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[1] In this paper we investigate the validity of the multifractal formalism to study sea
surface temperature (SST). It is shown that SST patterns observed in moderate resolution
SST images have anomalous scaling properties characteristic of a multifractal structure.
The most probable origin of the observed structures is the turbulent character of the
oceanic flow as they evolve slowly and are very persistent in times compatible with ocean
mesoscale dynamics (several days). The spectrum of singularity exponents indicates that
the dynamics of the processes leading to the geometrical arrangement of the SST patterns
is quite general over the available range of scales. As a consequence, multifractal
techniques can be used to extract properties of the underlying flow. In particular, the
geometry of the SST multifractal components is closely linked with the ocean flow, which
allows to build a reasonable guess of the streamfunction (defined as the maximum singular
streamfunction (MSS)) from a single SST image. Thus the ocean surface velocity field can
be easily inferred, with some limitations. As multifractal analysis is in essence a
geometrical approach, the method is able to retrieve a high resolution velocity field, well
localized in space, but with some indetermination on the modulus and sense of velocity
vectors. To solve this, a general framework for the integration of extra information is
proposed, what is illustrated with an example merging MSS with altimetric data.
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1. Introduction

[2] In spite of the great importance of understanding
turbulent dynamics to provide an adequate picture of many
geophysical processes, turbulence is still one of the major
unsolved problems in fluid dynamics. Owing to their
chaotic shape, turbulent flows cannot be easily described
with some few global quantities, and hence an enormous
amount of degrees of freedom must be retained to properly
describe them. From all approaches to turbulence, the most
successful one is the statistical analysis, favored by the
existence of many independent degrees of freedom at all
scales contributing to the final motion. However, turbulence
gives rise to intermittency and so the distributions of the
relevant quantities have heavy tails; as a consequence,
statistical analyses of turbulent flows demand a great
amount of data to obtain reliable estimates of dynamical
quantities. This has also been the case in geophysical flows,
where reliable statistical analysis have been mostly restricted
to small-scale flows. We know much more properties about
geostrophic turbulence from numerical modeling than from
the direct analysis of observations.

[3] Earth observation satellites have been a great revolu-
tion allowing for the first time ocean processes to be
adequately sampled [Munk, 2000]. Remote sensing have
uncovered a picture of the ocean characterized by a complex
geometry, crowded with eddies of different sizes and fila-
mentary structures similar to what theory predicts. The range
of scales covered by infrared or color images span over
3 decades (roughly from 1 to thousands of kilometers) and
they are acquired several times per day. Consequently, remote
sensing data sets are today in a stage to furnish the best
framework, in which techniques and concepts developed for
the study of turbulent flows may lead to better understand the
statistical properties of the complex ocean dynamics. Some
examples of this approach are the characterization of ocean
vortices [e.g., Isern-Fontanet et al., 2003; Morrow et al.,
2004; Isern-Fontanet et al., 2006a], velocity statistics
[Llewellyn Smith and Gille, 1998; Gille and Smith, 2000;
Isern-Fontanet et al., 2006b], or the stirring properties of the
ocean [e.g., Abraham and Bowen, 2002;Waugh et al., 2006].
[4] Many of such studies rely on the knowledge of the

ocean velocity field which is difficult to be directly mea-
sured from remote sensing. Despite very recent advances in
space-borne radar technology [e.g., Chapron et al., 2005],
presently surface ocean horizontal velocities are regularly
estimated from altimetric measurements. However, altime-
ters only provide information about the cross-track geo-
strophic velocity. Then, interpolation methods are required
to recover both components of surface velocities [e.g.,
Le Traon and Ogor, 1998], which has the effect of strongly
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reduce the capability to investigate wavelengths below
100 km [e.g., Ducet et al., 2000]. Alternatively, many efforts
have been previously done to estimate surface currents from
infrared sensors through different methodologies [i.e.,
Emery et al., 1986; Kelly, 1989; Whal and Simpson, 1991;
Wu et al., 1992; Vigan et al., 2000a, 2000b; Bowen et al.,
2002]. A general characteristic of the existing methods is the
requirements of having a cloud-free time series of images.
[5] Recently, a different approach has been introduced

based on the geometrical properties of advected tracers
[Turiel et al., 2005b]. Coherent vortices in a turbulent flow
strongly interact, which has the effect of permanently stretch
and fold small-scale filaments ejected from vortex cores and
generate small-scale tracer gradients between eddies. There-
fore the spatial structure of a tracer inherits some properties
of the underlying flow, in according to what has been
theoretically and experimentally shown in some works
[Abraham and Bowen, 2002; Turiel et al., 2005b, 2005a].
This has the effect of organizing the geometry of the flow as
a hierarchy of fractal sets, called singularity manifolds, each
one associated to a singularity exponent: this is the so-called
multifractal formalism for fully developed turbulence (FDT)
[Parisi and Frisch, 1985; Frisch, 1995]. This geometrical
arrangement of the flow is intimately linked to the energy
cascade, which allows to study its properties from the
geometrical properties of any tracer for which advection is
important enough. Furthermore, as singularity manifolds are
advected by the flow, assessing tracer singularities allows to
detect the main streamlines, and then, through a suitable
interpolation algorithm, the sreamfunction of the flow could
be reconstructed [Turiel et al., 2005b, 2005a].
[6] A key point in this approach is the assumption of a

multifractal structure on tracer images. In the context of
atmospheric flows, there are many evidences of such a multi-
fractal hierarchy [i.e., Chigirinskaya et al., 1994; Lovejoy
et al., 2001; Sachs et al., 2002; Turiel et al., 2005a]. In the
ocean, time series of temperature, fluorescence and other
biochemical tracers also exhibit multifractal characteristics
[Lovejoy et al., 2001]. However, to our knowledge there are
no evidence on the multifractal properties of the geometrical
arrangement of ocean tracers, as for instance the spatial
distribution of SST. If this is verified and assuming that the
dynamics of the ocean is similar to that corresponding to FDT,
one can reasonably expect that tracers in the ocean possess the
same singularity manifolds as the underlying turbulent ocean
flows. Thus we should be able to deal with a method for the
estimation of the velocity field of the ocean. Therefore the
objective of this paper is twofold. First, it will be shown that
moderate resolution SST images of the ocean (Pathfinder SST
in our case) exhibit a multifractal structure and therefore
multifractal techniques as the proposed MSS method can be
used to give an estimation of the streamfunction. Second,
the paper discusses the limitations of these multifractal
methods and show how the combination with other data
(altimetry in this study) can be used to overcome them.
[7] Owing to the important and nontrivial theoretical

concepts which need to be introduced and which deserve
full discussion in an oceanographic context, we have
decided to organize the text in a progressive way. First, in
section 2 we outline the theoretical background of the
multifractal formalism, which is the root of the proposed
method for the estimation of ocean velocities. Section 3

briefly presents all the data used. Then, in section 4 the
method for the estimation of singularities is presented and
the validity of the Microcanonical Multifractal Formalism
for SST images is verified. After that, the method to retrieve
the maximum singularity streamfunction (MSS) and its
application to data is presented in section 5. The possible
ways to integrate additional information in the framework of
MSS are presented in section 6; we present there the
example of integrating altimetry. Finally, an overall discus-
sion and conclusions of the paper are given in section 7
(auxiliary material1).

2. General Theory

[8] There exists an extensive scientific literature on the
roots of the multifractal formalism in the context of FDT, its
connections with anomalous scaling in the structure func-
tions and the geometrical interpretation of scaling exponents
in terms of a hierarchy of fractal manifolds [Parisi and
Frisch, 1985; Novikov, 1994; She and Leveque, 1994;
Arneodo et al., 1995; She and Waymire, 1995]. However,
there is much less literature establishing the explicit passage
from the classical, statistical formalism (based on structure
functions and the assessment of the multiplicative cascade),
known as Canonical formalism, to the geometrical one (in
which Parisi and Frisch’s singularity manifolds are explic-
itly separated from a given signal).
[9] The idea about a geometrical approach to the study of

the FDT and microcanonical exponents can be tracked back
in the early works by Meneveau, Sreenivasan, and collab-
orators [Chhabra et al., 1989; Meneveau and Sreenivasan,
1991; Sreenivasan, 1991]. However, technical limitations
on the determination of the local singularity exponents and
the greater amount of statistical measurements had left this
idea a bit aside. Since then, some progresses have been
made in order to uncover geometry from data, mainly
concentrated on the extraction of the multiscale skeleton
of wavelet transform maxima [Muzy et al., 1991; Bacry et
al., 1993; Arrault et al., 1997; Amaral et al., 1998; Ivanov
et al., 1999; Struzik, 2000]. However, this multiscale
skeleton can hardly be used to assign a singularity to each
point. In spite of these initial limitations, recent advances in
signal processing [Turiel et al., 1998; Turiel and Parga,
2000] have allowed to recover the geometrical perspective
of the energy cascade allowing to define a new formalism,
called the Microcanonical Multifractal Formalism.

2.1. Canonical Formalism

[10] Since the famous Kolmogorov’s 1941 papers
[Kolmogorov, 1941a, 1941b; Hunt et al., 1991], much
research has been conducted to explain the properties of
fully developed turbulence in terms of scale invariant
quantities characterizing the behavior of statistical averages
of some dynamical quantities. In a rather general formula-
tion, we can define the local structure function of order p
and size scope r, denoted by Sp(r), as the order-p moment of
a dynamical variable �r, namely,

Sp rð Þ ¼ h�rpi ð1Þ

1Auxiliary materials are available in the HTML. doi:10.1029/
2006JC003878.
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where the average is taken over an appropriate ensemble of
realizations or over a single realization large enough when
ergodicity or at least stationarity of the moments can be
assumed [Davis et al., 1994; Frisch, 1995]. The variable �r
must refer to a statistical stationary quantity defined over a
given resolution scale r; common choices include linear
increments of the velocity,

�r ~xð Þ ¼ jv ~xð Þ � v ~xþ~rð Þj ð2Þ

and local energy dissipations on balls of radius r,

�r ~xð Þ ¼
X
ij

Z
Br ~xð Þ
d~x0 @ivj ~x

0ð Þ þ @jvi ~x
0ð Þ

� �2 ð3Þ

Kolmogorov’s 1941 theory predicts that at any order p, the
structure function Sp(r) is scale-invariant with respect to the
scale scope r, what manifests in a power-law dependence in
the inertial range,

Sp rð Þ / rtp ; r � 1 ð4Þ

In addition, Kolmogorov predicted that all the multiscaling
exponents tp could be related in a simple way: they should
fit a linear relation,

tp ¼ Hp þ b ð5Þ

where the coefficient H is given by the scaling properties of
the maximum of �r,

max~x �r ~xð Þ / rH ; r � 1 ð6Þ

while the coefficient b is related to the behavior of the
support of �r (i.e., the set where �r is different from zero), in
the way:

rb / S0 rð Þ ¼
Z

d~x0 1
�r ~x0ð Þ6¼0

ð7Þ

[11] According to Kolmogorov’s model of linear multi-
scaling exponents, the energy is concentrated on a fractal
manifold, given by the support, at which all the points
contribute exactly the same, namely rH. We can immedi-
ately deduce the dimension of this fractal manifold by the
scaling property given by equation (7); following Falconer
[Falconer, 1990], the support scales as rd�D, where d is the
dimension of the embedding space (d = 2 in the case of two-
dimensional (2-D) turbulence) and D is the fractal dimen-
sion of the support. Hence comparing with equation (7), we
have D = d � b.
[12] It was soon realized that the linear scaling proposed

by Kolmogorov did not fit experimental curves; experimen-
tal tp [Arneodo et al., 1996] present ‘‘anomalous scaling,’’
that is, a marked separation from the linear behavior. The
curvature of tp makes Kolmogorov’s picture a bit more
complex. Now, the points in the support do not possess the
same scaling rH any more; instead, the support is split in
different scaling fractal components (manifolds), each one
scaling differently. We are hence constrained to pass from a
single fractal scheme to a multiple fractal framework.

[13] A simple empirical obtention of the multiscaling
exponents tp is not enough to provide a theoretical insight
on the process which give rise to the scale-invariant
properties of fully developed turbulence. It was then re-
quired to introduce a model to explain anomalous scaling:
the multiplicative cascade. First, for any 0 < k < 1 let us
construct a random variable hk such that

hhkpi ¼ ktp ð8Þ

The existence of such a variable will depend on the
properties of tp. A necessary condition is the constant
concavity/convexity of tp as a function of p [Carleman,
1922], which is granted because the tp are obtained from
actual order p-moments. In fact, the concavity of tp
indicates the sign of the cascading process [Gupta and
Waymire, 1990] that we will introduce in the following. To
simplify the discussion, we will assume that for the variable
�r the cascade is verified as a downscaling process; the
upscaling counterpart can be easily generalized from this
case.
[14] Provided hk exists for any k and recalling the

definition of the structure functions, equation (1), for any
two scales r < L it follows:

h� p
r i ¼ hh p

r
L
ih� p

L i ð9Þ

for all p. As a consequence, we can write:

�r ¼
: hr

L
�L ð10Þ

where the symbol ¼: means that both sides have the same
distribution. In equation (10), which is known as the
‘‘cascade relation,’’ it is assumed that hr

L
is a random

variable independent from �L. The reason for calling such a
relation a ‘‘cascade’’ comes from the fact that if we
introduce any intermediate scale r0, r < r0< L, we obtain:

h r
L
¼: h r

r0
h r0

L
ð11Þ

what is trivially verified according to the definition of the
cascade variable, equation (8). So, the cascading process
can be verified in any number of intermediate stages and in
all cases the final result will be the same: in some sense, the
downscaling injection process is in statistical equilibrium.
Equation (11) also implies that the random variables hk
possess infinitely divisible distributions [Novikov, 1994; She
and Waymire, 1995], what enormously restricts the class of
allowed processes. Many experimental facts have confirmed
the existence of the cascade in flows under fully developed
turbulence [Chhabra et al., 1989; Frisch, 1995; Arneodo et
al., 1996; Lovejoy et al., 2001]; hints also exist on their
presence in oceanic flows [Abraham and Bowen, 2002;
Turiel et al., 2005b].
[15] The cascading process is a sign of the existence of a

tightly hierarchized structure in the flow; however, in the
form discussed above, it is just a statistical signature,
difficult to relate to definite objects with physical meaning.
The first step to establish a link with the geometrical
arrangement of flows can probably be traced in Parisi and
Frisch’s derivation on the multifractal structure of flows
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under cascading processes [Parisi and Frisch, 1985]. They
assumed that due to the anomalous scaling, the points in the
support of �r do not share a single value of scaling exponent
H as in Kolmogorov’s theory, equation (5). On the contrary,
the support is split in different fractal components F h, each
one having a different scaling exponent h. As the fractal
manifolds can have different fractal dimensions, we intro-
duce the concept of ‘‘singularity spectrum’’ D(h), defined as
the (Hausdorff) fractal dimension of the component F h. As
before, at a scale r the amount of points assigned to a the
component F h goes as r

d � D(h), so the distribution of scaling
exponents at a given scale r is given by:

rr hð Þ / r d�D hð Þ ð12Þ

According to Parisi and Frisch, the multiscaling exponents
tp can be immediately related to the singularity spectrum, in
the way:

tp ¼ inf
h
fphþ d � D hð Þg ð13Þ

[16] Equation (13) is a cornerstone in the multifractal
derivation because it allows relating a geometrical charac-
teristic (the singularity spectrum) with the multiplicative
cascade. So, when we arrive to obtain the singularity
exponents in a given realization, we can recover all the
properties of the multiplicative cascade. An important
feature for the singularity spectrum is to be a convex
function of h; under such a circumstance, the Legendre
transform in equation (13) can be inverted and the singu-
larity spectrum is calculated from the multiscaling expo-
nents, namely,

D hð Þ ¼ inf
p

fphþ d � tpg ð14Þ

Awell-behaved singularity spectrum should correspond to a
convex curve which is one of the requirements in the
Microcanonical Multifractal Formalism presented in the
following.

2.2. Microcanonical Formalism

[17] To give the final step from statistics to geometry, two
additional ingredients are in order. First, we need a method
capable to assess the local scaling exponent to be assigned
to each point. It should be realized that the concept of local
scaling exponent is in fact more easily recognized as the one
of Hölder or singularity exponent. The introduction of
singularity exponents allows a generalization of the classical
Taylor expansion of functions; in addition, it serves to relate
scaling properties of a variable with its regularity properties
according to Functional Analysis. Then, the local singular-
ity exponent h(~x) of a given field s(~x) at the point~x can be
obtained, for any vector~r small enough, from the following
scaling:

1

r
js ~xþ~rð Þ � s ~xð Þj � r h ~xð Þ ð15Þ

Results on wind tunnels and other laboratory experiences
reveal that such scalings are generally observed [see
Arneodo et al., 1996, and references therein]. By means

of equation (15), a local singularity exponent h(~x) can be
associated to each point ~x, which accounts for the local
properties of changes in scale of the function s. The
singularity exponent informs about the local regularities of
the function and its degree of continuity or discontinuity
around the given point. The name ‘‘singularity exponent’’
does not necessarily imply that the function is divergent at
the point; large values of h(~x), on the contrary, indicate that
the function is very smooth [Arneodo et al., 1995].
Expressions as equation (15) are generically known as
singularity analysis for the function s(~x).
[18] The second ingredient is the relation between the

scaling properties of the flow, in general difficult to quan-
tify, to the scaling properties of related variables much more
accessible and easily to observe. A typical case is that of
scalar variables: quantities on which the flow, as a first
approximation, acts as if they were tracers. For purely
passive scalars, it immediately follows that the scaling
properties appearing in the asymptotic regime are those
derived from the scaling on the flow [Frisch, 1995]. For
nonpassive scalars, the ability to relate local scaling expo-
nents emerging from the scalar to those of the flow rely on
the assumption than the corrections to the material deriva-
tive do not affect the smaller scales in an important extent
and so they can be neglected. A clear example are ocean
flows, where the necessary resolution to compute a reliable
estimate of the velocity structure function is still inaccessi-
ble while for tracers such as the SST obtained by remote
sensing is rather feasible. According to some studies, the
multifractal properties of oceanic barotropic flows are not
affected by the presence of baroclinic instabilities [Abraham
and Bowen, 2002]. As a matter of fact, if a multifractal
hierarchy as in the work of Parisi and Frisch is evidenced
for a given scalar, we will accept that its most plausible
origin is the turbulent flow driving the scalar.
[19] Now we have the basic elements to set up the

microcanonical formalism and recover dynamical informa-
tion from the geometrical properties of the flow. Given a
scalar signal s(~x), we will say that it is associated to a
microcanonical multifractal if and only if:
[20] 1. For any point~x,

T rs ~xð Þ � r h ~xð Þ ð16Þ

is verified over a large enough range of scales r, where T r is
a size-dependent local functional which acts on the variable
s(~x) and generalizes equation (15).
[21] 2. The distribution of singularities at any valid scale r

follows equation (12), for the same curve D(h).
[22] 3. The curve D(h) derived from equation (12) is

convex.
[23] Condition 1 means that any point can be assigned to

a fractal singularity manifold F h, so the multifractal de-
composition is exhaustive; in addition, as these sets are of
fractal nature, condition 1 guarantees that each component
is scale invariant. Condition 2 means that the relations
among the different members of the hierarchy can be
referred to an invariant, the singularity spectrum D(h), so
the whole hierarchy is scale-invariant. The third condition is
not strictly necessary, but it is important to complete the link
with statistics: as the curve D(h) is convex, it coincides with
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Parisi and Frisch’s estimate, equation (14). Hence the
singularity spectrum D(h) exactly corresponds to the mul-
tiplicative cascade. This is very relevant for us because a
convex, invariant singularity spectrum is plausibly linked to
oceanic turbulence and so it can reasonably be inferred that
the observed multifractal is of oceanic origin.
[24] An interesting question is the explicit calculation of

the singularity spectrum D(h). Assuming that equation (16)
holds in a given range of scales, it allows to calculate the
singularity exponent h(~x) associated to each point ~x. Then,
the empirical histograms, which are directly linked to D(h)
(see equation (12)), can be used to obtain the singularity
spectrum. We proceed in a similar way to what is done in
the work of Turiel et al. [2006; A. Turiel et al., Micro-
canonical multifractal formalism: A powerful approach to
image and signal processing, submitted to Journal of Phys-
ics A, 2007, hereinafter referred to as Turiel et al., submitted
manuscript, 2007]: as we know that the support of h has
maximum dimension d, there exists a fractal component of
such a dimensionality, that is, there is a value h1 such that
D(h1) = d. This necessarily corresponds to the mode of the
probability distribution, that is the more common value in
the empirical histogram of singularities r(h). So, we nor-
malize the histogram by its maximum to remove the implicit
proportionality constant in equation (12), and so we can
retrieve the singularity spectrum from a single scale, in the
way:

D hð Þ ¼ d �
log

r hð Þ
r h1ð Þ

� �
log r

ð17Þ

Condition 3 can be easily verified from the expression
above; condition 2 will be verified when the singularity
spectra resulting from the application of equation (17) at
different scales r are compared together. We are now ready
to apply this theoretical framework to satellite SST images
and check out its validity in this context.

3. Data

3.1. Pathfinder SST Data

[25] In this study we have used daily Pathfinder Sea
Surface Temperature (SST) data version 5.0 downloaded

from the Physical Oceanography DAAC at JPL (http://
podaac.jpl.nasa.gov, product number 216). This data set is
a new reanalysis of the AVHRR data stream developed by the
University of Miami’s Rosenstiel School of Marine and
Atmospheric Science (RSMAS), the NOAANational Ocean-
ographic Data Center (NODC), and NASA’s Physical Ocean-
ography Distributed Active Archive Center (PO.DAAC).
This reprocessing uses an improved version of the Pathfinder
algorithm [e.g., Kilpatrick et al., 2001] and processing steps
to produce twice-daily global SST and related parameters
back to 1985, at a resolution of approximately 4 km, the
highest possible for a global AVHRR data set form NOAA 7,
9, 11, and 14 polar orbiting satellites.
[26] Among the several tests done in this study, we have

selected two sample images corresponding to ascending
passes (day measurements) for the Gulf Stream and the
Agulhas current areas in 8 May 2000 and 26 November
2002, respectively; see Figure 1. All pixels have been
included in our analysis, even those with a quality flag of
0 but excluding those corresponding to land.

3.2. MODIS SST and Brightness Temperature Data

[27] To validate the results obtained using Pathfinder
SST, we have also used MODIS Terra L1b and L2 data in
the Gulf Stream area corresponding to 8 May 2000 down-
loaded from the Goddard Earth Sciences Distributed Active
Archive Center (GES-DAAC, http://daac.gsfc.nasa.gov/
MODIS/). In particular, long wavelength (11–12 mm)
SST product (MOD28L2) that combines brightness temper-
atures from channels 31 and 32 has been used. The geo-
located and corrected brightness temperature products
(MOD021KM) from channel 31 only (band center
11.03 mm; band width: 0.5 mm) has also been used, which
is the most similar band to AVHRR channel 4 used in
previous studies [e.g., Bowen et al., 2002]. No cloud mask
was applied in order to have a situation as close as possible
to Pathfinder data.

3.3. Altimetric Data

[28] For comparison with SST data, in this study we have
used Delayed-Time Maps of Sea Level Anomaly (DT-
MSLA) produced by Collecte Localisation Satellites
(CLS) in Toulouse (France) and distributed by AVISO
(Ssalto/Duacs, ftp://ftp.cls.fr/pub/oceano/enact/msla/

Figure 1. Pathfinder SST images of (left) the Gulf Stream area for 8 May 2000 and (right) the Agulhas
current area for 26 November 2002.
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[SSALTO/DUACS User Handbook [2006]), which combine
the signal of all available altimeters. These maps are
processed including usual corrections (sea-state bias, tides,
inverse barometer, etc.) and with improved ERS orbits using
TOPEX/Poseidon as a reference [AVISO User Handbook,
1996; Le Traon et al., 1998]. TOPEX/Poseidon has been
also used to reduce the contamination of ocean signal
variability on the ERS mean prior to the computation of
its mean profile [Ducet et al., 2000]. SLA are then regularly
produced by subtracting a 7-year mean value (1993–1999),
and prior to the analysis, data are low-pass filtered using a
Lanczos filter with a cutoff wavelength that depends on
latitude in order to reduce altimetric noise [Ducet et al.,
2000]. SLA maps are finally built, every 10 days, using an
improved space/time objective analysis method, which
takes into account long wavelength errors, on a regular grid
of 1/3 � 1/3 degrees [Le Traon et al., 1998; Ducet et al.,
2000]. To have an estimation of the sea surface topography
(h) the RIO-03 Combined Mean Dynamic Topography
(CMDT) [Rio and Hernández, 2004] has been added to
the maps of SLA.

4. Multifractal Structure of SST Images

4.1. Singularity Analysis

[29] The key element for the application of the micro-
canonical formalism is the ability to obtain singularity
exponents. Equation (15) is very appealing and it is easy
to relate to properties of the flow. However, it does not hold
in general, because of the existence of long-range correla-
tions in the flow which could mask the softest singularity
exponents [Arneodo et al., 1995]. To deal with the existence
of such long-range correlations, s(~x) has to be filtered.
However, we do not want to impose a fixed scale in the
filter which could truncate the range of valid scales or, even
worse, which could mask the value of the scaling expo-
nents. Continuous wavelet transforms, defined as projec-
tions of the signal at different resolutions, are appropriated
to filter multiscaling functions without disturbing scale
invariance properties [Daubechies, 1992; Arneodo et al.,
1995]. According to the derivations presented by Arneodo
et al. [1995], let us consider a wavelet Y capable to vanish
any polynomial contribution up to a given order [Arneodo et
al., 1995; Arneodo, 1996]. Equation (15) has a wavelet-
transformed counterpart, in the way:

TYs ~x; rð Þ � r
~h ~xð Þ ð18Þ

where TYs(~x, r) is the wavelet projection of s over the
wavelet Y at the point~x and the scale r > 0, defined as:

TYs ~x; rð Þ �
Z

d~x0s ~x0ð Þ 1
r2
Y

~x�~x0

r

� �
: ð19Þ

TY s(~x, r) represents a convolution of the signal by a version
of the wavelet Y resized by the scale factor r. Equation (18)
has been shown to be fully operative for studying turbulent
flows and has a more general scope than equation (15):
equation (15) implies equation (18), but the converse is not
true. In fact, equation (18) leads to the same singularity

exponents as equation (15) when no long-range correlation
is present and can be employed to perform the statistical
analysis of the energy cascade [Muzy et al., 1991; Bacry et
al., 1993; Kestener and Arnéodo, 2003]. However, equation
(18) has some numerical problems [Struzik, 2000], mainly
due to the requirement of using wavelets Y with several
zero-crossings, what reduces the spatial resolution in the
determination of the singularity exponents [Turiel and
Pérez-Vicente, 2004; Turiel et al., 2006]. This problem has
been solved by processing the modulus of its gradient,
jrsj(~x), instead of the signal itself. If the signal is
multifractal, the gradient modulus field verifies a relation
analogous to equation (18), namely:

TYjrsj ~x; rð Þ � r h ~xð Þ ð20Þ

[see, e.g., Turiel and Parga, 2000; Grazzini et al., 2002],
where the exponents h(~x) are simply related to the
exponents ~h(~x), h(~x) = ~h(~x)�1 [Daubechies, 1992; Turiel
and Parga, 2000; Kestener and Arnéodo, 2003]. The
advantage of processing gradients instead of signals is that
the family of functions Y suitable to perform the analysis
becomes larger, and in particular positive functions can be
employed, what gives a fine resolution [Turiel and Parga,
2000]. For this reason we will use equation (20) as the
practical implementation of the operator in equation (16).
[30] From a theoretical point of view, all wavelets lead to

the same singularity exponents [Daubechies, 1992]. In fact,
all the wavelets lead to very similar results in experimental
situations, that is, when applied to discretized data [Turiel,
2003]; nevertheless, some wavelets may perform better than
others. Two questions must be taken into account when
choosing a wavelet for analyzing real data. First, the
wavelet must be able to discriminate all the singularities
in the given range [Turiel, 2003; Turiel and Pérez-Vicente,
2004], what is related with the tail of the wavelet. Second,
the wavelet must allow to access scales as small as possible
in order to attain an optimal spatial resolution. This drives
the choice to positive wavelets (when they can be
employed; for instance, with measures), as the minimum
resolution of nonpositive wavelets are limited by the num-
ber of zero crossings [Turiel et al., 2006].
[31] A family which has been shown [Turiel, 2003; Turiel

et al., submitted manuscript, 2007] to be the most efficient
to attain good discrimination and resolution capabilities is
the Lorentzian family, namely:

Lb ~xð Þ ¼ 1

1þ~x2ð Þb
; b � 1 ð21Þ

The best resolution is attained by b = 1, but L1 has heavy
tails and so it truncates singularities above a given threshold
[Turiel, 2003; Turiel et al., submitted manuscript, 2007]. A
simple way to circumvent this difficulty is to define the
wavelet by means of appropriate discretized weights which
approximate L1 in the shorter scales and with lighter tails.
This wavelet has proved to be very efficient in practice
[Turiel et al., 2005b, 2005a, submitted manuscript, 2007],
attaining good resolution and discrimination capabilities.
We will always use this wavelet for the rest of the paper.
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4.2. Results

[32] We verify here that the requirements 1–3 defining
the microcanonical multifractal formalism are satisfied by
Pathfinder SST data. To do that, we must explore the degree
of accuracy of equation (20) to perform singularity analysis.
We have chosen SST images corresponding to the Gulf
Stream area and Agulhas current region (Figure 1). With
these data, the available range of scales to be explored is
limited by below due to the finite resolution r0 (typically,
one pixel, �4 km for Pathfinder SST images) and by above
due to the finite size (L). Assuming that equation (20) holds,
the singularity exponent h(~x) is computed performing a log-
log regression on equation (20) (that is a linear regression of
ln(TY jrsj(~x, r)) versus ln r) from r0 up to a valid scale, rM < L.
As rM increases, a decrease in the linear regression coefficient
is expected. For each choice of rM, 21 scaling points are
sampled uniformly along the logarithmic axis from ln r0 to ln
rM. We will consider that equation (20) is valid when the
regression coefficient is above 0.9 (in absolute value). We
thus define the validity radius at the point ~x, R(~x), as the
maximum radius rM for which equation (20) is valid.
[33] In top row of Figure 2 we present the radii R(~x).

Equation (20) is found to hold for radius up to 110 pixels for
the Gulf stream image and 149 for the Agulhas image
(which corresponds to �441 km and �596 km, respec-
tively). The maximum validity radii are maximal in the
central part of the image and decrease close to the image
limits and the coast, due to the presence of these boundaries.
Regions contaminated by clouds (e.g., bottom left corner of

both images) have smaller but nonvanishing R(~x). This is
because clouds have their own multifractal structure
[Arrault et al., 1997; Turiel et al., 2005a] which is, in
general, different from cloud-free areas. For that reason, the
multifractal hypothesis also holds inside clouds but radii are
smaller as clouds are rather small in the studied images.
[34] Having associated a singularity exponent to each

point in the image, we can obtain an explicit multifractal
decomposition, that is, to assign points to the different
fractal components. In addition, we can obtain the empirical
estimate of the distribution of singularities at different scales
(conditions 2 and 3). A visual inspection of the singularity
exponents associated to the same images (second row of
Figure 2) is very revealing. A grey-level representation of
the singularity exponents is a possible visualization of the
multifractal hierarchy, and this does not only delineate the
most obvious patterns in SST images (such as boundary
currents and several mesoscale eddies) but also highlights
some subtler structures. Notice that the presence of long-
range correlations in original SST (for instance, due to the
meridional variations of temperature) masks all such small-
amplitude structures which are revealed by the enhanced
detection capability of singularity analysis, which are inde-
pendent of the local amplitude.
[35] The empirical probability density function (PDF) of

singularity exponents are unimodal (Figure 3) and we obtain
convex singularity spectra D(h) when equation (12) is
applied. When the singularity spectra arising from different
minimum scales are compared, we still obtain essentially

Figure 2. (top) Radius R(~x) for which equation (18) holds for the SST images of Figure 1. (bottom)
Singularity exponents, h(~x), for the same images.
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the same convex curve for all the images analyzed (not
shown) so validating its scale-invariant character.
[36] One may wonder if the rich picture of exponents

revealed by the singularity analysis can be affected by, or
even be, the result of noise contamination in the algorithm
used to get the SST images. It has been noticed [Bowen et
al., 2002] that, when tracking oceanic structures, brightness
temperatures (BT) as recorded by some infrared channels
leads to better results than the multichannel derived SST
image. This has been attributed to a possible increased
influence of noise due to the AVHRR algorithm (NLSST)
[Walton et al. [1998], as it is based on the difference of
temperatures from AVHRR channels 4 and 5. In Figure 4
we compare the singularity analysis for a SST image and the
corresponding BT, both from MODIS. The analysis over the
BT gives better results with an improved discrimination
over subtler patterns, although the SST image also allows to
recover the main mesoscale features. However, when the
analysis is done over MODIS SST and BT images reduced
(by pixel averaging) to a resolution equivalent to that of
Pathfinder, both analysis provides almost indistinguishable
results. If now we compare with the Pathfinder SST image,

we can appreciated that results are equally good for singu-
larity detection as BT ones (compare Figure 2, bottom left,
with Figure 4, bottom). So far, noise effects are important at
the resolution of MODIS images and when working with
them the choice should be shifted to BT images. However,
for the scope of the results here presented Pathfinder images
perform almost equally well.
[37] Another important issue is the oceanic origin of the

observed multifractal structure. Infrared signals may be
contaminated by atmospheric conditions that themselves
also have multifractal properties. Figure 5 presents a
sequence of exponent images obtained during several days
in a large area around the Gulf Stream. As it can be
observed from the figure, many structures (indeed the Gulf
Stream signature itself, but also some mesoscale eddy-like
structures) can be recognized during several days. The
structures evolve slowly (in the scale of days), according
to a plausible oceanic origin compatible with mesoscale
dynamics which is not likely for any atmospheric feature
having in general shorter characteristic times. Certainly, the
presence of clouds introduces occlusion and some pertur-

Figure 3. (top left) Empirical PDFs for the singularity exponents over the Gulf Stream area in 6 May
2000. (top right) Associated singularity spectra, according to equation (12). (bottom) Empirical PDFs for
the singularity exponents over the Agulhas region in 26 November 2002. (bottom right) Associated
singularity spectra for the Agulhas region. For all graphs, continuous lines correspond to the curves
obtained at the minimum possible scale (that of Pathfinder SST image resolution, 4 km) while dashed
lines are obtained when the minimum scale is 32 km. Similar results were obtained at different dates and
locations.
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bation on the neighboring areas, but due to the local
character of the singularity exponents this type of perturba-
tions are short-ranged compared to the textures in the
oceanic regions.
[38] We can therefore state that SST images verify all the

requirements of the Microcanonical Multifractal Formalism
which confirms its multifractal structure within the range of
available scales. Owing to the existence of a multifractal
hierarchy, the most probable origin of the observed struc-
tures is the turbulent character of the oceanic flow. In
addition, the applied singularity analysis provides an spectra
of singularity exponents which looks similar even for
different regions (see Figure 3) suggesting that the under-
lying processes leading to the multifractal structure are of
similar nature. Different phenomena acting significantly on
the system would lead to a nonconvex empirical D(h).

5. Maximum Singularity Streamfunction Method

[39] Results in previous section lead to decompose the
signal into different patterns (called singularity or fractal
components), each one characterized by a value of the
singularity exponents h(~x). The components can be classi-
fied from the most singular (associated to sharp transitions
in the signal) to the less singular, associated to smooth,
continuous areas [Turiel and Parga, 2000]. As a matter of
fact, one of the main advantages of multifractal formalism is
the lack of any continuity requirement on the signal; even
more, some of the fractal components are associated to

discontinuities and sharp transitions [Arrault et al., 1997;
Turiel and Parga, 2000].

5.1. Most Singular Manifold as the Set of Main
Streamlines

[40] The most singular points in the multifractal hierarchy
are of great interest because of their dynamical and statis-
tical properties. According to theory, the most singular
manifold (MSM), that will be denoted as ~F1, is given by

~F1 � f~x : h ~xð Þ ¼ h1g; ð22Þ

where h1 is the most singular exponent, that is, the
minimum observed value of singularity [Turiel et al., 1998;
Turiel and Parga, 2000]. This definition is however too
restrictive in practice because there is an implicit assump-
tion of homogeneity in the multifractal structure. Quite
often, however, the signals under analysis extend over
regions consisting of different areas, each one dominated by
different structures and separated by circulation barriers. In
such cases, although each part has a multifractal character,
they do not necessarily have the same multifractal structure
with exactly the same multifractal parameters, and in
particular h1 needs not to be the same all over that region.
To overcome these difficulties the MSM is extended to a
coarser version. For our work, the MSM, now denoted F1,
will be given by:

F1 � f~x : h ~xð Þ < h0g; ð23Þ

Figure 4. (top) Singularity exponents detected from a SST image (left) and the corresponding channel
31 brightness temperature (right) from MODIS in 8 May 2000 at the Gulf Stream area. (bottom) Same
results when resolution is reduced by a factor 4 (1 pixel � 16 km).
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where h0 is the most probable value. This definition is a
coarse graining of the actual MSMs but fully operational in
practice and for the scope of this paper we will employ it.
[41] From the statistical point of view, the MSM has been

related with the vertex of the energy cascade in turbulence
[She and Leveque, 1994]. In 2-D decaying turbulence

studies it is observed that there exist a tendency towards
an alignment of passive tracer gradients and vorticity
gradients (active tracer) [Lapeyre et al., 2001]. From the
dynamical point of view, it has been experimentally shown
that the multifractal structure of reactive tracers is essen-
tially the same as that of passive tracers [Abraham and

Figure 5. Singularity exponents as obtained from Pathfinder SST images during several days in May
2000 at the Gulf Stream area, for (top) 6 and 7 May, (middle) 8 and 9 May, and (bottom) 10 and 13 May.
Land pixels and those with temperatures below 5�C have been masked to ease comparison.
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Bowen, 2002], what has allowed to conclude that singular-
ities are mainly advected by the flow, a fact which is
consistent with the known theory [Frisch, 1995]. Bearing
this in mind, each fractal component of the tracer field can
be regarded as the union of some instantaneous stream lines.
An experimental evidence is that observed fractal compo-
nents in fluids have dimensions greater than 1 [Turiel and
Parga, 2000; Grazzini et al., 2002; Turiel et al., 2005a,
2005b], what is consistent with having components consist-
ing in streamlines. Separating each one of these stream lines
from a higher dimension fractal component is very compli-
cated and can only be done without imposing further
requirements when the dimension of the component is
exactly equal to 1. This is precisely the case for the
MSM, what allows to recognize the main stream lines in
the flow. Furthermore, the MSM is associated to the largest
order singularities, so the stream lines associated are likely
those inducing the strongest shear.

5.2. Streamfunction Reconstruction From the MSM

[42] Once the MSM is associated to the main instanta-
neous stream lines of the flow, we can recover the velocity
field from the scalar images. In general, for a given
distribution of the gradient of a signal, the SST in our case,
defined only over the MSM, there is an algorithm relying on
the statistical properties of FDT which allows to regenerate
a divergence-free field which coincides with the starting
data on the MSM and which is compatible with some basic
statistical requirements [Turiel and del Pozo, 2002]. Indeed,
in this algorithm the input data are the values of the gradient
of the signal over the MSM, and the reconstruction is
performed by means of a linear vectorial kernel ~g. The
reconstructing kernel is completely defined when some
requirements are imposed. These requirements are the
following: determinism, linearity, statistical translational
invariance, statistical isotropy, and compatibility with the
known shape for the power spectrum. The reconstruction
algorithm has shown to be of great quality in different
applications, including image processing [Turiel and del
Pozo, 2002], analysis of meteorological images [Grazzini et
al., 2002; Turiel et al., 2005b], and time series analysis
[Turiel and Pérez-Vicente, 2003, 2005].
[43] Given a multifractal signal, in this case the stream-

function of the flow y(~x), we denote r1y as the vector
field of gradients restricted to the MSM only, that is,

r1y ~xð Þ � ry ~xð Þd1 ~xð Þ ð24Þ

where d1 (~x) means a delta-like function defined over F1
(so it gives contributions on F1 only). The reconstruction
algorithm [Turiel and del Pozo, 2002] is given by:

y ¼ ~g �r1y ð25Þ

where the symbol � stands for the convolution dot product,

~g �r1y � gx*
@y
@x

				
1

þ gy*
@y
@y

				
1
; ð26Þ

and * is the standard convolution product. The reconstruct-
ing kernel ~g has a very simple functional shape. In Fourier
space it reads

~̂g ~k
� �

¼ i~k

k2
; ð27Þ

where ~k is the wave vector. Taking into account that the
gradient of the streamfunction must be perpendicular to the
stream lines and that in fact ry =~ez �~v (~ez is the normal
vector perpendicular to the xy plane), the reconstruction
formula, equation (25), can be written in terms of the
velocity over the MSM (~v1) as

y ¼~g � ~ez �~v1ð Þ ð28Þ

The stream lines forming the MSM give information about
the directions of the velocity vectors but not about their
moduli or sense, which implies that they need to be
independently defined. The velocities over the MSM can be
written as

~v1 ¼ x1U1~v1* ð29Þ

where U1 is the modulus of the velocity, x1 is the sign, and
~v*1(~x) is a nondimensional velocity field with modulus 1
and the same sense of the velocities than that of the gradient
of s rotated counterclockwise 90 degrees, that is, velocity is
made to point to the same side asr s(~x) �~ez. The quantities
U1 and x1 must be given by some extra, external source,
as the analysis so far is geometric and do not allow to
retrieve them. In the work of Turiel et al. [2005b], it was
proposed the simplest possible guess for these quantities:

UM
1 ¼ xM1 ¼ 1 ð30Þ

This guess is a natural extension of the thermal wind
hypothesis, as it states that the sense (but not the direction)
of the velocity comes from the one induced by the SST
gradient. When this guess is substituted in equation (29), the
function yM(~x) resulting from the application of equation
(28), is known as the maximum singularity streamfunction
(MSS), first introduced by Turiel et al. [2005b].

5.3. Results

[44] From the computation of the singularity exponents of
SST images, the MSM (identified with the main stream
lines) has been extracted using a threshold h0 = 0.2. This
value has been selected because it represents a compromise
between capturing as much patterns as possible but keeping
the MSM lines as thin as possible. To show how the choice
affects the captured sets, in Figure 6 we plot the resulting
MSM using several values of the threshold for the Gulf
Stream region. The threshold controls the number of struc-
tures retained in the image. As the value of the singularity
threshold is decreased, the retained points correspond to the
sharpest gradients of the image, which are associated to a
mixture of ocean thermal fronts, land-water transitions and
cloud boundaries. A too small value of h0 would excessively
filter some coherent fronts, which are put in evidence as h0
approaches the most probable value (compare the images for
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h0 = 0 and h0 = 0.1, 0.2) and then, as h0 goes on increasing the
MSM becomes thicker and thicker. Although the MSM
should represent streamlines, numerical limitations and data
resolution may force some lines to end within the flow or
intersect between them. Another important aspect concerns
the effect of land-water transitions and cloud contaminated
pixels. Land-water transitions are step-like (as no value is
assigned to the pixels on land) and so the MSM aligns with
the coastline. This part of theMSM acts as a fictitious parallel
current which actually represents the boundary condition at
the coast. This is very useful, as it allows treating coasts with
the same reconstruction formula and produce streamfunc-
tions with the correct boundary conditioning. A somewhat
different situation appears with clouds. Clouds are complex
structures with their own inner singularity organization and
for that reason some exponents are detected inside. However,
the cloud-water transition behaves in a fashion much similar
to the coastline, so inducing an extra boundary condition (as
if the cloud was an island; see Figure 2, third row, where their
lower-left corner is contaminated by clouds). In this case the
effect is not beneficial as for coasts, as it distorts the actual
flow course. However, this boundary condition guarantees a
short range perturbation of the MSS and hence the influence
of the clouds is kept rather controlled in space (contrary to
what happens with other methods).
[45] The computation of yM from SST is straightforward

(Figure 7). It provides a field with the same resolution as the
original SST image but in contrast, the MSS field reveals a
rich structure of eddies, fronts, and similar features. A
qualitative comparison between the MSS and an indepen-
dent estimation of the streamfunction can be made just by
overplotting the sea level anomaly h from altimetry to yM

(Figure 7). A good correspondence between the isolines of
the MSS and h can be observed. In particular, there is a

good matching between mesoscale eddies and other struc-
tures from one field to the other in Gulf Stream image, a bit
worse in the case of Agulhas image. Notice that the MSS
contains a much richer structure due to its greater spatial
resolution. In some specific areas, sea level contours are not
colocated with MSS lines but cross them with a high angle
(see, for example, the area close to the point 40�S, 23�E).
However, when comparing with altimetry it is important to
take into account that sea level is measured only on satellite
tracks and an interpolation method have been used to
recover the 2-D field. Recently, it has been shown that if
only two altimeters are used, which is the case of the
altimetry data here used, there might be some erroneous
reconstruction of ocean flow patterns [Pascual et al., 2006].
[46] In spite of the general good correspondence between

both fields, there are other qualitative differences. For the
Gulf Stream image, the Gulf Stream appears as a tube-like
structure (higher values of yM in the center of the stream
decreasing towards the borders) instead of the step-like
shape (monotonic increase of the streamfunctions toward
the South) that can be observed in altimetric maps. To shed
some light on this phenomenon, Figure 8 shows the vector
field associated to the MSS,~v*1, for a small area centered
over the Gulf Stream jet. From the figure it is evident that
velocities have opposite senses in the meridional boundaries
of the stream, which can be easily identified as the void
region bounded by the MSS along the diagonal of Figure 8
(see also Figures 2 and 6). The lack of internal thermal
structure within the jet leads the streamfunction recon-
struction using x1 = 1, to have a tube-like structure
instead of step-like. The origin of this erroneous determi-
nation of the sign of ~v*1 is the pointing of velocities in
the direction derived from the gradients of the SST.
However, notice that when deriving yM from SST it will

Figure 6. Most singular manifold (F1) obtained using different values of the threshold exponent
(h0). From left to right and from top to bottom are shown h0 = �0.1, h0 = 0, h0 = 0.1, h0 = 0.2, h0 =
0.3, h0 = 0.4.
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be a good approximation to the actual y if temperature
gradient points in the same sense as the density gradient.

6. Integration External Data Sources: Case of
Altimetry

[47] As shown in the previous section, the MSM is
essentially a geometric method very precise and useful to
put in evidence structures hidden in the original SST. The
inferred yM is a first approximation to the real stream-
function that has some limitations, in particular it cannot

retrieve correct values of U1 and x1 and may fail in some
cases to reproduce the velocity field related to some areas.
This can be overcome by integrating additional independent
information on the velocity field. Let us suppose that we
have velocity measurements coming from other devices
(Lagrangian floats, current-meters, ADCP measurements,
etc.) that provide information over some points of the MSM.
Let us denote by~vi,1 such velocity field. Now, U1 and x1
can be simply evaluated using~vi,1 through

Ui
1 ¼ jj~vi;1jj ð31Þ

Figure 7. Comparison between the MSS (yM(~x)) and the closest sea surface topography map (black
lines, units are centimeters) for (top) the Gulf Stream area and (bottom) the Agulhas current area.
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and

xi1 ¼ ~vi;1 �~v1*
j~vi;1 �~v1*j

ð32Þ

[48] As an example, we will use geostrophic velocities
derived from altimetry to improve the results of the previous
section. This is an interesting case because altimeters
provide much more information compatible with the spatial
coverage of an SST image and, from an operational point of
view, being both satellite data, the combination can be done
in a routine way.
[49] Given the sea surface topography h(~x), a velocity field

can be estimated through the geostrophic approximation

~vh ~xð Þ ¼~ez �
g

f0
rh ~xð Þ ð33Þ

where f0 is the Coriolis parameter at a reference latitude and
g the gravity. The geostrophic streamfunction, denoted by
yh(~x), is defined as

yh ~xð Þ ¼ gh ~xð Þ
f0

ð34Þ

[50] Now, introducing yh(~x) in (31) and (32) we can
recompute x1

h and U1
h . In Figure 9 we have presented

these fields. The value of x1
h may change from one to

another line of the MSM, but it is consistently constant
along each stream line. More interestingly, the figures show
that U1

h is almost constant or changes smoothly along the
MSS lines in the Gulf Stream region; for the Agulhas area

the U1
h evolves smoothly during shorter segments due to

the worse agreement between altimetry and SST. Figure 10
plots the same zoom of the velocity field over the MSS than
Figure 8 but with the calibrated velocities (~v1

h ) instead of
the nondimensional ones (~v*1). From this figure it is
evident not only the variation of speed but the change of
the sign of velocities in the southern boundary of the Gulf
Stream. Figure 11 shows the streamfunction (yh) integrating
the additional information. Stream lines are almost compat-
ible with those from yM (as both have been derived from the
same MSM) but in this case given a correcting the right
direction more consistent with the known shape of the Gulf
Stream. To finish, let us remark that the scheme used here to
incorporate additional information in order to improve the
streamfuction is general and can be applied without changes
to include direct in situ velocity measurements of velocity
coming from any device.

7. Conclusions

[51] In the first part of the paper we have shown that the
thermal structures observed in SST images (Pathfinder SST)
exhibit a multifractal structure according to what it is
expected for a turbulent flow. A singularity analysis has
been carried out to compute the scaling exponents associ-
ated to the thermal gradients over the range of available
scales in the images. The spectrum of singularity exponents
satisfies the expected properties of multifractality found in
fully developed turbulent flows. We have observed this for a
time series of images over the same area and for two
different areas, and in all cases we obtained roughly the
same singularity spectra. This fact could be related to the
existence of common mechanism in the generation of
oceanic thermal structures at the mesoscale, although much

Figure 8. Detail of the nondimensional velocities on the MSM (~v*1) for the Gulf Stream current.
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Figure 9. (left) Gulf Stream images and (right) Agulhas image showing (top) MSM with a color code
corresponding to the value of U1 and (bottom) MSM with a color code corresponding to x1.

Figure 10. Detail of the calibrated velocities on the MSM (~v1
h ) for the Gulf Stream current.
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more systematic analysis over a greater set of images needs
to be done in order to prove it.
[52] The singularity analysis confirms that SST images

satisfy the microcanonical multifractal formalism, which
allows to assign anomalous scaling exponents not only for
global statistical properties of the field, as it is common in
the literature on turbulence studies, but to assign it to each
point of the analyzed data. The singularity analysis applied
to the SST images have revealed a very rich structure of
patterns not evident from a look into the original image, so

working as an efficient edge detector. Another consequence
of this analysis is that the field can be separated in fractal
components, depending of the exponents values which have
a direct translation in classifying data points in sets. The
most relevant set is associated to the most singular expo-
nent, the so-called most singular manifold (MSM). The
MSM for SST images studied here is associated to sharp
thermal fronts, not necessarily intense at a global scale but
at a local scale.
[53] In the second part of the paper the extraction of the

MSM from the SST images has been used to infer the most
informative streamlines, the maximum singular streamfunc-
tion denoted as the MSS method. Thus an ocean velocity
field over these streamlines can thus be obtained from a
single image. The crucial step here is to assume that the
MSM is related with the instantaneous streamfunction
because the singularities are mainly advected by the flow.
Despite of a formal proof is needed, the results confirm that
the obtained field is very reasonable and comparable with
for example the sea level anomaly field from altimetry.
However, although based on general considerations on the
statistical properties of the flow, the method is essentially
geometric as no specific dynamical information of the
system under study is included. Since the direction of the
velocity has to be tangent to the streamlines, it can be
obtained from the method itself. However, the modulus and
sign of these velocities remain undetermined. A first choice
to solve this is to arbitrarily fix the modulus of the velocity
to 1 and derive the sign from the sign of the tracer gradient.
Although this does not provide the correct streamfunction
everywhere, it has the effect of enhancing the structures
present in SST images. Alternatively, we have shown that a
simple scheme can be built to include additional informa-
tion on the velocity field. Any independent measurement or
estimate of the velocity on the main streamlines (Lagrangian
drifters, current meters, etc.) can be integrated within the
MSS method. Here, the case of incorporating the geostroph-
ic velocities derived from altimetry has been applied leading
to a streamfunction that reproduce much more correctly
some undetermined features of the realistic streamfunction.
Thus the MSS method may potentially be used to improve
the existing altimetric maps, providing higher resolution
estimates of the geostrophic stream function or even to
include dynamical constrains such as ones recently imple-
mented to analyze microwave SST Lapeyre and Klein
[2006]; Isern-Fontanet et al. [2007].
[54] Finally, the MSS method can be used as an alternative

to other methodologies developed in the past to infer motion
from satellite images [i.e., Horn and Schunk, 1981; Emery et
al., 1986; Kelly, 1989; Garcıacute;a and Robinson, 1989;
Whal and Simpson, 1991; Wu et al., 1992; Kuo and Yan,
1994; Côté and Tatnall, 1995; Afanasyev et al., 2002; Bowen
et al., 2002]. Roughly speaking, these methods obtain the
velocity field through a matching algorithm of contour
patterns, edges or correlation analysis between windowed
regions of sequential images. In contrast, the major benefits
of the MSS method is that the streamfunction is obtained
from a single image and with same resolution as the original
SST image. In addition, as far as the hypothesis of multi-
fractality is satisfied images of any other tracer; for example,
ocean color images from visible sensors should be equally
valid for retrieving the MSS. In many situations the SST may

Figure 11. Normalized streamfunctions yh obtained from
the recalibrated velocities for (top) the Gulf Stream area and
(bottom) the Agulhas current area.
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not be a sufficient representative of the underlying flow. In
such case the information provided by visible sensors, which
is an integration over the first meters of the ocean, may
reflect better the flow of the upper layer of the ocean.
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