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THE PHYSICAL BASIS 
FOR ESTIMATING WAVE-ENERGY SPECTRA 
WITH THE RADAR OCEAN-WAVE SPECTROMETER 

A solution for the spatial spectrum of sea-surface reflectivity for near-nadir-viewing microwave radars 
previously given by the author is rederived using geometrical optics. The new derivation makes some
what clearer the physical basis for the radar ocean-wave spectrometer measurements of ocean-wave direc
tional spectra. 

INTRODUCTION 

Jackson I obtained a solution for the reflectivity 
modulation spectrum of the sea surface for near-nadir
viewing microwave radars based on physical optics in 
the high-frequency limit. Physical optics was used mainly 
to account for the Rayleigh fading (or speckle noise com
ponent) in the backscattered signal resulting from wave
form coherency. The actual reflectivity modulation spec
trum, absent the fading noise component, could as well 
have been derived from geometrical optics directly. Be
cause of the potential importance of this scattering solu
tion for future spaceborne application (see the accom
panying paper, "The Radar Ocean-Wave Spectrome
ter," in this issue), it may be worthwhile to revisit the 
problem and to recast it in terms of geometrical optics 
ab initio. We do this using a delta function formalism 
similar to that employed by Lynch and Wagner. 2 

GEOMETRIC OPTICS SOLUTION 

The geometry of the measurement is shown in Fig. 
1. Let () be the incidence angle, 1> the azimuth angle, and 
r the range from the radar to points r = (x,z) = (x,y,z) 
in the vicinity of the mean sea surface z = O. Let the 
antenna gain pattern projected onto Z = 0 be denoted 
G(x). We assume the sea surface z = t(x) to be a ho
mogeneous, random process in x with correlation length 
scales (dominant wavelengths and crest lengths) small 
compared to the antenna footprint dimensions. (Note 
that the explicit time dependence of t is of no concern 
in the present application, and so it is ignored.) Let the 
power envelope of a short pulse transmitted at t = 0 
be approximated by the Dirac impulse function o(t). The 
power W(t) backscattered to the receiver from the sea 
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Figure 1-ROWS measurement geometry. Short transmitted 
pulses are approximated by the impulse function 0, The broad 
electromagnetic wavefront on the surface acts to resolve sur
face waves with wave vectors k lying in the plane of in
cidence. 

surface is given by a form of the radar range equation 
appropriate to extended, noncoherent targets: 3 

Here, A is the electromagnetic wavelength, c is the speed 
of light, and 11(X,Z) is the reflectivity density per unit vol
ume dx dz of the region surrounding the vertically dis
tributed sea surface. (In Eq. 1 as well as in the following, 
the look angle dependence of W, 11, and other quanti
ties will be understood.) According to geometrical optics, 
if shadowing and mUltiple scattering are negligible (as 
is the case in near-nadir microwave backscatter, () ::s 15 
degrees), then 11 can be expressed as 

11(X, Z) = p7r sec-l () o[ "V t(x) - s] o[t(x) - z] , (2) 
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where p is the Fresnel reflectivity for (locally) normal 
incidence, V's = (sx,Sy) is the surface wave slope, and 
s is the specular slope, 

s = (V' s)sp = tan 0 (cos ¢,sin ¢) . 

The correctness of Eq. 2 is adduced by the more familiar 
relationships that follow from it. From the sifting prop
erty of the delta function and the definition of ensem
ble averaging, it follows that the mean reflectivity density 
is given by 

~(z) ~ (~(x,z) ~ J ~ (x,z ) P o,.r ( V' I, ll dV' 1 dl 

= p7r sec 4 0 P v\,\ (s, z ) , (3) 

where < ) denotes ensemble average and P ( ) is the 
joint probability density function of surface height and 
slope (cf. Jackson4). The conventional surface cross 
section per unit horizontal area (J0 is given by . 

,,0 ~ J ~ (z ) dz = p7r sec' 8 p or es) . (4) 

The cross section of an isolated specular point (Jsp is 
given by 

(Jsp = r YJ (x,z ) dx dz 1P f .. lx~ 

= p7r /K / ; ' , (5) 

where K = [sxx Syy - t >;y 2]1[1 + (V'S)2]2 is the Gauss
ian curvature. 5 

If the range, r, to the surface is large compared to 
the antenna footprint dimensions, it can be removed 
from the integration. Further, for angles of incidence 
removed from nadir, wavefront sphericity can be ignored 
and the incident wave treated as a plane wave (see 
Jackson ' for a treatment of sphericity effects). For 
notational convenience, let x lie in the plane of incidence 
and let 

r [ = ctf2, 

x[ = r [ fsin 0, 

and 

r = r[ + x sin 0 - z cos 0 . 

Then the backscattered power as a function of surface 
range, x, becomes 

W(x,) = cl Sex, - x + z cot 8) C ' (x) 

x YJ (x, z ) dx dz , 
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(6) 

where C = ;\2/(47r) 3r4 . Since YJ is concentrated about 
z = 0, it follows that the average back scattered power 
envelope is 

W(x, ) = c ,,0 J c' (x"y ) dy . (7) 

One may consider the spectrum of back scattered power 
as seen through the gain pattern; or one can normalize 
the received power versus range by the average power 
envelope prior to spectrum analysis, in which case one 
is free to rewindow the data as desired (assuming one 
has digitally sampled the received power). The reflec
tivity modulation m (x,¢) as a function of surface range 
for a given antenna azimuth is defined by 

where the normalization is carried out between some 
prescribed power points in the average power envelope, 
say, covering an interval Lx . If Lx is large compared to 
the water wavelength (or correlation scale of the waves), 
the precise value of Lx is immaterial. The range reflec
tivity modulation spectrum may be defined as 

P", (k,q, ) = (27rL,) - I ( I L m (x"q, ) 

2 

X exp( -ikx, ) dx, I ) (9) 

where k = 2 (27rf/ c) sin 0 is the surface wavenumber and 
f is the detected (video) modulation frequency. Assum
ing a separable gain pattern, G(x) = GAx) Gy(y), and 
assuming interchangeability of ensemble averaging and 
integration operations, one has 

x A y (.6y ) exp[ -ik(.6x - .6z cot 0)] 

x J dzf " ("'x;z, z +~) , (10) 

where A y(.6y ) = fG} (y ) G} (y + .6y ) dy is the con
volved lateral gain pattern , .6x = x2 

- x ' = (.6x,.6y ) 
is the separation or lag vector in the horizontal between 
the two points x ' and x2 with the associated vertical 
separation .6z = Z2 - z' , and where the autocovari
ance function of reflectivity density, 
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From Eqs. 2 and 3 and from the definition of an en
semble average, one has 

where p( ) is the joint probability density function of 
heights and specular slopes at the two horizontal points 
x I and X 2 separated by the lag vector Llx. Assuming, 
for example, a Gaussian gain pattern, Gy = exp[ - Y2 
(y/ L y)2], that is broad compared to the lateral correla
tion scale of the waves, kLy » 1, then we may take 
A y :::::: A y(O); letting the surface wave vector 

k = k(cos ¢,sin ¢) 

then Eq. 10 may be written, for arbitrary orientation of 
the reference axes, as 

Pm (k) = (..;z:;/Ly )· (211") -2 i exp( -/k·.:lx) 

X 2 (k;LlX) dLlx , 

where 

2(k;LlX) i i exp(ik cot 0 .:lz) 

X f l)l) (LlX;Z,Z+Llz) dz dLlz . (12) 

DISCUSSION 

The solution obtained here agrees with that given ear
lier by Jackson. I The present result was derived from 
a time domain representation of the backscattered power 
(link equation) using geometrical optics, while the origi
nal solution was derived in the frequency domain as a 
fourth moment of the surface scattering transfer func
tion using physical optics and proceeding to the high
frequency geometrical optics limit. While the present re
sult is not new, its derivation is at least perspicuous, and 
the physical meaning of the result should be clear (Fig. 
2). The result can be viewed as the three-dimensional 
Fourier transform of the nonstationary, height-depen
dent reflectivity autocovariance function averaged over 
the vertical. Thus, if we let K = (k,k 3

) = (k, - k cot 
(J) and R = (x, z) = (x,R 3

), then Pm can be expressed 
as 

(211") - ]/2 Ly - l I d.:lR exp ( -IX ·.:lR) 

x i dR ]r " (.:lR;R ] ). 

We note that in a strict mathematical sense, the solu
tion does not exist since the joint probability density 
function has a first-order singularity at zero lag. This 
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Figure 2-Radar impulses at two successive times striking 
the sea surface, illustrating the confounding of the horizon
tal coordinate x with the vertical coordinate :: that occurs 
when the nadir angle e is small or when the large waves are 
very steep. 

singularity is due to the point source approximation that 
is implicit in the delta function formulation. In the case 
of a point source, the cross ection of a specular point 
is proportional to the reciprocal of Gaussian curvature 
(Eq. 5); as shown by Longuet-Higgins, 6 the reciprocal 
Gaussian curvature has unbounded variance, and so the 
variance of specularly reflected power is also unbound
ed. To eliminate the singularity, one must introduce a 
finite window function for the surface slopes. 7 

The scattering solution (Eq. 12) can also be expressed 
in terms of the characteristic function of the joint prob
ability density function. This alternative solution form 
is better suited to an expansion in terms of the surface 
height and slope statistics (covariances and higher order 
moments) in both the Gaussian sea case and the non
linear (weakly non-Gaussian) sea case according to 
Longuet-Higgins' theory. 8 Under the appropriate con
ditions, namely, that (1) the sea is app~oximately Gauss
ian, (2) the dominant wave slope ko (f2) Y2 (where ko is 
the dominant wavenumber) is small compared to the 
root-mean-square wave slope [(\7 S)2] Y2, and (3) the in
cidence angle is neither too large nor too small, i.e., (J 

:::::: root-mean-square slope:::::: 10 degees (typically), the 
solution can be expanded asymptotically to yield 1 

Pm (k) = (fulLy ) exp( -k2 cot 2(Jf2 ) 

X [(cot (J - dlnplds) 2 k 2 F(k) + ... ] , 
(13 ) 

where d/ ds is the directional derivative (in the direction 
of s), p = p" s(s) is the slope probability density func-
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tion, and F(k) is the directional height spectrum. The 
leading term in Eq. 13 (which can be shown to corre
spond to a simpler linear tilt model of the reflectivity 
modulation) has been used successfully to infer direction
al height spectra from high-altitude, Ku-band aircraft 
data (see the companion paper, "The Radar Ocean
Wave Spectrometer," in this issue; note that, to be con
sistent with the neglect of the higher order terms in Eq. 
13, the exponential term in Eq. 13 is, as a rule, also 
neglected). While the linear approximation provides a 
fairly accurate working model, future work aimed at 
more precise and accurate measurements of surface-wave 
directional spectra (e.g., from satellite platforms such 
as Spectrasat) may have to consider the full scattering 
solution and the inverse problem it poses. 
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