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On the Singular Nature of the Second-Order Peaks
in HF Radar Sea Echo

Dmitry V. Ivonin, Victor I. Shrira, and Pierre Broche

Abstract—Electromagnetic (EM) scattering from the sea surface
concerned with second-order Doppler spectra for finite-length
pulses is theoretically analyzed in the scattering regime typical
of, but not confined to, high-frequency (HF) radars. The Doppler
spectra of the second-order cross section consist of three different
parts: continuum and two pairs of peaks—the second harmonic
and corner reflection peaks. This paper is the first investigation
of fundamental properties of these peaks from the perspective of
their use in measurements of surface currents. It is shown that
these peaks are of singular nature in the following sense: The
main (singular) contribution is due to particular pairs of waves,
despite the fact that waves of many different wavelengths and
directions contribute to these peaks. This fact opens a possibility to
employ these peaks in remote sensing of vertical profiles of surface
currents. Using the number of waves in the pulse (“the pulse
length”) L � 1 as a large parameter, an asymptotic description
of these peaks is developed. Height, width, and position of the
peaks are explicitly found in terms of L. The peak positions, to the
leading order, do not depend on the pulse length, although a small
explicitly found O(L�1) shift has to be taken into account for the
corner reflection peaks. The heights are� lnL and� L1=2 for the
second harmonic and corner reflection peaks, respectively. The
results open the way for wider use of the second-order peaks for
probing surface currents.

Index Terms—Corner reflection peak, electromagnetic (EM)
scattering from sea surface, pulsed high-frequency (HF) radars,
remote sensing of currents, second harmonic peak, vertical shear.

I. INTRODUCTION

HIGH-FREQUENCY (HF) radar devices are strengthening
their position as indispensable tools in monitoring of the

sea surface. In particular, the sea-echo Doppler spectra of HF
radars are routinely used for measurements of sea waveheights
and surface currents, while the search continues for ways of
remote sensing of other aspects of air–sea interaction (e.g.,
[1]–[3]). The theoretical framework, upon which the use of HF
radars is based, was developed more than three decades ago
and is totally adequate for their present way of use. However,
for finding novel ways of using the same devices, the questions
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rooted in theory have to be revisited and addressed. This paper
investigates one such question prompted by the idea of tempting
possibility of more “efficient” use of the existing devices.

Following the pioneering work by Crombie [4], who observed
and identified the main features of sea-echo Doppler spectra, the
theoretical foundations of HF remote sensing were laid down
by Weber and Barrick [5], [6] and Lipa and Barrick [7], where a
systematic asymptotic weakly nonlinear theoretical formulation
has been developed. In particular, it describes the HF sea-echo
Doppler spectrum due to an incident monochromatic wave in
terms of the ocean wave spectrum and the surface current ve-
locity [8]. Walsh and Gill [10] systematized and extended Bar-
rick’s results to bistatic applications and to finite length of the
emitted electromagnetic (EM) pulse.

The resulting understanding of the observed sea echoes is
that the first-order Doppler spectrum explains the two highest
peaks in the spectrum as manifestations of Bragg scattering
and that the second-order Doppler spectrum describes the sur-
rounding continuum and the two pairs of smaller peaks, called
the second harmonic peaks and the corner reflection peaks, re-
spectively. Since the first-order peaks result from scattering by
surface gravity waves of specific wavelength and direction (the
Bragg waves), it is straightforward to estimate velocity of sur-
face current employing the known dispersion relation. The dis-
crepancy between the observed frequency of the Bragg lines and
the linear dispersion relation for resonant surface gravity waves
is attributed to the Doppler shift of the frequency of resonant
waves due to the presence of surface shear current. The shift
is proportional to an integral over depth of the surface current
with an exponential weighting function specified by the radar
frequency. Thus, the prevailing way of using HF radars for mea-
surements of surface currents enables one to measure just a cer-
tain depth averaged current: an integral with a specific weighting
function.

The possibility to utilize also the second-order (second har-
monic and corner reflection) peaks for measuring the current ve-
locity in a similar manner hinges on whether these second-order
peaks can be deterministically linked to some particular combi-
nations of wave Fourier components. If the answer is positive,
then, since the corresponding Doppler shifts of these compo-
nents depend both on their wave vectors and the vertical struc-
ture of the surface currents, these shifts could be used for re-
mote sensing of the vertical structure of the surface currents.
In the context of probing the currents, the second fundamental
open question is whether there is no bias in the positions of these
peaks. The questions are vital for use/nonuse of the peaks, and,
therefore, are of true practical importance.

The second-order Doppler spectrum at each frequency is a re-
sult of contributions of a continuum of waves of different lengths
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and directions. At the face of it, this fact excludes a possibility to
link the second-order peaks to specific wave numbers. However,
and this is the main point of this paper, we show that the con-
tributions of particular wave components to the second-order
Doppler spectrum are singular, i.e., their contributions to the
echo far exceed those due to other waves. More specifically, we
show that the second harmonic peaks are primarily due to the
second harmonic of the water wave of wavelength twice that
of the Bragg wave and propagating parallel to the radar beam,
while the corner reflection peaks are due to a pair of oblique
waves propagating at angles to the radar beam and having
the length equal to that of the square root of twice the Bragg res-
onant wave.

Moreover, we also demonstrate that the bias of their positions
due to the slope of the continuum is small: It is either negli-
gible (as for the second harmonic peaks) or easily taken into
account via a simple explicit formula (as it is the case for the
corner reflection peaks). Thus, indeed, the second-order peaks
can be used for measurements of the vertical structure of surface
currents, which has been recently confirmed experimentally by
Shrira et al. [11] and Ivonin et al. [12]. The additional informa-
tion provided by the second-order peaks enables one to find two
extra integrals of surface current with different weighting func-
tions, which allows one to estimate the current vertical profile.

Although the elucidation of the nature of these peaks is the
central point of this paper, the bulk of the paper is concerned
with development of their analytical description for the situa-
tion of pulsed incident EM wave. The analytical description of
the peaks is needed to facilitate developments of more efficient
signal processing techniques which in the long run would allow
one to discern the peaks in the field data under less favorable
signal-to-noise ratio (SNR) conditions than is common today.

The work is organized as follows. In Section II, we give the
mathematical formulation of the problem. In Section III, the in-
tegrals are evaluated asymptotically, making use of as a large
parameter, and explicit analytical expressions for the peak pa-
rameters are presented. In Section IV, we summarize the results
and discuss the perspectives, context, and open questions. The
details of the derivation are given in Appendices A–C.

II. SECOND-ORDER CROSS SECTION

A. Classical Picture and Its Shortcomings

A typical radar echo spectrum in the HF or very high-fre-
quency (VHF) range consists of a continuum and a number of
peaks imbedded into it, as illustrated in Fig. 1. Such spectra
are well understood and first we highlight the main points of
the established picture. The two highest peaks of the spectrum
are due to the first-order scattering by the “Bragg waves”: res-
onantly selected specific spectral components of the wind wave
field, which for typical HF radar applications at low-grazing
angles have the wavelength close to one-half the radar wave-
length. These waves can move both towards and away from the
radar; in the absence of currents, the peaks are located at ,
where is the frequency of “Bragg waves”
in hertz ( is the gravitational acceleration and is the radar
wave number). The presence of currents shifts the positions of
the peaks proportionally to the projection of the current on the

Fig. 1. Example of typical sea-echo power spectrum. The frequency axis is in
units of the Bragg frequency f =

p
2gk =(2�); the dashed vertical lines

mark the unperturbed by currents positions of the first-order peaks at �1, the
second harmonic peaks at�

p
2, and the corner reflection peaks at�2 . U ,

U , and U are respective peak displacements (in f ) due to the presence of
the current.

corresponding direction and, hence, creates a straightforward
way of measuring the currents, since their heights are two orders
of magnitude greater than the heights of surrounding continuum
and other peaks.

The continuum and other peaks are primarily due to second-
order scattering, which can be viewed as a result of the sum-
mation over all “elementary” consequent scatterings from two
wave systems with wave vectors and , satisfying the Bragg
resonance condition

(1)

( is the Bragg wave vector and is the wave vector
of the incident EM wave). The general solution automatically
satisfying the resonance condition (1) is provided by a para-
metric representation of vectors in terms of two scalars
and (below, we will consider the case , since the
case can be considered absolutely in a similar
manner)

(2)

where is introduced to be parallel to the radar beam and di-
rected against it, with being perpendicular.

The Doppler frequency of backscattered echo unperturbed by
currents is specified by the frequency-resonance condition (see
Fig. 2)

(3)

For a monochromatic incident EM wave , the Doppler
spectrum of the second-order cross section is given by
Barrick’s equation [6]

(4)
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Fig. 2. Contours of constant Doppler frequency ! versus wave numbers p and
q (the p-axis is against the beam direction), for a pair of water wave vectors k
and k producing second-order backscattering, for j!j > ! . The contours
of constant ! for k and k satisfying (1) are specified by (3) and shown in
thin lines. The horizontal bold arrow at the bottom represents the Bragg wave
vector. The dashed curve indicates the EM “corner reflection” condition, where
k and k are perpendicular and satisfy condition (1). Bold arrows show the
combination of k and k : i) for the singular situation at j!j = 2 ! in (4),
where the two closed contours break apart; and ii) the combination k and k ,
where the “corner reflection” circle is tangent to the Doppler frequency contour
j!j = 2 ! .

where is the wave energy spectrum, is the Bragg
wave number, and is the coupling coefficient.
Here, and are the hydrodynamic and EM components
given by

where is the Bragg frequency in radians per
second, and is the average normalized impedance at
the interface [7]. Throughout the paper, we will assume

, which is a typical value of the
impedance for a rough sea [9].

The constraints imposed by the resonance conditions (1) and
delta function in (3) specify contours of integration in the
plane (see Fig. 2), which determine all possible pairs of and

contributing to second-order scattering at any fixed Doppler
frequency . The contours are the so-called Phillips’
eights [13]. It is easy to see that many (continuum of) combi-
nations of water waves of different lengths and directions con-
tribute to the second-order scattering at the same Doppler fre-
quency (see also Fig. 2). Hence, the responses of many different
waves are mixed in the second-order echo and, a priori, it seems
impossible to distinguish a contribution due to any particular
spectral component.

Barrick’s formula (4) describes the behavior of the second-
order continuum and positions of the secondary peaks reason-
ably well. However, it fails (see Section II-B) to describe them
quantitatively because of a singularity of logarithmic type at the
second harmonic peak and gives wrong results for the corner
reflection peak. Of course, the second-order cross section could
not have a singularity. The divergence of the second-order term
in the asymptotic expansion by Weber and Barrick [5] just im-
plies that to obtain a regular solution, a different expansion em-
ploying fractional powers of the small parameter (ratio of the
waveheight to the wavelength) is needed near the second har-
monic. However, such an expansion would be of limited interest,
since in reality there are other factors which regularize the inte-
gral without a necessity to employ a more elaborate perturbation
scheme. The main such factors are the finite spectral width of the
impulse emitted by the radar and the finite aperture of the an-
tennae, each of them independently leads to a finite cross section
near . We focus on investigating just the first factor,
since it proves to be sufficient for answering the key questions
we are interested in, while the effect of finite aperture could be
treated in a similar manner.

B. Logarithmic Singularity

As we discussed previously, Barrick’s integral (4) has a sin-
gularity at near the saddle point , where
the integration contours break apart. Let us split the integral into
two parts: 1) integration over an –vicinity of the origin ( );
and 2) integration over the rest of the plane

(5)

Expanding the argument of the -function near the origin, we
find for the integral

The coordinate transformation

and integration over yields

The integral diverges because of a nonintegrable singu-
larity of logarithmic type, while the integral over the rest of
the plane, , is finite. The second harmonic peak appears
entirely due to the neighborhood of the origin. Thus, cor-
responds to the second harmonic peak, while is naturally
linked with the continuum. Roughly speaking, the former pro-
duces the peak, while the latter yields the base of the peak. In
reality, the peak is finite as well as is the neighborhood which
contributes to it. Later, we will obtain a generalization of Bar-
rick’s formula with the -function corresponding to an idealized
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monochromatic radio wave replaced by the “smeared -func-
tion” resulting from the finite-length radar pulse. The integra-
tion path contours prescribed by the -function are replaced by
the strips of width specified by the nondimensional pulse length

(defined in Section II-C). The asymptotic analysis carried out
later will provide the height, width of the peak, and the shift of
its position due to continuum, all expressed in terms of the pulse
length.

C. Finite Pulse Length

Following [10], assume the excitation current to be modelled
as a pulsed sinusoid:

where is the peak current, is the operational radian fre-
quency of the radar, is the pulse duration, and is the
Heaviside function. Then, the second-order cross section (we
confine our attention to the monostatic case only) is expressed
as

(6)

where the same notations as in (4) are kept and is the angle
between the vectors and (Fig. 2). The parameter

is the number of Bragg waves in the “sea patch,” or,
equivalently, the number of radio waves in the radar pulse. Equa-
tion (6) derived by Walsh and Gill in [10] differs from Barrick’s
equation by an additional convolution with the square of the
Dirichlet function, which we will denote as

(7)

The Dirichlet function is the Fourier transform of a rectangular
radar pulse. The convolution with its square implies that the
condition of the exact resonance type on the combination

disappears and is replaced by a somewhat milder condition.
The global maximum of the kernel still corresponds to the Bragg
resonance , while the other maxima correspond to
the sidelobes , where .

The presence of the -function in the integral (6) suggests
that one integration can be eliminated. Although the argument
of the -function in (6) is unsuitable for a direct integration over

or , the following trick makes the integration possible. We
introduce a scale factor relating and : . Then,
using the same factor, we introduce two new wave vectors
and similarly linked to and

As a result the integration over in (6) can be replaced by inte-
gration over

(8)

where we used the following relations:

Then, the last integral reduces to a formula similar to Barrick’s
(we will omit the hats)

(9)

where a nondimensional scale factor , which appeared due to
the -function constraint, is given by

The squared Dirichlet function replaces here the -func-
tion of Barrick’s integral; it acts as a smeared delta function
and prescribes the integration along strips instead of contours
(cf. Figs. 2 and 3). The assumed large parameter , the number
of Bragg waves inside the sea patch, determines also the strip
width which obviously decreases with . The general behavior
of and the shape of the integration domain at
(confined in the chosen example by isolines )
are illustrated for 200 in Fig. 3. This domain consists of a
spot of width and two strips of width .

Now, we can indeed split the integration domain into two
( and ) and proceed with the detailed analysis of the in-
tegral which took the form similar to Barrick’s formula (4) with
the only difference that the -function is replaced by the squared
Dirichlet function (7).

III. EVALUATION OF THE CROSS-SECTION INTEGRAL

A. Simplification of Basic Formulas

In this section, starting with the modified Barrick’s formula
(9), we deduce explicit analytic formulas for the continuum, the
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Fig. 3. (a) Square of the Dirichlet function s(x). (b) Integration domain (the strips) at � = 2 prescribed by the function s[�L(� � 1)] for L = 200. The
plotted domain is confined by the condition s >0.1. The light gray region is the O(L ) strip where integral (4) is valid. The dark gray spot of width O(L )
near the origin indicates the saddle-point domain, where special consideration is required.

second-order peak, and the corner reflection peak. We will con-
sider the domain only, which corresponds to the choice

; hence, the indexes and will be omitted. The
case with is treated similarly.

We will use for calculations a more convenient normalized
representation of the modified Barrick’s formula (9), the same
as in [7]. In particular, for wave vectors

Correspondingly

and

Frequencies are normalized by the Bragg frequency ,
while the coupling coefficient by the Bragg wave number

. The wind wave spatial spectrum and the scale factor
become

where

Finally, the second-order cross section (9) can be cast in the
following nondimensional form:

(10)

where

(11)

Making use of the symmetry of the integrand with respect to the
–axis, we integrate over the right half plane only (see Fig. 4),

which is specified by the limits

and multiply the result by a factor of two.

B. Continuum

In this section, we focus upon the base of the second-order
spectrum which we refer to as “the continuum.”

Since the parameter is assumed to be large, the squared
Dirichlet function is rapidly oscillating and the integral can be
evaluated employing standard asymptotic techniques, of which
the simplest is the “stationary phase method” (e.g., [14]). Ex-
panding in (10) the argument of the Dirichlet function near a
stationary point in the integrand, we get

(12)
where is implicitly specified by the equation

, which is equivalent to

(13)

When the integration domain does not contain the origin, that
is, for frequencies , the first derivative does not
vanish and the saddle-point evaluation gives

(14)
The limits are determined by the condition of intersection of
the contour with the axis

The derivative should be evaluated at , which
yields

(15)

As one might expect, the main term in (14) exactly coincides
with the cross-section formula by Lipa and Barrick [7]. This
formula is valid for all frequencies except when is sufficiently
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Fig. 4. Integration domains (light gray color) which contribute to the
continuum.

close to . We outline the limitations on the use of Barrick’s
formula (14).

The necessary condition for validity of the asymptotic expan-
sion (14) requires

which results in the constraint . The derivative
tends to zero as and . The expansion

about this point yields the results dependent on the direction
from which the point is approached

It is easy to see that the asymptotic expansion (14) is valid for
frequencies or and
has the accuracy

.

Thus, we conclude that the asymptotic formula for the second-
order continuum, which we derived for the finite-length pulses,
shows that to the leading order in the pulse length the height
of the continuum does not depend on , while the -dependent
terms are small.

Strictly speaking, we should have carried out summation
over all stationary points corresponding to local maxima of the
squared Dirichlet function; however, the contribution of the
second maximum is less than 5% of the first one and, therefore,
in the context of analysis of the already small second-order
peaks, we can neglect all stationary points except the main one.

C. Second Harmonic Peak

The “second-harmonic” peak appears at the nondimensional
Doppler frequency , where the integration domain
turns from the ellipse-like figures into the “eight” (see Fig. 4).
At the center of the “eight,” the first derivative in (12)
vanishes and a saddle-point appears.

To evaluate the integral by employing asymptotic expansions,
first split the integration domain in into two parts: 1)

, where ; and 2)

. Correspondingly, we introduce two integrals
over the region 1) and over the region 2)

(16)

The integrals and can be viewed, respectively, as the
inner and outer expansions of the cross-section formula (10).
The inner solution will be obtained in the form of asymp-
totic expansion with respect to small parameter , while
the outer expansion will be expressed in terms of power se-
ries in . After matching the outer and inner expansions,
the value of drops out of the sum of and and we get
the analytical representation of the integral we are looking for

(17)

where is a function of only the fast variable

while depends on the slow variable . Detailed deriva-
tion of and is given in Appendices A1 and A2, respec-
tively). Here, we present just the final results for the fast and
slow parts, respectively

(18)

(19)

where is the value of specified by (11) taken in the center
of the “eight” [see also (34)], is the integral cosine, and
is a fixed constant ( 1.14473).

Formulas (17)–(19) also enable us to estimate the frequency
shift (which we denote as and for the slow and fast vari-
ables, respectively) of the maximum of the second harmonic
peak from its “right” value due to the effect of the con-
tinuum. The shift is determined from the condition

(20)
Expanding the functions with respect to small and , we
find

(21)

Here, we used the fact that .
Thus, the shift being is negligibly small for most

conceivable applications.

D. Corner Reflection Peak

The corner reflection peak appears due to a specific condition
of EM backscattering. Recall that the nondimensional coupling
coefficient in the cross-section formula (10) consists of two
parts: the hydrodynamic component , and the EM compo-
nent ; i.e., . In the polar coordinates ,
the nondimensional EM coefficient acquires the form
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Fig. 5. Main contributions to the second-order cross section ~� due to the EM
coefficient ~� . The circle of radius R = (1=2) indicates the position of
the maximum of ~� , while the encircled insertion in the top-right corner il-
lustrates the fact that the amplitude of the maximum and its width are j ~� j
and j ~� j , respectively. The width of the constant frequency contours and
the width of the corner reflection peak zone are shown to be scaled as L and
L .

The Cartesian coordinates are expressed in terms of
as

Since the impedance is a small nondimensional
constant (we use for our estimates
given in [7]), it scales the width and height

of a sharp peak of situated on
the circle of radius (see Fig. 5 and its upper right
insert).

This peak strongly affects the cross section near the frequency
. The mechanism is illustrated in Fig. 5. The second-

order cross section is produced by integration along the strip
of width . The strip can 1) intersect the circle (region “A”
in Fig. 5), when the Doppler frequency is less then , 2) be
tangent to the circle (region “B”), when the Doppler frequency is
close to , and 3) not intersect the circle, when the Doppler
frequency is greater then (not shown). One can roughly
estimate the corresponding contributions to the echo from the
following simple geometrical considerations.

The contribution due to region “A” equals the area of the
intersection of the contour and the circle times the
value of the function at the intersection , which yields
an value. Since the contour corresponding to frequency
equal to is tangent to the circle, the area of region “B”
equals , while the function height remains the same,

; this results in a contribution. The contours with

and the rest of the contours with produce
contributions to echo.

By means of asymptotic expansions given in detail in Ap-
pendix B, the description of the second-order cross section

provided by (10) can be reduced to a simple closed form
valid near

(22)
Here, the independent variable is expressed through as

(23)

is given by (11)

( is the Euler constant), the small parameter is a
combination of , and

(24)

Functions and are defined as follows:

(25)

where and are the Fresnel cosine and sine integrals, and
(26), shown at the bottom of the page, holds. Here, are the
generalized hypergeometric functions given in Appendix C.

The explicit formula (22) enables us to calculate the true
position of the corner reflection peak. The “ideal” unperturbed
peak position is (or 0 in fast variables), but, in
fact, even in the absence of currents and interference with the
continuum, the position of the maximum of is slightly
shifted. Since for the chosen representative estimate of
( 0.011 0.012) and in the range from 25 to 400, the
position of the maximum varies in the range from 1.01 to

0.97, in terms of , the shift is very close to 1. Using (23),
one can estimate the true position of the corner reflection peak
as

(27)

(26)
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Fig. 6. Second harmonic peak: comparison between the analytical results given by ~� from (18) and ~� from (19), and numerical calculation of ~� and ~� from
(16), calculations (L = 200, k = 2k =5, C is a normalization constant). (a) r = 0.1 and C = 0.0495. (b) r = 0.2 and C = 0.0368.

With the increase of our large parameter , the corner reflection
peak gets closer to its “ideal” position , but the shift has to
be taken into account for moderate lengths of the pulse.

E. Numerical Verification of Analytical Results

In this section, we carry out a verification of the analytical for-
mulas for the second harmonic peaks (17) and the corner reflec-
tion peaks (22) by numerical calculations of the cross-section
integral (10). We choose for our numerical test the following
model of the ocean wave spectrum

(28)

where

is the Pierson–Moskowitz nondirectional spectrum with the
falloff of saturated waves being specified by a falloff wave
number . The directional factor was taken to be

The key role of the vicinity of the origin in the formation of
the second harmonic peak is illustrated in Fig. 6(a) and (b),
where the results of analytical calculations of the fast-varying
cross section via (18), and the slow-varying cross section

via (19), are depicted. The part describes the peak itself,
while describes its slow-varying base. The analytical results
are compared with numerical calculations of the constituent in-
tegrals and based upon (16) and (10), inside and out-
side of , respectively. A very good agreement between ana-
lytical and numerical results is apparent, especially in Fig. 6(b).
According to the results of previous sections the characteristic
size of the vicinity of the origin producing the second harmonic
peak is . An example with 200 (
0.07) was tested with [Fig. 6(a)] and

[Fig. 6(b)]. The choice
confined a too small vicinity of the origin and exhibited

small-scale deviations from the anticipated slow-varying be-
havior, while the choice provided a much cleaner
split of the integral (16) into the fast- and slow-varying parts. We
choose the characteristic scale of the area in the origin respon-
sible for the peak by specifying the condition . In
physical variables using the relation , one gets

in the radar beam direction and in
the cross-beam direction.

The dependence of the second harmonic peak height on the
normalized radar pulse length is presented in Fig. 7(a). The
parameter is varying from 50 to 800. The greater the , the
higher and more discernible the peak becomes. We note that the
power scale in Figs. 6–8 is linear, not logarithmic in decibels
as is more common, since in the logarithmic scale the peaks
are often poorly pronounced. The analytical results given by
(17)–(19) are plotted in solid curves, while the numerical cal-
culations based upon (10) are presented in dashed curves. Thus,
both Fig. 7, and upper curves of Fig. 6 demonstrate a nearly per-
fect coincidence of the closed-form solution (17)–(19) with the
corresponding numerical results.

The dependence of the second harmonic peak height on the
falloff wave number is shown in Fig. 7(b). We consider the
values , , and , which, for example, for
measurements by a 50-MHz radar corresponds to 30-, 15-, and
9-m wavelength of the dominant waves in the wind wave spec-
trum. As the length of the falloff waves increases (smaller )
the base (continuum) also increases making the peak itself less
discernible, because the ratio of the peak height to the height of
the continuum decreases. The height-dependence of the corner
reflection peak on the normalized radar pulse length is pre-
sented in Fig. 8(a). The parameter is varying from 50 to 400.
The greater is, the higher and more discernible is the peak.
Analytical results are shown in solid curves (22)–(26) while the
numerical integration of (10) is plotted in dashed lines. As it is
easy to see, there is a very good agreement between the analyt-
ical and numerical results. The discrepancy does not exceed 5%
and is due to neglecting the terms of in (22). The figure
also confirms that, in full accordance with (27), as grows, the
peak maximum approaches its “ideal” position . It
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Fig. 7. Second harmonic peak: comparison between the analytical results given by (17)–(19) and numerical calculations based on (16). (a) k = 2k =5 and L =
(50, 100, 200, 400, 800). (b) L = 200 and k = (2k =10; 2k =5; 2k =3).

Fig. 8. Corner reflection peak. (a) Comparison of analytical results given by (22) and numerical calculations based upon (10), k = 2k =5, L = (50, 100,
200, 400). (b) Role of the vicinity of the corner reflection region in forming the peak, ~� is calculated from (10) for p + 2(q � 1=2) < r , and ~� is for
p + 2(q � 1=2) > r (L = 200 and r = 0.1).

is also worth noting that (22), on the one hand, catches the peak
“fast”-frequency behavior (23) and, on the other hand, matches
perfectly with the “slow”-frequency region far away from the
peak.

For the corner reflection peaks, the role of the vicinity of
the corner reflection region in forming the peak is illustrated
in Fig. 8(b). The results of numerical calculations of (10) inside
and outside the corner reflection region
are shown; the appropriate curves are marked as and .
It is again demonstrated that integration over the corner reflec-
tion region produces the peak itself, while the rest of the plane
provides the continuum. The rough estimate of the linear sizes
of the corner reflection region forming the peak
proves to be quite good and can be recommended for use for a
wide range of parameters.

IV. CONCLUDING REMARKS

We revisited the classical problem of EM scattering by the
sea surface in the Bragg regime from the second-order Doppler
spectra perspective. The Doppler spectra of the second-order

cross section has been long known to consist of the three dif-
ferent parts: continuum and two distinct pairs of peaks, namely,
the second harmonics and corner reflection pairs of peaks. This
paper is the first one focussed primarily upon the properties of
these peaks, qualitative and quantitative. First, we briefly sum-
marize the main results. The key finding is in revealing the sin-
gular nature of these peaks: The main (singular) contribution is
shown to be due to particular pairs of waves and their imme-
diate neighbors, although waves of many different wavelengths
and directions do contribute to these peaks. This fact opens the
principal possibility to employ these peaks in remote sensing of
vertical profiles of surface currents, which was the prime moti-
vation of this paper.

However, at the next level, we encounter another group of
major questions, which have to be clarified before conceiving
any practical applications. The questions are concerned with the
manifestations of these peaks in a more realistic problem set-
ting, which necessarily includes the EM pulses of finite length
and beam width. The basic question is how sensitive are the po-
sitions of these peaks with respect to external parameters of the
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EM pulses. Only if the positions are robust, then the questions
on the dependence of the peak parameters on all sorts of factors
become also of importance.

We confined our analysis to clarifying the previous questions
for the EM pulses of finite duration, neglecting the effects of fi-
nite aperture. We expect the finite aperture effects to be qual-
itatively similar to those due to the finite duration. Simulta-
neous analysis of two factors, although certainly doable, would
have been too involved. Under these assumptions employing an
asymptotic expansions based upon smallness of , we found
the Doppler spectra of the second-order cross section, including
the shape and parameters of the peaks explicitly expressed in
terms of and the normalized water impedance .

The second-order continuum, the smooth part of the spec-
trum, is due to ocean waves of various lengths and directions.
As expected, the height of the continuum is not sensitive to
and is of the order of unity .

The second harmonic peak arises due to the first-order
Bragg scatter from the second harmonics of those components
of ocean wave nonlinear field which are close to the Bragg
wave: . Hence, for long radar impulses
with , the peak is linked to the particular scatter from
the second harmonic. The second-order continuum inevitably
shifts the peak position; and the answer to the principal ques-
tion—whether this shift should be taken into account, proved
to be negative: The shift is and can be neglected in
most situations. The height of the second harmonic peak (due to
the smeared “singularity”) weakly depends on the pulse length

while its width is . The examples in Fig. 7 show that
the height should be measured from the base given by the con-
tinuum, but not from the base of the spectrum, which has prac-
tical implications for the commonly used “centroid technique”
for finding the position of peaks. (In this technique one deter-
mines the peak center by the 3-dB criterion.)

The corner reflection peak arises due to the second-order EM
scatter from two components of first-order ocean wave field,
which we denote as , with the wavelengths and di-
rections to the radar beam. The immediate vicinity of
these components contributing to the peak is specified by the
inequality . The position of the peak is
always shifted towards the lower frequencies, with the magni-
tude of the shift given by an expression of ultimate simplicity:

. Although the shift is relatively small, it has to be
taken into account in processing the data for measuring currents
in case of not too long pulses.

The height of the corner reflection peak slowly increases with
the length of the pulse

while its width is inversely proportional to the pulse length
. Strong dependence of the peak height on the salinity

sensitive sea surface impedance , which might be potentially
used for spotting lenses of fresh water or marking the boundaries
of river plumes, is also worth noting.

The derived explicit asymptotic formulas for the second-
order spectra have been verified numerically. Nearly perfect
agreement was found for a wide range of tested examples.
Hence, once again, we have confirmed that the second-order
peaks arise due to singular contributions of particular spectral
components of the ocean wave field and that the derived ana-
lytic formulas can be recommended for practical use. Certainly,
in most of practical HF radar applications, both the finite length
of the pulse and the finite aperture of the radar should be
taken into account. However, very often one of those factors is
dominant; then, we either come back to the situation we just
analyzed, or, to the very similar situation which is qualitatively
the same and can be treated in a similar fashion.

Since the peak positions are firmly linked with the frequen-
cies of these components and the shifts due to the continuum are
either negligible (the second harmonic peak) or could be easily
taken into account using very simple formulas (the corner re-
flection peak), this justifies the use of these peaks for measuring
the currents in the same manner as the main Bragg lines in the
Doppler spectrum, with the correction for the corner
reflection peak position taken into account.

The derived formulas enable us to quantify some of the
possible systematic errors of measurements by means of the
second-order peaks. A small-scale field experiment aimed at
testing the possibility of measuring the surface current vertical
profile by utilizing the second-order peaks was successful [11],
[12], although now, by taking into account the correction to the
position of the corner reflection peaks, we could have further
increased the accuracy of the radar measurements. We can now
conclude that the theoretical foundation for a method of probing
the surface current shear by ground-based single-frequency HF
radars has been firmly established.

Our paper also paved the way for addressing the key practical
question on when the second-order peaks are visible and can be
used for current measurements. The results imply that the ways
of distinguishing the second-order peaks should be changed. In
particular, the derived expressions for the peaks enable one to
employ more sophisticated data processing algorithms; now, we
know where and how to look for these peaks. Then, the second-
order peaks could be made visible in a wider class of situations
and at worse SNR than is common at present.

Furthermore, it is worth noting that the current analysis can
be extended to EM scattering from the sea surface for bistatic
radars. Although the “bistatic” second-order peaks appear at dif-
ferent positions in the “bistatic” spectrum, their physics is the
same as in the monostatic case.

APPENDIX A
SECOND HARMONIC PEAK

1) Splitting of the Integration Domain: In this appendix,
we provide the somewhat cumbersome details of derivation of
the closed-form analytical description of the “second harmonic”
peak given by (17)–(19). The peak appears at the nondimen-
sional Doppler frequency , when the integration do-
main turns from the ellipse-like figures into the “eight” shown in
Fig. 4. At the center of the “eight,” the first derivative
in (12) becomes zero and a saddle-point appears.
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Fig. 9. Integration domain in the polar coordinates (r; �) at 
 = 2 .

To clarify the situation near the saddle point it is convenient to
rewrite the integral in polar coordinates related with the
nondimensional Cartesian coordinates in a nonstandard
way

(29)

This particular choice of new variables is prompted by a very
simple form that takes in these new coordinates

where is a polynomial of the th order.
Then, the integration domain at takes the form

shown in Fig. 9 and the modified Barrick’s formula (10) for the
second-order cross section reads

(30)

where . The central symmetry property was
used, so that the integral is taken over one fourth of the plane
for from to (see Fig. 9) and multiplied by four.

To evaluate the integral by employing asymptotic expansions,
first split the integration domain in into two parts as follows:
1) from zero to and 2) from to . Correspondingly,
we introduce two integrals and

(31)

The integrals and can be viewed, respectively, as the
inner and outer expansions. The inner solution can be ob-
tained in the form of asymptotic expansion with respect to small
parameter , while the outer solution can be ex-
panded into power series in . After matching the outer
and inner solutions, the value of drops out of the final result

and we get the analytical representation of the
integral we sought.

2) Integration Near the Origin: Let us consider the inner
expansion for in detail. Starting with (30) and simplifying it
by the substitution , we find

(32)

Expanding the argument of the “fast” function in powers of ,
, and , we find

(33)

where the newly introduced variables are and
; the latter is the frequency mismatch

from .
Changing to in (32) and expanding the integrand near the

origin with respect to small parameters and
, we simplify the kernel as follows. Using (29), one has for

(34)

since at because of the central sym-
metry. Then

(35)

Thus, we find

(36)

where .
Integral (36) can be represented as a power series in

where

(37)



762 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 31, NO. 4, OCTOBER 2006

For , the integral can be explicitly expressed in terms of a
generalized hypergeometric function (see Appendix C)

(38)

which, for large values of , has the following asymptotics (see
also Appendix C):

where 0.96351. Then

(39)

For , the values of can be found as follows. Using
the fact that

(40)

we get

Then, the integral (37) becomes

(41)

where only even indices are kept since for odd indices,
. Hence, is an even function of . The in-

tegrals (41) can be expressed via the hypergeometric functions

where

Employing the large asymptotics of this hypergeometric
function (see [15])

(42)

it is straightforward to find that

or, finally, using (39)

(43)

where is the integral cosine function and is a known
constant ( 1.14473), while

0.5772 is the Euler’s constant [15].
3) Integration From to : In this section, we consider

the outer solution near the second harmonic peak
. The contribution to the cross section due to the integration

along the loop is given by the integral (14) [here, we slightly
rewrite integral (14), using the symmetry of and with
respect to ]

(44)
where is specified implicitly by the condition

. The integration region from to zero
was chosen in such a way that it corresponds to the integration
over in (30). The value specifies the boundary of the
saddle-point region (see Fig. 4) where integrals (32) and (44)
should match.

The final aim of this section is to get the outer solution in
the form of an expansion in to match this outer expansion at

with an inner expansion at .
The integral in question (44) diverges when and

. Let us find first the precise type of the singularity.
To this end, we again change the variables and

and solve the saddle-point condition (13)

(45)

at small and . The scaling and
with yields an expansion in powers of

(46)

Similarly, other components of the integrand can be also repre-
sented as expansions in powers in

(47)

(48)

where is the same as in (36).
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Hence, on combining the power expansions (46)–(48) to-
gether, it is easy to see that the integrand behaves as

where and .
Then, the integral in (44) can be represented as a sum of the

singular and regular parts as follows:

(49)

where .
To match with the inner expansion , we express

through using the definition of the new variables (29)

together with

and (46). Then

(50)

and

(51)

where the coefficient is given by

It is easy to see that the expressions for the inner and outer ex-
pansions (43) and (51) contain similar terms which cancel
each other when the final sum (31) is calculated. The final ex-
pression for the cross section near the frequency
is given by (17) with the functions and defined by (18)
and (19) [the latter formulas, given in the main text, slightly
differ from (43) and (51) by the absence of terms].

APPENDIX B
CORNER REFLECTION PEAK

1) First Simplification of the Integral: We recall that ,
the EM component of the nondimensional coupling coefficient

in the cross-section formula (10), has a sharp peak situated at
the circle of radius (see Fig. 5), which leads to the
corner reflection peaks in the cross section near the frequency

. In the polar coordinates takes the
form

The Cartesian coordinates are expressed in terms of
as follows:

where is the nondimensional dielectric impedance of the
sea surface discussed in Section II-A. We recall that since
is very small, it produces a peak of height and
width in sketched in the upper right insert
in Fig. 5.

We rewrite (10) in the polar coordinates

(52)

where

(53)

and

Here, describes the smooth part of the integrand and
is taken from (11).

The next step is expanding the argument about the
saddle point into the Taylor series

(54)

where is the root of

Retaining the first term in (54), we reduce the formula cross
section (52) (with the accuracy ) to

(55)

where . Here, making use of
the symmetry of the integrand with respect to the rotation of the
angle by , we changed the integration limits with respect to

from to and multiplied the result by the
factor of two.

Now, let us consider the integral, first outside the circle
, where we introduce a new coordinate
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and inside the circle, where we introduce a new coordinate

We use the fact that . Then

(56)

where

It is easy to see that in (56) there is a large parameter
(inside ) and small parameters , which we use for
further simplifications. For example, for 100 and
0.011 0.012, we have 0.074. In terms of these vari-
ables, the integrand is a slow function of its arguments

and : and (the latter will
be shown later). Similar behavior holds for . The inte-
grands and should be expanded into series at
the corner reflection region inside the circle
and outside the circle. Parameter specifies the
bounds of the region across the circle and determines
the accuracy ( ) of the asymptotic estimate

(57)

where is given by (11).
First, we will consider the integration over and and ob-

tain the solution in the form of power series in and, then, per-
form the integration over the angle variable .

2) Integration Over Radius: Let us consider the integral

(58)
Using the relations

where “ ” denotes the complex conjugate and

integral can be expressed as the sum of four integrals

where

Now, consider the first integral in a slightly different form

where, recall that is a small
parameter. One more change of variables
in integral results in

where

and

(59)

Similarly, by employing change of variables
in integral , we get

where . Since , function
can be expanded in , then, integrals and can be presented
as a series in

(60)

(61)

where

3) The Leading Order in : Here, we will estimate the
integral to the leading order in . We will not present
the second and the third order terms of the ex-
pansion, because the full details of the calculations and solu-
tions are too lengthy to be presented even in Appendices. More-
over, we found that the leading order solution happened to agree
with the numerics with high accuracy. The assumption
dramatically reduces the calculations without a noticeable lost
of accuracy. Although this assumption holds for the range of
salinity typical of seawater, it is often not adequate for estuaries
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and fresh water basins. The compromise we have chosen is as
follows: Only in this section, we will give the results without
employing this assumption; in the next one, we will presume

.
Let us consider the first item in the sum (60)

Applying a formal Taylor expansion in to the last integral, we
find

(62)

We denote the coefficients at as and consider the even
powers

(63)

where 0.57729 is the Euler constant. The summation over
in (62) results in

(64)

where the function is

(65)

and and are the integral sine and cosine functions
(see, e.g., [15]).

There is no necessity to consider the odd coefficients
since in the sum the corresponding contributions from will
be cancelled by their counterparts in integral containing

. Then, to the zeroth order, integral is

(66)

where in the generic case (i.e., ) is

(67)
4) Integration Over Angle: Although the calculations were

also performed up to the third order in , it proved to be suffi-
cient in evaluating for purposes of this paper to confine
analysis to the leading order in only

(68)
where

and from (67) was simplified using to

The next step is integration over . The variable can be rep-
resented in the form

where

Let us analyze the first term in (68). Let us treat separately the
part that does not depend on , and the part
that does depend on

(69)

We denote the first integral in (69) as

(70)

Performing integration over and summation in (70) similarly
to that just described in Appendix B3, we can express function

in a tractable closed form

(71)

where and are the Fresnel cosine and sine integrals [15].
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The second integral in (69) can be estimated using the as-
sumption

Hence

(72)

The integral with in (68) can be treated similarly

(73)

where is defined as

(74)
can be presented as (75), shown at the bottom of the page,

where are the generalized hypergeometric functions de-
scribed in Appendix C.

Thus, near the corner-reflection frequency , the
second-order cross section can be approximately pre-
sented as

(76)

APPENDIX C
GENERALIZED HYPERGEOMETRIC FUNCTIONS

We use the generalized hypergeometric functions given
in notations by Prudnukov [16] (their definition is similar to that
for the usual hypergeometric functions given in a well-known
handbook [15])

(77)

where

The generalized hypergeometric function
used in Appendices A

and B have a logarithmic asymptotics at large values of the
argument

(78)

Fig. 10. (a) Function F [1=2; 1=2; 3=2;3=2;2;�x ] (solid) and its
asymptote (ln x+C )=x (dashed), C = 0.96351. (b) Discrepancy
F [1=2;1=2; 3=2;3=2;2;�x ]� (ln x+C )=x. (c) Verification of the

behavior of the residual term x ( F [1=2;1=2; 3=2;3=2;2;�x ]�
(ln x+C )=x).

Here, the constant could be derived analytically in terms
of the Gamma functions, we, however, took the easier
way and estimated the constant numerically. We found
that 0.96351 and the corresponding results are pre-
sented in Fig. 10. Function
and its asymptote are shown in Fig. 10(a).
The discrepancy between the function and its asymp-
tote
is shown in Fig. 10(b). Finally, the correctness of the
term is checked in Fig. 10(c), where function

is
plotted. Thus, there is nearly perfect representation of the
function by its asymptotic approximation given by (78).

(75)
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