 

-20 

FR (15ø) "'• // 
FR(10 o) -- 

- 0.05 

10 ø , 15 ø 
- IM (15 ø) 

IM (10 ø) 

- • 

I I I I 
0 5 10 15 20 

U(ms -•) (C) 

- -- do = 0.05 

--6 0 =0.10 

I I I • 
5 10 15 20 

0 (DEG) 

•FR 
O = 10 ø 

U = 10 ms -• 

I I ,I 
0.05 0.075 o. 1 

(d) 

(e) 

Fig. 5. Sample calculations of the spectrum Pmoa(K) of backscattered impulses from a Gaussian sea surface 
in two dimensions in the second order of scattering. (a, b) The surface slope spectrum K2F(K) is the 
Phillips spectral form, BK -•, with an abrupt cutoff at K = K o. The slope spectrum and Pmoa are both 
normalized by their values at Ko. The calculations are performed for a range of wave steepness 8o = 
Ko•r = x/B/2, incidence angle 0 and wind speed U (which determines the total mean square slope according 
to (32)). In all calculations, the location of the peak at Ko is preserved; low frequency whitening--or 
intermodulation (IM)--is exhibited, and the frequency response (FR) at wave numbers K > Ko is in the 
form of a droop. (c, d, e) The variation of the IM at K = 0.5 K o and the FR at K = 2 K o over the 
range of parameter values indicated. 

(' ) B(K; w) = (Ao/2) exp - •- b•2w• 2 (51) 
The illuminated area A o = ,rrLoL, and the b• 

bl 2 2 -2 -= b. = L. + (KLp/2ro sin O) 2cos •0 
(52) 

b2 2 = b, 2 = L, -2 q- (KL,/2ro sin 0) 2 

Since M = M• + M 2, then N as given by (11) 
is similarly composed, i.e., N = N• + N 2 where 
N• and N 2 are the respective FTs of M• and M e 
with respect to At. From (11) we have 

Ni (K; fI) = (2r o cos • 0) --4 S dwE(K; w) exp (-iK' w) 

X {(2'rr)-' [dAtB(K; w + VAt) 



ß ½xp [i(II- K. V)At]} (53) 

Let •= (b•w•, b:w:), ?' = (b•V•, b:V:) and 
•, = • - K ß V. Then integrating over At we 
get 

(,40/2) dw_ • (K; w) N l (K; l•) = (2ro cos2 0)4 

exp --•- (l•,/•) 2 
ß exp(-iK. w) x 

ß exp - -•- •/': sin: (•, 

ß exp [i • cos (•, •)l•, / • ] } (54) 
From (11) and the inverse FT relationship it follows 
that 

Ml(g; 0) = • Nl(g; l•)dl• = (2ro cos: 0) -4 

ß • B(K; w)•(K; w)exp (-ig ß w)dw (55) 

which is the same as the Fraunhofer solution (28), 
except that the Fresnel lag window B (K; w) replaces 
the Fraunhofer lag window A(w). Since B is not 
significantly sharper than A and the window can 
still be considered to be broad compared to the 
scale of variation in • (i.e., broad compared to 
the dominant wavelength 2•r / K o), then M• (K; 0) 
can be regarded as identical to the Fraunhofer 
moment M•(K). (Note that B(0; w) = A (w) and 
B(K; 0) = A(0) = Ao/2. ) If the detailed behavior 
of N•(K; •) near the origin K = 0 is ignored, 
then it is apparent that N l is well approximated 
by 

exp (- l•, / 2[3 res :) 

N ! (K; I•) -• M l (K) ß ¾/2•r [3 res (56) 
where M• is given by (44), and 

-- Va) 1/2 

2 2 sin 2 (1))1/2 •r (57) = (b.o cos 2 (I) + b•, ß 

where (I) is the radar azimuth relative to the velocity 
vector V. In A-H, only the line-broadening due 
to wave-front curvature was considered (i.e., it was 
assumed that [•res •-- KLV/ro). However, to be 
accurate, the broadening due to the finite footprint 
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must be accounted for also. Thus, compare V/L 
and KL V/r o for typical aircraft and satellite geome- 
tries and ocean wavelengths' both terms are 
comparable. 

The moment M(k, Ak, n; At) is not symmetric 
with respect to a n and Ak interchange, and so 
the M 2 component (deriving from the • stationary 
points) cannot simply be equated to M•, as was 
possible in the time-independent case. Rather than 
labor through a solution for M 2 in these pages, 
we merely outline the key steps in the solution 
and indicate the appropriate assumptions and ap- 
proximations: lag variables appropriate to the • 
integration are defined, and the k --• oo limit is taken 

•,. in the formation of _, the Fresnel phase terms 
in n and Ak are neglected; assuming a large footprint 
area, we neglect the variation of • near the origin 

- - 2(s) in the integration and let _• --• _• (0; oo) = p v • 
over w. Then, on taking the FT of M 2, we get 

[' exp --•-(qAKLo) • 

exp --•- (ll,/13 a) • 
ß ß exp (iel•,/[• a •) (58) 

where 

q- Isin•l ß [(LolL,) • cos2• + sin2•]-l/2 

13a= (2kV/ro) ß [Lp • cos40 cos2• + L, • sin2•] l/2 

e = (2k V/ro) ß AKLp • cos • 0 cos ß (59) 

and where AK -- 2Ak sin 0. As a check on (58) 
we have 

Sda = exp o 
(60) 

which is M• (AK) with the weak modulation con- 
tribution neglected. 

SNR ANALYSIS 

By the SNR is meant the ratio of the average 
output signal of the systems of Figures 3 and 4 
(i.e., the estimate of the modulation spectrum) to 
the broad fading spectrum that exists in the absence 
of signal modulation. We do not consider here the 
additional contribution to the noise background 
made by thermal noise. 
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DF technique. The spectrum of the DF signal 
is simply N = N• + N 2 with AK set equal to 
zero in N 2 (Since v = v' then Av = AK = 0). 
Since the Doppler spread [3aiS large compared with 
the Doppler shift frequency of the modulation, it 
follows that in the vicinity of the 'resonance' peak 
atl• = K' V we can take N 2-- 1/V/2•r[3a. Let 

--1 

us consider short integration times Tin t << 2 •r[3re s 
such that the spectral window W(I•) entirely covers 
the resonance peak. Then the spectral estimate 
computed at the Doppler frequency l• - K ß V 
is given by (cf. (13)) 

+ w(o) Nan + wan 

V 2• Vmod (K) + (61) =(1). L• •• •T•t/ 
For example, let T•n • = •r• --1. Then the 

Our theoretical analysis indicates, and aircraft 
data, to be published, confirm that the linearized 
geometrical optics solution for Pmo• is quite accu- 
rate: 

cot • - • K2F(K) (63) Pmøa(K) - L• Os 
Let F be given by the Ph•ps' cutoff spectral form 
with a cos4 • spread•g factor: 

F(K) = 0.005(4/3•) cos 4 • K -4, 

K • Ko • 10/U :, and 0 otherwise (64) 

Assume upwave/downwave looks, ß = 0, and 
assume that the waves and w•d are aligned so 
that the major axis of the Gaussian slope pdf p 
= P vs(s) coincides both with the radar azimuth 
and the wind direction. Then 0 In p/Os = -tan 
O/m•. Assume an axial ratio m•/m:: = 1.5 ac- 
cord•g to Cox and Munk [1954]; then m• = 0.6 
mo: where m o is given in terms of windspeed by 
(32). Assume, for example, the foHow•g parameter 
values' 

ro = 700 km 

V= 7kms -• 

0 = 10 ø 

L o = L,=5km (65) 

k = 2•r/2 cm 

K = Ko = 2•r/200 rn 

U = 15ms -• 

Then the two-sided modulation spectrum, 

Pmoo = (5 X 10-4 m-•)(5.7 4- 6.1)2(2.1 m 2) -- 0.15 m 

(66) 

From (52) we have b• • b, - 6.8 x 10 -4 m -• 
and so •res = 4.7 rad s -! and [3 a = 3.1 x 10 4 
tad s -•. The value of [3 res implies Ti• t = [3res -• = 
0.21 S. Without the filtering the SNR can be consid- 
ered to be SNR = (•-'rr/Lo)Pmoa = -41 dB. 
The A-H filtering gain is then (2'rr3)-l/2(•a/•res) 
= +26 dB, and the final measurement SNR is 
accordingly 

SNRDr = - 15 dB (67) 

Of course this figure can be improved upon some- 
what by designing a spectral analysis with a better 
match to the resonance peak. However it is clear 
that given reasonable parameter values the narrow- 
band DF SNR is not likely to exceed 0 dB. 

$P technique. Let us write the results (44), (56), 
and (58) in the frequency domain making use of 
(1) and (14) and the additional identities A K = 
(2Av/c) sin 0, T r • (2Lo/c) sin 0, and Pmoa(to, 
•) = Pmod(K)dK/dto. 

exp (--l•2,/2[•res 2) V•-7r 
ß 

X/2• •r• Tr 
• Pmod(0O, (I)) (68) 

N2= [<lS(.)l 2>12 

ß exp [- 1 ] 7 (qAvrr)2 ' exp (iell,/[• a) (69) 

If the pulse bandwidth is large compared to (q T r)- • 
then N 2 behaves as a delta function in A v = v 
- v'. Hence, since is practically a con- 
stant over the pulse bandwidth, (12) becomes 

P(o•, •'•) • Pl 4- P2 = Sl ' I • Eo(12)E• 0 2 -- co)d•l 2 

2 •)d P] • •2da• (70) + [• E•(v)Eo(v- . 

Mak•g use of the deflations (59) and the identity 
AKL, • ArT r we have for the N 2 integration, 
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exp [ - • (11./ql3,t) 2 ] 
ß (71) 

where from (59) it follows that 

ql3,t = (2k V/ ro ) L, Isin (72) 

which is the Doppler spread due to azimuthal aspect 
variation alone. 

Pulse waveforms are often Gaussian in shape. 
Let Eo(v ) at baseband be given by 

exp (-v 2 /2[3•, • ) (73) Eo (v) = x/2'rr [3 •, 
Then computing the integrals in (70) we have 

x/2•r 
P(oo, r•) - P, + P, - [( IS(•)l' 

r• 

exp (-to2/2[3•,2) [ exp (-r•,/2•; • •) 
exp (-l12./2q213a 2) 1 ß Pmoa (tO, *) + ....... (74) 

The post-detection 'pulse-Doppler' spectrum P(o•, 
fl) is sketched in Figure 6. 

Except for looks directly forward (• = 0 ø) or 
aft (cI> = 180ø), ql3 a >> [3re s . Hence, in the vicinity 
of the resonance peak at fl = K ß V we can set 
fl.= 0 in P2. Again, if we assume short integration 
times Ti, , such that the resonance peak is entirely 
covered by the spectral window W, the filtered 
pulse spectrum becomes, 

P(o,)--P, + P:-- w(0) [ e, ar• + e:[ war• (75) 

Again assume that Ti, , = [3res -•. Then the SNR 
-- P•/P2 becomes 

SNRs•, 2-•/2 -3 = •r /:(• •d • •.•)x/• • emoa (O', 

---- (X/• /ap)emo•(I{) 
(76) 

where Ap is the bandwidth-equivalent surface range 
resolution. In the absence of pulse integration or 
in the limit Tin , --> 0, the pulse spectrum is given 
by P(o•) = I P(o•, fl) dfl. That is, the ensemble 
average spectrum of individual backscattered pulses 
is given by collapsing P(o•, fl) upon the fast fre- 
quency axis (cf. Figure 6). Evidently from (74) the 

P (w, Q) 

- • •" /• res • -... •-.... L -.... 
•=fi_v 

log ( Q/fid ) 

Fig. 6. Post-detection 'pulse-Doppler' spectrum. 

SNR in the 'unfiltered' case is SNR = I P• dfl/ 
I P2dfl = V/2'n'•;,Pmod . For example let Ap = 
5 m. Then with Pmod given by (65), the unfiltered 
SNR = - 11 dB. Because of the pulse-limited 
illumination, the filtering gain in the SP measure- 
ment is a rather strong function of azimuth. In 
the equal beamwidth case we are considering the 
gain goes as q = Isin cI>[. For broadside looks the 
final measurement SNR = +26 dB- 11 dB = 

+ 15 dB, and for any azimuth, 

SNRsp = + 15 dB + 10 log Isin•l (77) 

The SNR is 0 dB for look +_2 ø of directly forward 
or aft. In addition to the SNR one is interested 

to know the actual modulation signal strength. The 
rms modulation depth or 'contrast ratio' is given 
by 

CR = 2 Pmoa(K) ag =10% (78) 
K0 

which follows from (63) and (64) assuming Ko = 
2'r r/200 m. The upper limit strictly applies to 
impulses; however, the CR is not materially altered 
if the upper limit is replaced by wave numbers 
corresponding to range resolutions in the 5-m range 
as is evident from (64). 

Before concluding here we remark on the high 
directional resolution of the measurements we are 

considering. Directional resolution is determined by 
the combination of finite footprint and wavefront 
curvature factors that is embodied in the Fresnel 

lag window (51). From (51) the lateral wave number 
uncertainty is bK 2 = b,. Since b, is small, the 
directional uncertainty of a given wave vector K 
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= (K•, K2)is •(I) --• •K2/K. The half-power spec- 
tral window width is then equal to 2(2 In 2) •/2 b, / K. 
For the typical 200 m water wave we have 

0.92 ø (79) 

Such a high resolution suggests the advisability of 
scanning nearly continuously in azimuth, otherwise 
very narrowly directed swell systems may go unde- 
tected. 

CONCLUSION 

A few points deserve, or require, comment. First, 
regarding the geometrical optics approximation: this 
is bound to be quite accurate in the present context 
because the diffraction field, in addition to being 
small, is comparatively diffuse as well [Brown, 
1978]. Thus it can contribute only negligibly to the 
modulation via the tilt mechanism. Diffraction acts 

mainly to reduce the rms surface slope that is 
effective in the specular scatter component by 
inhibiting specular reflections from waves smaller 
than the diffraction limit, which limit according to 
Brown [1978] is about three electromagnetic wave- 
lengths in the horizontal. In this connection it is 
worth noting that those waves that are most strongly 
forced, the gravity-capillary waves, lie under the 
diffraction limit for 2-3 cm radars. 

Not mentioned in the text is the fact that the 

moment solution (28)-(30) does not exist in the strict 
mathematical sense. E (K; w) is singular at the origin 
w = 0 because the joint pdf of slopes is singular. 
From the definition of a joint pdf it follows that 
for any smooth surface the joint pdf must go as 

--1 

w as w-• 0. Hence M•(K)is logarithmically 
divergent. Physically, the singularity is due to the 
point source approximation.which is implicit in the 
physical optics integral formulation (14). In the case 
of a point source, the cross section of a specular 
point is proportional to the reciprocal of Gaussian 
surface curvature. As shown by Longuet-Higgins 
[1959] the reciprocal curvature has unbounded 
variance, and so the variance of specularly reflected 
power is also unbounded. Of course, the singularity 
at the origin can be removed by accounting for 
the finiteness of the source; however, in the present 
context the problem of representation at the origin 
is regarded as basically trivial on account of the 
large areas and numbers of specular points involved. 

Assuming Gaussian surface statistics, we have 
carried out an expansion of the moment solution 

explicitly to second order, and we have shown that 
the harmonic distortion introduced into a measure- 

ment of the surface slope spectrum by the second- 
order terms is generally small, provided sufficient 
small-scale roughness (windspeed •> 5 in s-•). 
Minimum harmonic distortion obtains near 10 ø inci- 

dence, or in the vicinity of least sensitivity of (r ø (0) 
to changes in the rms slope, m o . A rough accounting 
of non-Gaussian 'skewhess' statistics indicates that 

these statistics can produce distortions in the mea- 
sured height or slope spectrum of comparable 
magnitude to those existing in the second order 
of scattering from a normally distributed sea. Thus, 
if the problem of measurement nonlinearities is to 
be addressed seriously, non-Gaussian wave statis- 
tics must be considered. Fortunately, the nonlin- 
earlties are small, and it is averred that rather 
accurate measurements of the directional height 
spectrum can be made simply by using the linearized 
'tilt model' solution, (63). In fact, aircraft data, 
to be published, show this to be the case. 

If thermal noise is not a factor affecting the 
measurement, then it is evident from our analysis 
that the SP technique is much superior to the 
narrowband DF technique. The truth of this state- 
ment becomes even more transparent when one 
considers that each DF measurement is subject to 
a 100% sampling variability because there is no 
frequency averaging. Thus even with a dozen or 
more channels operating simultaneously one is stuck 
for integration time. In view of the wavefield 
homogeneity problem, one must accomplish an 
azimuth scan within the time it takes to travel --• 100 

kin. This leaves --• 15 s / 360 ø = 0.04 s of integration 
time available for a 1 ø azimuth look. (Here we are 
assuming that it is the spectral window width 
that determines the allowable movement in azimuth 

during an integration time interval. This may not 
be the correct number, but it is probably not far 
off.) This is to be compared with the 0.2 s allowed 
in arriving at (67). 

In the SP measurement one is also short on 

integration time, but not nearly so badly. For 
example, let us consider an actual piece of space- 
quafffled microwave hardware, the Seasat-1 altime- 
ter transmitter [Townsend, 1980]. This Ku-band 
transmitter puts out a 2.5 kw, 300 MHz chirped 
pulse at a 1 KHz rate. The bandwidth parameter 
for this waveform [3•, --• 5 x 108 rad s -• and the 
range resolution parameter Ap = c/(213•, sin 0) 
1.7 in at 10 ø incidence. Hence the unfiltered SNR 
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-• -7 dB for the 200 m water wave example. Because 
the PRF in this case is lower than the Doppler 
bandwidth, we cannot use the results of the contin- 
uous analysis. Because the signal is undersampled, 
the fading spectrum P2(o•, 12) will be folded-over 
on itself at intervals of the Nyquist frequency 
= PRF + 2. The measured fading spectrum level 
will accordingly be increased in proportion to the 
Doppler bandwidth divided by the PRF. Now since 
outside of two sectors of some given width centered 
at 0 ø and 180 ø the PRF is lower than the Doppler 
bandwidth, it follows that the backscattered pulses 
are independent vis-a-vis the fading statistics, and 
so the result of integrating N pulses is simply to 
reduce the fading variance by a factor of N -1. 
Given the Seasat-1 altimeter PRF of 1 KHz, and 
allowing 0.04 s integration time, then N = 40 pulses 
are put on target, and so the integration gain will 
be + 16 dB. Hence the final measurement SNR 

+ 16 dB- 7 dB= + 9 dB. This SNR will be constant 

outside of the foreward and aft sectors where the 

Doppler bandwidth drops below the PRF. 
It was said in the introduction that the solution 

to the low SNR problem in the DF technique was 
to use signals with bandwidths commensurate with 
the modulation spectrum bandwidth. Yet we have 
not found the space here to describe or analyze 
such possible systems. Why? Apart from space 
limitation, the reason is that S P systems such as 
the Seasat-1 altimeter can deliver a better-than-unity 
signal-to-thermal-noise ratio, and basically this is 
all that is required in order that thermal noise not 
seriously degrade the measurement SNR. Thus, 
while ultimately such factors as transmitter tube 
life may warrant a detailed trade-off analysis of 
wideband DF and SP systems, at present the mo- 
tivation for such an analysis is lacking. 

APPENDIX: SECOND-ORDER TERMS IN THE 

EXPANSION OF M•(K) 

The second-order terms in the expansion of •, 
(37), are 

1 1 o olXk•otitjtktl 2 • -•xi• tit• 7 Ixi• 

[(K cot 0)4R 9. + R,•p R,• u• u• vp v• 

+ (K cot 0)9. R,•R,• (u• u• - 2u• v• + v• v• ) 

- 2(KcotO)9.RR,•u•% + 2(KcotO)3RR,•(u• - v•) 

- 2(K cot 0)R,• R,, u• v• (u• - v• )] (A1) 

Fourier transforming with respect to u and v ac- 
cording to (29) and making use of the identities 
(38), we get for the second-order terms in the 
expansion of = (39): 

1 1 p,•p,• R,• •- (K cot 0)4R 2 -• -- -•• , 2 

- (K cot 
P P 

- (K cot 0)9. P'•P'P RR • 2 , f5 
p 

+ 2i(K cot 0) 3 p'• RR,• - iK cot 0 
P 

P,,•'vP,• + P,•'vP,,• , (A2) 

From the definition of the height spectrum as the 
Fourier transform of the covariance function, viz., 

• 1 I -i!•- w F(K)-= FT{R} (2-rr)9. R(w)e aw (A3) 
it follows that the FT of the second-order terms 

in • is given by various convolutions involving 
the height spectrum; e.g., 

FT{RR,• } = FT{R} * FT{R,•} 

= F(K) * [iK,• F(K)] 

= F(K')[i(K',• - K•)F(K' - K)1 dK' (A4) 

If an overbar is used to distinguish a variable 
wavenumber entering into a convolution, then the 
second-order terms in the expansion of Pmo•, (49), 
are written as 

1 1 p,,•p,• 
+--(K cot 0)4F * F + ---•• 

2 2 p 

p,,•p,• + (K cot 0)'- P'• + ,_ 
P P 

+ (K cot 0) 2 P"•P 2 

p 
'• F * K• Kp F - 2(K cot 0 )3 

P'• F * K• F - K cot O ( p'•p'• + p'•p'• ) 
ß Ko, K•F * K.•F (A5) 
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