
A high-order adaptive integration method for wave propagation 
in range-independent fluid-solid media 

Sven Ivansson and Ilkka Karasalo 

Department of Hydroacoustics and $eismology, National Defence Research Establishment, S-172 90 
Sundbyberg, Sweden and Department of Technical Acoustics, Royal Institute of Technology, S-100 44 
Stockholm, Sweden 

(Received 1 March 1991; accepted for publication 1 May 1992) 

Efficient computation of the Hankel-transform integral for the wave field in a laterally 
homogeneous fluid-solid medium is nontrivial, since the integrand may be both oscillating and 
irregularly peaked. We propose a high-order, adaptive integration method suitable for 
integrands with these characteristics. The method combines trapezoidal or Filon sums, 
obtained with several step sizes, with polynomial or Bulirsch-Stoer rational extrapolation to 
increase the order of convergence and to obtain error estimates. This technique is combined 
with adaptive interval halving, maintaining a hierarchy of subintervals, meshes, and function 
values in a stack to eliminate duplicate function evaluations. Computational results from an 
underwater acoustics application are presented. At any level of accuracy, the proposed method 
requires less computational work than nonadaptive trapezoidal or Filon quadrature, the 
difference growing to orders of magnitude as the accuracy increases. 

PACS numbers: 43.30.Bp, 43.30.Ma 

INTRODUCTION 

To date, many algorithms for range-independent media 
using Hankel-transform techniques have been designed, and 
are used routinely as analysis tools in seismo-acoustic wave 
propagation. Among the best known are the propagator ma- 
trix method by Thomson and Haskelll'2 and subsequent re- 
lated methods, 3-5 based on computing the matrizant of the 
system of ODEs after discretizing into horizontal layers with 
constant or linearly varying material parameters. A slightly 
different approach, with recursive updating of a reflection- 
coefficient matrix, was proposed by Kennett. 6 The more re- 
cent "global matrix" algorithm by Schmidt ?'8 discretizes the 
medium in a similar way, but assembles and solves a banded 
system of equations for the particular solutions in the layers, 
much like a finite element method. Conventional finite-ele- 

ment and finite-difference techniques are used in the codes 
for solid media by Alekseev and Mikhailenko, 9 Spudich and 
Ascher, lø and Olson et al. TM 

The performance of any alogorithm based on the Han- 
kel-transform representation, in terms of achieved accuracy 
versus computational effort, is strongly dependent on the 
numerical scheme chosen for computing the transform inte- 
grals. Several techniques are in use, including standard nu- 
merical quadrature using the fixed-step trapezoidal (Ref. 
12, Sec. 7.4) and Filon 13 rules. In the "fast field" method, •4 
the kernel of the Hankel-transform integral is approximated 
by its asymptotic form for large arguments, and the integral 
is then evaluated at a set of equidistant range values by the 
FFT algorithm. Other approaches that exploit the known 
analytical form of the kernel are the "fast Hankel transform" 
method, •5 and techniques for accelerating the convergence 
of the truncated transform integral. 16'17 

In general, the Hankel-transform integrand is an analyt- 
ic function of horizontal wave number, with poles at the 
eigenvalues of a two-point boundary value problem for the 
system of ODEs. If a nonreflecting boundary condition is 
imposed, the integrand has, in addition, branch points at 
co/cp and cO/Cs, where cp and Cs are the P- and S-wave speeds 
in the deepest (infinite) layer. Whenever weakly darnped 
waveguide modes exist, their poles have small imaginary 
parts, making the integrand highly peaked as a function of 
real wave number. Correspondingly, the maximal step size 
Akma x at numerical quadrature, consistent with keeping the 
error per unit step within a preselected bound, is a strongly 
varying function of wavenumber k, with minima at the peaks 
of the integrand. Application cases where Akma x varies by 
several orders of magnitude over the wave-number interval 
of interest are not uncommon. The locations of the peaks, 
and thus the minima of Akma x, depend on the material and 
source parameters of the individual case and are not in gen- 
eral known a priori. 

The above considerations suggest that the Hankel- 
transform integrals are well suited for computation by adap- 
tive numerical quadrature techniques. Such techniques aim 
at achieving a requested overall accuracy with minimal com- 
putational work by evaluating the integrand at adaptively 
chosen points. 18-2o The application of adapative quadrature 
on oscillatory integrands has been studied by Xu and Mal. • 
They propose a modified Clenshaw-Curtis scheme, com- 
bined with interval subdivision, and show that it performs 
well in their test cases, including a wave-number integral for 
a two-layered solid. The use of adaptive quadrature tech- 
niques in the present application appears not to have attract- 
ed much attention, however. 

Our purpose is twofold: First, we show in Sec. II tlhat a 
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high-order, adaptive quadrature scheme, suitable for the 
Hankel-transform integrals, may be designed by combining 
well-known second-order schemes with extrapolation and 
adaptive interval halving. Second, we present in Sec. IV nu- 
merical results from an underwater acoustics application, 
demonstrating the favorable performance of the adaptive 
method in comparison with nonadaptive low-order tech- 
niques. The improvement is significant already at modest 
accuracy requirements, and grows rapidly as the accuracy 
requirements increase. Thus, the adaptive method improves 
the computational economy and reliability both in routine 
application analyses, and in situations such as program ver- 
ification where tight accuracy demands are needed, cf. the 
discussions in Refs. 22 and 23. 

I. HANKEL REPRESENTATION OF THE FIELD IN A 
FLUID-SOLID MEDIUM 

We consider a laterally homogeneous medium com- 
posed of fluid and solid regions, separated by horizontal in- 
terfaces. The deepest region is a homogeneous half-space. A 
cylindrical coordinate system (r,•,z) is introduced with ba- 
sis vectors er,%,ez, and with the z axis pointing downwards. 
Monofrequent energy, with angular frequency 0)> 0 and a 
horizontally symmetric radiation pattern, is emitted by a 
source distribution on the z axis. 

The Lam6 parameters A(z), it(z) and the density p(z) 
of the medium are assumed to be piecewise continuous func- 
tions of z. Here,/• vanishes in fluid regions and must be 
bounded away from zero in solid regions. Attenuation is 
modeled with complex A and it. Omitting the factor e- itot, 
we denote the displacement vector by 

u ( r,z ) = u ( r,z ) 'er + w (r,z) .e• 

and the traction vector acting on planes with normal e• by 

r(r,z) - rr•(r,z).er + 'r=Z(r,z).ez . 

The body force per unit volume exerted by the line 
source is 

f(r,z) = V (6(r).g(z)) \ 2rrr 

_ 0 (6(r)).g(z).er q- 6(r) -- 0'-• \ 2•rr -•r -g'(z).e•, (1) 
where the function g(z) is the source density. The symmet- 
ric point source f= V(6(o,o,z,)) is obtained with g(z) 
=6(Z-Zs). 

Define the Hankel-transform operators fro, acting on 
functions h (r), by 

/mh(k) = h(r).Jm (k'r)'r 'dr, rn = 0,1, (2) 

where Jo and J1 are Bessel functions of the first kind. The 
operators (2) are their own inverses, see, e.g., Ref. 24, Chap. 
6. Applying •fl and •fo on the basic equation system for 
u(r,z) and w(r,z) derived from Newton's second law (see, 
e.g., Ref. 24), one obtains 

= k-(x + 2)u+ 

-- ,o 0) 2 ' U q- ( k / 2 rr ) . g , (3) 

--/9(.02' W-- (1/2rr) 'g', 
(4) 

where U(k,z) = (flu(.,z))(k), W(k,z) = (foW(',z))(k), 
and the ' denote derivatives with respect to z. The bracketed 
quantities in (3) and (4) are 

Tr•(k,z) = (flrr•(-,z))(k) 
and 

TZZ(k,z) = {•o•Z(.,z))(k), 
respectively. 

In the fluid regions,/• = 0, T rz= 0, and Eqs. (3) and 
(4) simplify to 

pO e ,00) 2 ,4 2rr.A 
where T = T zz + g/(2rr). 

At an interface where the medium parameters are dis- 
continuous, the differential equations (3)-(5) are replaced 
by the conditions that IF, T r•, and T zz are continuous func- 
tions of z. If the material on both sides of the interface is 

solid, then in addition U must be continuous there. 
The medium is bounded from above by a free surface, 

and from below by a source-free homogeneous solid half- 
space. The boundary conditions are thus 

T rz = T•Z= 0 at the free surface, (6) 

no upgoing P or $ wave in the homogeneous solid half-space. 
(7) 

The condition (7) can be formulated as two linear equations 
for U, IV, T r•, T•Z at the boundary of the homogeneous half- 
space. 24 

In conclusion, the pressure field P(r,z) in the fluid is 
given by 

P( r,z) = - r•Z( r,z) ( 8 ) 

= - TZZ(k,z) 'Jo(k'r)'k.dk (9) 

_ 1 T•Z(k,z).Ho(•)(k.r).k.dk (10) 
2 

where TZZ(k,z) is the solution to (5). Equation (10) follows 
from the fact that T•(k,z) is even in k. 

We are concerned with computing P(r,z) efficiently 
from ( 9 ) or (10) by numerical quadrature. Since each evalu- 
ation of the integrand is computationally burdensome--the 
solution for a fixed k of the boundary value problem (3)-(7) 
is required--the quadrature scheme should use as few k val- 
ues as possible to achieve a given accuracy. The adaptive 
quadrature method described in Sec. II was designed with 
this objective in mind. 

We have used two different techniques for numerical 
solution of the boundary-value problem: a propagator-ma- 
trix method, and a finite-element method. 

The propagator matrix method becomes particularly 
simple for the common case with one fluid region only, 
bounded by solid region (s), and a point source at z = zs in 
the fluid. The systems ( 3 )-(4) and ( 5 ) are first rewritten as 
systems of first-order equations for 0)U, 0)IV, T rz, T zz, and 
0) IV, T, respectively. Certain boundary values are then pro- 
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pagated from below and from above, respectively, to the 
source level z = Zs. To avoid problems with numerical can- 
cellation, certain 2X2 subdeterminants are propagated 
through the solid regions. For details, see Refs. 4, 5, and 25. 
The propagated values are matched to a source condition at 
z = Zs. A unique match is possible except for a discrete set of 
k: the normal modes that can be identified by the zeros of the 
2 X 2 determinant of the matching equations. 

As is ,common practice, the medium is discretized into 
layers witlh a simple depth dependence of the parameters. 8 
To avoid ,overflow during the propagation, the number of 
layers is partly chosen adaptively with respect to the wave 
number k. 

In the finite element method, the boundary value prob- 
lem (3)-(7) for the unknown functions U, W, T/w is formu- 
lated as a variational problem for a symmetric bilinear inte- 
gral form, cf. Ref. 26. An approximate solution is then found 
by restricting the variational problem to a finite-dimensional 
subspace of (in our case) piece-wise linear polynomials, see, 
e.g., Ref. 27 for details. 

The FEM solution is obtained from a linear system of 
equations 

A(k)x=g(k) , (11) 

where x contains the unknown function values at the nodes, 
g(k) represents the source distribution, and A (k) is a com- 
plex, symmetric matrix with band structure. With a rigid- 
bottom boundary condition, A (k) is a quadratic polynomial 
as function of k. This is also true with the homogeneous solid 
half-space boundary condition (7), except for the lower 
right-hand 2 X 2 or 1 X 1 corner of A (k), the latter case oc- 
curring if' the medium adjacent to the homogeneous half- 
space is fluid. Thus, by keeping the three coefficient matrices 
of the polynomial in store, A (k) may be recomputed effi- 
ciently when the value of k changes. 

The equation system ( 11 ) may be solved by, e.g., stan- 
dard LDL rdecomposition without pivoting. This technique 
is faster and more storage conserving than methods relying 
on pivoting, but should be combined with monitoring of ele- 
ment growth as a safeguard against breakdown that in theo- 
ry may occur at a finite set of k values (Ref. 28, Sec. 3). 
However, we have not observed such breakdown in practice. 

We remark that no additional assumptions, such as a 
small number of homogeneous layers or a point-source dis- 
tribution, are required with the FEM technique. On the oth- 
er hand, for simple model cases where such assumptions are 
justified, the propagator-matrix method is in general more 
efficient, cf. Ref. 29. 

II. A METHOD FOR ADAPTIVE NUMERICAL 

QUADRATURE 

In this section we describe a method for adaptive quad- 
rature for computing the Hankel-transform integrals. The 
algorithm is applicable to numerical quadrature in general, 
but is particularly suited for integrands that may be irregu- 
larly peaked and/or oscillating with a known period. In con- 
nection with the present work, it was applied on the test 
cases considered by Xu and Mal, 21 including a wave-number 
integral fbr a two-layered solid, with results roughly com- 

parable with those of the modified Clenshaw-Curtis scheme 
proposed there. 

We require that a quadrature scheme is available for 
computing an approximation S( h ) to .fa ø f(x )dx using a c, on- 
stant step size h. $(h) is assumed to be of the form 

$(h) = f(x)dx + cvh 2v _11_ O(h 2r+ 2) , (12) 

when h-, 0. This asymptotic form holds for approximations 
$(h ) computed by the trapezoidal as well as the Filon meth- 
od, provided that f is sufficiently regular (see Ref. 12, Sec. 
7.4) and the Appendix. 

A well-known method to increase the order of conver- 

gence of the quadrature scheme (12) is to compute 
So = $(ho), S• - S(h•),... for a sequence of decreasing step 
sizes ho > h • > -" > 0. The sequence could be chosen by step- 
size having, but a more economical alternative is ho,ho/2, 
ho/3,ho/4,ho/6,ho/8,... as suggested by Bulirsch and Stoer. 3ø 
After each evaluation of an S•, a family of polynomials or, 
alternatively, certain rational functions of h 2 of successively 
higher order are fitted to the available pairs (h ,2.,S• ) by inter- 
polation (Ref. 31, Sec. 3.3). The extrapolated values of' the 
interpolants at h - 0 are increasingly accurate estimates of 
the unknown value $(0) = œa ø f(x)dx. The coefficients of 
the interpolants need not be computed explicitly. In fact, if 
Si.i denotes the value at h = 0 of the interpolant to 
(h ,2.,& ),..., (h •2+ i,S• + • ), then simple recursion formulas for 
Si../in both the polynomial and the rational case are given in 
Ref. 30. 

The value S•j may be arranged in a "rombic" extrapola- 
tion table where row index i grows with decreasing step size, 
and column indexj grows with increasing order of extrapola- 
tion. Thus, the table grows after each evaluation of an $i by 
the addition of one row at the bottom, the new elements 

being entered from left to right. The absolute error of $,v as 
an approximation to œ• f(x)dx may be estimated by the dif- 
ference 

Ai,j = I&,j --&q-1,j--1 I' (13) 

Possible alternatives are A•,• = I&,•- 1 - & + •0- 11 or Ai,• 
- Si,• - Si•/_ •l, where the last estimate is the most conser- 

vative. 

This well-known technique for numerical quadrature is 
very efficient when the function f(x) is equally smooth 
throughout the entire interval of integration. In our algo- 
rithm it is combined with adaptive interval halving, thereby 
extending its applicability to "peaked" functions, whose de- 
rivatives may vary by orders of magnitude in the interval 
(a,b). The interval-halving strategy produces a stack of con- 
tiguous, non-overlapping subintervals (a•,b•), 
(a2,b2),...,(aiv,blv) such that 

b n --a n -- (bn_ I --an_ I )/2 l", t/= 2,3,...,N, ,(14) 
where ls - 0, l n is a positive integer for n < N, and a - a l 
< bl = a2 < b2 = a3'" < b2v<b. The union of the subinter- 
vals, (a,b2v), is the portion of (a,b) where the integral is yet 
unknown. 

The objective of the algorithm is to compute 
V- .fa ø f(x)dx with an absolute error not exceeding a re- 
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quested tolerance e > 0. Apart from e, the values of three 
control parameters, I, J, and H, must be given a priori. No 
extrapolation table will be continued beyond neither row I 
nor column J. No entry Sij is accepted as converged unless 
hi + i < H. In practice we have used, e.g., I = 9 and J = 7, but 
the performance of the algorithm is not very sensitive to 
small changes of these values. H is a safety parameter, it is 
usually chosen guided by a priori information on the func- 
tion. 

The algorithm is composed of the following steps: 
1. Initialization: Push the given interval (a,b) onto the 

subinterval stack. Initialize the accumulated value of the in- 
tegral, V, to 0. 

2. Extrapolated quadrature in a subinterval.' Set 
ho = be - ac, where (ac,bc) denotes the top element of the 
subinterval stack, and i = 0. Set the absolute error bound to 
be used in the subinterval to 

ec =•.e. (15) 
b--a 

(a) Quadrature with constant step size: Select hi from the 
step-size sequence and compute Si, o = S(hi ) by Eq. (12). 

(b) Extrapolation and convergence check: Add the row 
starting with Si, o to the extrapolation table using the Sij re- 
cursion, observing the boundj<J. If•A•,/<ec for a new value 
S•,/with ! > 0 and if hi < H, increase Vby S•,• and proceed to 
step 3. 

(c) Refine the step-size: If i < I, increase i by one and go 
to step 2 (a). 

(d J Split the subinterval.' Put x, = (ac + b c )/2 and 
change the bounds of the top interval in the stack to (ac,Xm). 
Then push the interval (xm ,bc ) onto the stack, and go to step 
2. 

3. Termination check after convergence in a subinterval.' 
Pop the subinterval stack. If the stack is nonempty, then go 
to step 2; otherwise terminate, accepting the current value of 
Vas an approximation to V= [] f(x)dx. 

Remark 1: The same mesh point x,is normally selected 
several times by different instances of the quadrature step 
2 (a). However, duplicate evaluations of the function value 
f(x•) are eliminated by keeping function values in store until 
they are no longer needed. The store is organized as an array 
accompanied by a pointer stack whose depth changes in par- 
allel with the subinterval stack. 

Remark 2: In practice, rather than storing the values 
in an extrapolation table, a similar table of the differences 
Sij -- Si + •j_ • is maintained for improved accuracy in the 
presence of rounding errors. The table need not be stored in 
full, since only its last row is used in the recursion in step 
2(b), cf. Ref. 32. 

Remark 3: Iff(x) is singular or sufficiently irregular at 
some point xs, then the convergence test in step 2(b) fails for 
all subintervals containing %, until eventually the subinter- 
val stack overflows, and an error exit occurs in step 2(d). 
Other criteria for diagnosing irregular behavior and enforc- 
ing an error exit could obviously be added in. 

Remark 4.' The following simple extensions of the algo- 
rithm have occasionally proved to be useful. (i) Dividing the 
interval (a,b) at the outset into subintervals small enough 

for h• < H to hold at stack level one initially. (ii) Increasing 
the error bound in step 2(b) to, e.g., ec + 0.01e. This 
amounts to relaxing the error bound (15) towards an error- 
per-subinterval bound at difficult portions of the interval. In 
this way, the sum of the local error bounds may exceed e. 
However, the sum still provides a useful aposteriori estimate 
of an upper bound for the global error. 

III. CHOICE OF INTEGRATION PATH 

The functions T•(k,z) in Eqs. (9) and (10) have the 
following properties as functions of k for given z in the fluid: 
They are even in k so we may restrict our attention to k: 
Im (k) >0. They are analytic in the entire k plane except for 
two branch cuts and a number of normal-mode poles. The 
two branch cuts are associated with the vertical P and $ wave 

numbers of the homogeneous half-space. The pole locations 
coincide with the zeros of a certain determinant, which is an 

analytic function of k in the whole k plane except at the two 
branch cuts. The poles in the upper half-plane lie above a 
polygonal path composed of a segment of the real axis and 
two rays (cf. Fig. 3). 

A sketch of the k plane with typical locations of branch 
points, (hyperbolic) cuts and poles is given in Fig. 1. It is 
interesting to note that poles away from the axes may occur 
even for nonattenuating media in contrast to the situation 
for the purely fluid case, 33 and that poles may exist in the 
fourth quadrant close to the real axis, see Fig. 2. 

Our first-hand choice is to evaluate P(r,z) using the 
H •o • • representation (10) with, however, the tails of the inte- 
gration path shifted symmetrically into the upper half-plane 
for faster convergence, see Fig. 3. On the nonshifted portion 

x 

x 

i ! 

POLES, BR^NCH-POINTS AND CUTS 

Rc k/omega 

FIG. 1. Schematic plot of poles and branch points near the real axis in the 
upper half of the complex slowness plane. Branch-cut hyperbolas are shown 
by dotted lines. 
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Re k/omega 

m 

POLES 

FIG. 2. Example showing a pole in the fourth quadrant very close to the real 
axis. The medium consists of two homogeneous layers, both with thickness 
0.1 km. The top layer is a nonattenuating fluid with density 1.0 kg/dm 3 and 
Pvelocity 1.5 km/s. The bottom layer is a solid with density 2.0 kg/dm 3, P 
and S velocities 3.0 km/s and 1.8 km/s, and 0.05 dB/A attenuation for both 
P and S waves. The frequency is 22.0 Hz, and the deep boundary is assumed 
to be rigid. 

of the path we may integrate in the right half-plane only, 
using the Jo representation. We thus obtain the following 
alternative to (9) and (10) 

P(r,z) = - fr TZZ(k,z)'Jo(k'r)'k'dk 
1 fr TZZ(k,z)'H•ol)(k'r)'k'dk 2 

1 fr Tzz )(k'r)'k'dk, (16) d- T • 
where Fo is the interval (0,ko) of the real axis, and the tails 
F• and ['2 are rays extending from -t- ko into the first and 

second quadrants, respectively. The breakaway points, 
+_ ko, must be such that no poles are located between the 
real axis and the shifted path. We have no completely satis- 
factory way of choosing ko, however in practice a safe choice 
seems to be, e.g., twice the maximum wave number of the 
medium with the directions of the tails chosen to •r/4 and 
3•r/4, respectively. The integrand dies off exponentially 
along F• and F2 and thus, in practice, the work for comput- 
ing the last two integrals of (16) is negligible. 

If poles on or very close to the real axis exist, the inte- 
grand will be singular or highly peaked on Fo. Moving the 
path away from such poles makes the integrand smoother, 
cf. Ref. 8. Changes of the integration path must be done with 
care, however. No pole in the fourth quadrant must be en- 
closed unless its residue contribution is accounted for. Fur- 

thermore, the path cannot be moved too far from the real 
axis since Jo (kr) will then increase exponentially and over- 
flow or harmful cancellation may occur. Also, the computa- 
tion of the Bessel function is less efficient for complex-valued 
than for real-valued arguments. 

A valuable option, easily incorporated into the integra- 
tion algorithm described in Sec. II, is to adjust the integra- 
tion path Fo into the fourth quadrant locally, with adaptive 
control of the adjustments. Under this option, such adjust- 
ment is triggered if the convergence test in step 2(b) of the 
algorithm fails and h• < H a , where h• is the current step size 
and Ha is a pre-selected bound. Then, the algorithm simply 
records the current subinterval (ac,bc) for later treatment 
and proceeds to step 3 as if the integration over the subinter- 
val was successful with a zero result. In this way, the delicate 
way of building up the stacks of calculated function values 
etc. is not disturbed. The function evaluations already per- 
formed for the subinterval in question are lost, however. 
After completing the integral along Fo in this way, the: re- 
corded subintervals are processed in a second pass. First, 
subintervals with a common endpoint are joined. Then the 
integrals over the resulting (larger) subintervals are com- 
puted, again using the algorithm of Sec. 3 but now following 
a suitable roundabout path in the fourth quadrant. A simple 
choice for this path is the sloping sides of a uniform down- 
ward-pointing triangle whose base is the subinterval on the 
real axis. For additional safety, we optionally check that no 
pole was enclosed by the path adjustment, by computing the 
argument variation of the analytic determinant referred to 
above. 

! 

I NTEGRAT I 8N PATH 

x, GAMMAO 
-kb kb 

Rc k 

FIG. 3. Integration path, composed of the line segments Fo, F •, and F2, in 
the complex wave-number plane. 

IV. A NUMERICAL EXAMPLE 

In this section we demonstrate the efficiency of the 
adaptive method described in Sec. II for computing the inte- 
grals in (16). Our example case is a model of sound propaga- 
tion in shallow water, with material data obtained from a 
location in the Baltic Sea under summer conditions. 

The medium consists of a water column with depth 100 
m on top of a homogeneous sediment layer with thickness 15 
m. The sediment is bounded from below by rock, modeled as 
a homogeneous solid half-space. The material data in the 
sediment and the rock are 
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Sediment Rock 

density (kg/dm 3) 1.3 2.62 , 
P velocity (km/s) 1.460 4.000, 

$ velocity (km/s) 0.834 2.309, 
P attenuation (dB/A) 0.30 0.36 , 

S attenuation (dB/A) 0.68 0.81 . 

The compressional sound-speed profile in the water and 
sediment is shown in Fig. 4. The boundary value problem 
(3)-(7) was solved with the propagator-matrix code, and 
hence the water column was discretized into 11 layers, in 
each of which the squared inverse sound velocity varies lin- 
early with depth. The sound field is excited by a point source 
with frequency 50 Hz at depth 50 m. 

In the middle frame of Fig. 5, we show the location of 
branch points, branch cuts, and poles closest to the positive 
real axis in the complex slowness plane. In contrast to Fig. 1, 
vertical branch cuts are used. The corresponding poles are 
more related to the behavior of T zz on the real axis than are 

those obtained with the hyperbolic cuts, since the hyperbolas 
follow part of the real axis very closely. The pole locations-- 
the zeros of the propagator determinant--were determined 
by a zero-finder routine based on the argument principle, 
adaptive halving of axis-parallel rectangles, and secant itera- 
tions for faster final convergence. Due to the branch cuts, the 
determinant is a four-valued analytic function, and hence 
proper care must be taken to select zeros on the desired Rie- 
mann sheet only. The end point of Fo in Eq. (16) was chosen 
to kb = 2' 2rr' 50 km- •. 

The top frame of Fig. 5 shows I k' T zZ(k,z) I as a function 
ofk at depth z = 40 m, for k values on Fo. As expected, peaks 
appear at the poles nearest the real axis shown in the middle 
frame. The main peak occurs close to the third of these poles 
(counted by decreasing real part). This pole is actually the 
wave number of the fundamental mode of the water layer, a 
mode whose amplitude maximum roughly coincides with 
the source depth. Note that no visible peaks occur at the first 
two poles. The energy of these modes is essentially confined 
to the water-sediment interface (mode 1, a Scholte mode) 
and the sediment (mode 2) and they are thus barely excited 
by a source at a depth of 50 m. The last two poles correspond 
to "leaking modes, "34 they do not appear on the Riemann 
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FIG. 4. Compressional wave-speed profile in the water column and sedi- 
ment used in the test example. 
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FIG. 5. Top: Ik. T==(k,z) l at depth z = 40 m as function of real slowness. 
Middle: Branch points, vertical branch cuts, and corresponding poles near 
the positive real axis in the complex slowness plane. Bottom: Computational 
work/unit step with adaptive integration as function of real slowness (Filon 
quadrature, a short-range case). 

sheet defined by the hyperbolic cuts. Thus, there are nine 
propagating modes in this example. 

Three groups of ten equi-spaced range values in each 
were used for the test runs: 

Short range 

r = 0.050, 0.100, 0.150,..., 0.500 km, 
Medium range 

r= 5.550, 5.600, 5.650,..., 6.000 km, 
Long range 

r = 29.550,29.600,29.650,...,30.000 km. 

For each range value, ten depth values z = 10, 20, ..., 
100 m were selected. All 10 X 10 complex pressure values, 
corresponding to the (range,depth) value pairs of a range 
group, were computed in the same run of the integration 
algorithm of Sec. II. For this purpose, the algorithm was 
modified to matrix-valued functions f in a straightforward 
way. Notice that the matrix-valued integrand is here the out- 
er product of two vectors, which reduces the workspace 
needed for the stacks. The bottom frame of Fig. 5 shows a 
distribution of the density of the k values selected by the 
adaptive integration algorithm in a typical run. As expected, 
the k values are concentrated close to the peaks of k'lTZZl. 

Four integration methods were used in the test runs: 
Fixed-step trapezoidal (FT), fixed-step trapezoidal Filon 
(FF), adaptive trapezoidal (AT), and adaptive trapezoidal 
Filon (AF). For each of the three range groups, the test runs 
were carried out as follows: First, the 10 X 10 complex pres- 
sure matrix was evaluated very accurately using the adaptive 
Filon integration method with a tight accuracy requirement. 
Then, each integration method was re-run repeatedly with 
different accuracy requirements (for the adaptive methods) 
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or step sizes (for the fixed-step methods) to obtain an error 
versus work curve. A "work" unit is defined as solving the 
boundary-value problem (3)-(7) once, and "error" is the 
largest of the relative errors of the 10 X 10 complex pressure 
values. 

The error versus work curves can be found in Fig. 6. For 
the adaptive methods, rational extrapolation was used and 
the step-size bound H of Sec. II was set to guarantee at least 
1.1 mesh points per asymptotic Bessel-function period. The 
bounds I and J of the size of the extrapolation tables were 
chosen to 8 and 7, respectively, and the local error bound Ec 
was retaxed as described in Remark 4 (ii) in Sec. II. The 

option to adjust the integration path adaptively was not 
used. 

The most conspicuous result in Fig. 6 is the excellent 
performance of the adaptive methods. In the short-range 
case, when two or more correct digits are desired, these 
methods are more than ten times as efficient as the fixed-step 
methods. By doubling the computational work, about five 
additional correct digits are obtained (this is actually ex- 
pected in view of the value 7 for the parameter J). As the 
range increases, the gains are still impressive but smaller, 
since T =(k,z) is smoother relative to the oscillations of the 
Bessel function. For the same reason, in the short range case 
the error versus work curves of trapezoidal Filon and ordi- 
nary trapezoidal quadrature are nealy equal, whereas Filon 
quadrature becomes more and more favourable as the range 
increases. 

As should be expected, the slope of the error versus 
work curves of the fixed-step methods tends asymptotically 
to - 2 as the work increases, i.e., as the step size tends to 
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FIG. 6. Plot of •ølog ( relative error) as a function of •ø1og (nr of work units ) 
for fixed-step trapezoidal (FT), fixed-step Filon (FF), adaptive trapezoi- 
dal (AT), and adaptive Filon (AF) quadrature. Top: Short range. Middle: 
Medium range. Bottom: Long range. 
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FIG. 7. Plot of •ø1og(true relative error) (T), and •ø1og (estimated upper 
bound of relative error) (E), as a function of •ø1og(nr of work units) for 
adaptive Filon quadrature. Top: Short range. Middle: Medium range. Bot- 
tom: Long range. 

zero. It is interesting to note that fixed-step Filon quadrature 
is in this example preferable to fixed-step trapezoidal quad- 
rature for very coarse accuracy requirements only. In partic- 
ular, Filon quadrature shows the larger error of the two 
fixed-step methods asymptotically as the step size decreases. 
A brief discussion of this observation, in terms of a simple 
test function, is given in the Appendix. 

The effect of some alternative choices of the options and 
control parameters of the adaptive method were investigated 
in repeated runs of the cases in Fig. 6. Two observations from 
these runs are: 

(i) For moderate accuracy requirements, the work 
needed can be reduced to about one third by relaxing the 
safety requirement of at least 1.1 mesh points per asymptotic 
Bessel-function period. For tight accuracy requirements, 
however, such relaxation may impair the efficiency. 

(ii) Rational extrapolation performs better than poly- 
nomial extrapolation, the latter alternative may be twice as 
expensive in terms of work needed for a specified accuracy. 

Finally we recall that Fig. 6 shows the true relative, er- 
ror, obtained by computing a very accurate solution in ad- 
vance. In practice such a solution is not available, but the 
adaptive integration routine still provides an estimate of the 
error, cf. Remark 4 (ii) in Sec. II. In Fig. 7 we show a com- 
parison of estimated and true relative errors as functions of 
computational work, for the adaptive Filon quadrature cases 
of Fig. 6. As can be seen, the realiability of the error esti- 
mates seems to be satisfactory. 

V. CONCLUSIONS 

We have described a method for computing the wave- 
number integrals of range-independent fluid-solid media by 
adaptive quadrature. The method uses trapezoidal or trape- 
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zoidal Filon quadrature schemes repeatedly with several 
step sizes, in combination with polynomial or rational extra- 
polation and adaptive interval halving. 

The favorable performance of the proposed method, in 
comparison with traditional fixed-step quadrature tech- 
niques, was demonstrated in a sample case of sound propa- 
gation in shallow water. Significant gains were obtained, for 
the trapezoidal as well as the trapezoidal Filon scheme. The 
Filon scheme proved very useful in connection with the 
adaptive method but not, interestingly enough, in connec- 
tion with the fixed-step technique. The gains observed are 
significant at any meaningful level of accuracy, but they are 
increasingly pronounced as the accuracy requirements in- 
crease. By increasing the computational work by a factor of 
2, about five additional correct digits were obtained. Thus, 
the proposed method is useful also when a very high accura- 
cy is needed, e.g., for the purpose of program verification or 
benchmark runs. 

With adaptive integration, the computational work 
along the integration path is concentrated where it is needed. 
In this way, the need to smooth the integrand by shifting the 
path away from the real axis is reduced. When local devia- 
tions of the path are necessary, they can be done adaptively 
in a straightforward way. 
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where 

T(h) = h. ß a) +f(b) + • f(a +j'h) (A4) 
2 •=• 

is the ordinary trapezoidal sum. Iff(x) is sufficiently regu- 
lar, then (Ref. 12, Sec. 7.4) 

T(h) = V+ • Ao'h 2o + O(h 2r+ 2) , (A5) 
o---•1 

where Ao=ao(f(2ø-•)(b)--f(2ø-•)(a)) for some con- 
stant ao. Since the bracketed expressions in (A3) can be 
expanded in even powers of h, we immediately obtain 

Fr(h) = V+ • Bo'h2ø--[-O(h2r+2) , (A6) 
where Bo is a linear combination of f(/> (b) - f(/) (a) of 
orders l=0,1,3,...,2o--1. Thus the trapezoidal Filon 
scheme, as well as the ordinary trapezoidal scheme, has the 
asymptotic form required by the adaptive algorithm, cf. Eq. 
(12). 

In the general case, we cannot expect extrapolation 
based on (A6) to work unless lyh I is small and the expansion 
(A5) is meaningful. In the typical case of a large imaginary 
y, however, extrapolation may not be needed since Fr(h) 
can be very accurate even if these conditions are not satisfied. 
By partially integrating in (A2) twice over each grid step, 
choosing the integration constants appropriately, and sum- 
ming over grid steps [cf. the proof of (AS) in (Ref. 12, Sec. 
7.4) ], we obtain 

Fr(h) = V- h 2. h ' er ' XJ - I ' g(2) ( xj _ • + h ' t ) 
j=l 

ß K2(t).dt, (A7) 

APPENDIX: FILON QUADRATURE IN THE CONTEXT OF 
EXTRAPOLATION 

From the properties of the Bessel function Jo follows 
that the integrand in Eq. (9) can be decomposed to 

f(x) = gl(x)'e rx + g2(x)'e- r•, (A1) 

where x ---- k, ?' -- ir, and g• and g2 are (except at poles of the 
integrand) slowly varying functions of x in comparison to 
the exponential factors when y is large. In the sequel we 
restrict ourselves, without loss of generality, to the basic case 

V= x)dx = g(x)er• dx , (A2) 

where a and b are real. 

In Filon's method, the function g (rather thanf itself) is 
approximated by piecewise polynomial interpolation, and 
the resulting function is integrated analytically. 13'35-39 
Piecewise linear interpolation on an equi-distant mesh with 
step size h = (b- a)/n gives the "trapezoidal Filon" esti- 
mate 

.(cosh(yh) - 1) f(a) -f(b) Fr(h) = T(h) \ i•l•½)i +' 2 

. (h. sinh(yh)-yh.) (•/h)2/2 ' 
(A3) 

where x• = a + j-h and 

e rht -- 1 -- (e rh -- 1 ) 't 
K2(t) = . (A8) 

(T'h) 2 

Analoguous error formulas for Filon's original formulation 
are given in Ehrenmark. 4ø By (A7) and (A8), if y is purely 
imaginary, then IF(h)- vl<3(b-a)G/Irl5 where G2 
is the maximum of Ig<2>(x) I in a<x<b. 

It is interesting to note that ifh -- 2rnrri/?'where rn is an 
integer, then Fr (h) is actually independent of h. For such h, 
(A3) simplifies to 

Fr(h) =f(b) -f(a) (A9) 
which has the error 1/•'œ• g' (x)e r• dx as is seen by partial- 
ly integrating (A2) once, cf. the paper by Fosdick. 4• If by 
chance several such h were used in step 2 of the algorithm in 
Sec. II then, since Fr (h) is independent of h, there is a risk 
(although small) of obtaining a false small or zero error 
estimate, and hence accepting convergence prematurely. 
This risk is eliminated if the parameter H is chosen so that 
I rHl< 2•r holds. The gain in efficiency with the Filon ap- 
proach is nevertheless substantial, since the ordinary trape- 
zoidal method would hardly do with less then ten (say) 
points per period. 
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From the fixed-step cases of Fig. 6 it is apparent that 
B•l y A •l may hold for the error constants in Eqs. (A5) 

and (A6). Some insight into this behavior is gained by con- 
sidering (A2) but with 

f (x) =eXX'(e rx + e -rx) , (A10) 

where A and y are imaginary constants. Then 

12'A• = (A + y)'D• + (A- y)'D2, (All) 

(A + y)'D• 12.B 1 = 
(1 +0) 2 

where 0- y/A and 

(A- y)'D 2 
+ 

(1 -0) 2 
, (A12) 

D1 = e(A + y)b • e(A + y)a • 

D2 = e(X- y)b • e(A- y)a . 

Consider A• and B• as functions of A for a fixed y. If 
IX I•lrl, then 101>>l and thus IB, l•H,I, i.e., the Filon 
scheme is advantageous as expected. In the other extreme, 
IAl>> I YI, the methods become equivalent, as they should. 
For I1--lyl, however, lB, I can be much larger than 1,41 
provided that I Y(b - a) I >> 1 holds. (Actually things are 
more complicated since I A•l and IB•l are oscillatory func- 
tions. Our statement refers to the amplitudes of these oscilla- 
tions. ) 

By Fourier theory, these observations carry over to inte- 
grands of the more general form g(x) (e r• + e- r•). Ifg(x) 
has poles sufficiently close to the real axis, its Fourier spec- 
trum will be broad enough to include an interval around y. 
Then, provided that I Y(b- a)l>> 1 holds, the error of the 
constant-step trapezoidal Filon formula may exceed that of 
the constant-step trapezoidal rule. The adaptive method is 
capable of preventing this situation by splitting the interval 
into parts in such a way that the { (b -- a),y,A} region unfa- 
vorable for the Filon scheme is avoided. 
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