
CoastalEngineering, 14 (1990) 193-214 193 
Elsevier Science Publishers B.V., Amsterdam - -  Printed in The Netherlands 

Waves in a harbour with partially reflecting 
boundaries 

Michael Isaacson and Shiqin Qu 
Department of Civil Engineering, University of British Columbia, Vancouver, B.C. V6T 1 W5 

(Canada) 

(Received May 14, 1989; revised and accepted November 21, 1989) 

ABSTRACT 

Isaacson, M. and Qu, S., 1990. Waves in a harbour with partially reflecting boundaries. Coastal Eng., 
14: 193-214. 

The present paper describes a method based on linear diffraction theory for predicting the wave 
field in a harbour containing partially reflecting boundaries. The method utilizes a point source rep- 
resentation of the harbour boundaries and a matching boundary which separates regions interior and 
exterior to the harbour, and involves the application of a partial reflection boundary condition. Nu- 
merical results are presented for the wave field within a rectangular harbour with a pair of symmetri- 
cal breakwaters, for cases of fully absorbing, fully reflecting, and partially reflecting boundaries. The 
method appears to be able to account adequately for the effects of wave diffraction and partial reflec- 
tions, and to predict the wave field realistically. 

I N T R O D U C T I O N  

The degree of protection provided to vessels within a harbour is a primary 
consideration in harbour design and consequently improved predictions of 
wave conditions within a harbour are of considerable importance. The cal- 
culation of short wave diffraction in harbours generally ignores wave reflec- 
tions off the interior boundaries of the harbour. In particular, closed-form 
solutions for a semi-infinite straight breakwater, and for a breakwater gap 
between a pair of colinear straight semi-infinite breakwaters have been known 
for some time and are widely used in marina design (e.g. Shore Protection 
Manual, 1984). 

On the other hand, long wave resonance in harbours has generally been 
treated by considering all harbour boundaries as impermeable so that a full 
reflection boundary condition may be applied. Hwang and Tuck (1970) have 
treated this problem for the case of a harbour of arbitrary shape by the use of 
a boundary integral method which involves the distribution of wave sources 
along the harbour boundary. Chen and Mei (1974) treated such problems 
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using a hybrid element method in which a finite-element solution in the in- 
terior region of  the harbour is matched to an analytical solution for the exte- 
rior region. The special case of resonance in a rectangular harbor has been 
described by Miles and Munk ( 1961 ), Garrett (1970) and Mei ( 1983 ). 

For the case of short wave propagation, neither of  these approaches, corre- 
sponding either to complete reflection or to zero reflection at the harbour 
boundaries is really appropriate since in practice partial reflection at the 
boundaries within a harbour invariably occurs. The corresponding extension 
may be made by introducing a partial reflection condition along the harbour 
boundaries as indicated by Berkhoff (1976).  Chen ( 1986 ) introduced such 
a refinement, together with one accounting for bottom friction, to a hybrid 
element model of wave behaviour within a harbour, and applied this to study 
the influence of boundary absorption and bottom friction on long wave reso- 
nance in a rectangular harbour. An alternative refinement treated by some 
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wave number 
number of segments 
distance normal to boundary, directed into the fluid region 
distance between points x and ~ 
harbour boundary (see Fig. 1 ) 
wave period 
t ime 
horizontal coordinates of general point 
vertical coordinate measured upwards from the still water level 
complex transmission coefficient 
reflection phase angle 
incident wave direction relative to normal at the boundary 
matching boundary (see Fig. 1 ) 
segment length 
free surface elevation 
wave direction relative to x-axis (see Fig. 1 ) 
horizontal coordinates of  wave source on the boundary F or S 
velocity potential 
velocity potential function (see Eq. 4 ) 
angular wave frequency 
angle of  the boundary normal relative to the x-axis 
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authors takes account of variable depth by including the effects of combined 
wave refraction and diffraction. 

The present paper attempts to provide a general solution of wave behaviour 
in a harbour of arbitrary shape and constant depth, based on the approach 
indicated by Berkhoff (1976) and taking account of partial reflections. Re- 
sults of a corresponding numerical model are presented for the fundamental 
case of a wave train incident on a rectangular harbour contained within a 
symmetrical pair of breakwaters. The harbour boundaries are considered to 
have varying degrees of reflection, including the limiting cases of perfect re- 
flection and absorption. The results of the model are described by plots of 
surface elevation, corresponding to an instantaneous view of the wave field, 
as well as contours of wave height and wave phase. 

THEORETICAL FORMULATION 

Governing equations 

A numerical approach to predicting the wave field within a harbour with 
partially reflecting boundaries was indicated by Berkhoff ( 1976 ) and the ap- 
plication of such a method to a harbour of arbitrary configuration is consid- 
ered here. 

The general situation being investigated is indicated in Fig. 1, with wave 
motion at a single frequency only being considered. A Cartesian coordinate 
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Fig. 1. Definition sketch of the general diffraction problem. 
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system is defined with x and y measured horizontally and z measured verti- 
cally upwards from the still water level. In the usual manner the fluid is as- 
sumed incompressible and inviscid and the flow irrotational so that the flow 
may be described by a velocity potential ~ which satisfies the Laplace equa- 
tion within the fluid region. Thus the effects of fluid viscosity are confined to 
energy absorption and resulting partial reflection along the harbour bounda- 
ries. The wave height is assumed sufficiently small for nonlinear terms to be 
omitted so that linear wave theory is applicable. The seabed and two free- 
surface boundary conditions are given as: 

0 Oz-  a t z = - d  (1) 

0:q~ 0~  
Ot 2 4-g-b--fz=0 at z = 0  (2) 

-b7 z_-o 

Here r/is the free surface elevation, g is the gravitational constant, d is the still 
water depth and t is time. 

Provided that all barriers are considered vertical and to extend from the 
seabed (or deep water) up to the free surface, the velocity potential • may 
be considered to have the following form: 

cosh [k(z+  d) ] 
q)(x,z,t) =A¢(x)  cosh (kd) e x p ( -  iogt) (4) 

where ~ (x) denotes a two-dimensional potential function which is to be de- 
termined, and x represents a general point (x, y) in the horizontal plane. (The 
real parts of this and subsequent complex expressions are understood. ) Also 
A = -igHo/2Og, i= x/Z- 1, Ho is the incident wave height, k is the wave num- 
ber, and co is the angular frequency which is related to the wave number by 
the linear dispersion relation: 

oo:=gktanh( kd) (5) 

The free surface elevation corresponding to Eq. 4 is given as: 

Ho ¢)(x)exp(-itot) r/(x,t) = - f  (6) 

Equation 4 ensures that the seabed and free-surface boundary conditions 
are satisfied. Since the velocity potential • satisfies the Laplace equation, the 
potential function 0 itself must satisfy the Helmholtz equation within the fluid 
region: 
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020 020 2 _  
4- ff~-: + k O - 0  (7) Ox 2 

It is convenient to define an exterior region and an interior region as indi- 
cated in Fig. 1, with the boundary between the two areas denoted by F. The 
choice of F is somewhat arbitrary, and in certain situations, such as a marina 
with a single breakwater, such a representation is inappropriate, correspond- 
ing to a limitation of the method. Both the interior and exterior regions are 
assumed to have the same constant water depth and therefore the same wave 
number k. In the exterior region, the potential 0 is expressed as a superposi- 
tion of a known incident wave potential 0w and a scattered wave potential 
0~ e) . The scattered potential is assumed to be due only to the presence of the 
harbour and thus to emanate from the boundary F. That is, in the exterior 
region, reflections of the incident wave from the breakwater and the shoreline 
are neglected with respect to their influence on the interior flow field, so that 
the representation of the exterior flow field itself may not be completely real- 
istic. In the interior region, the potential function 0 is not separated in this 
way and is denoted as 0~ (i) . Thus: 

( 0 w + 0 ~  (~) in the exterior region 
0=  0~ :) in the interior region (8) 

The incident wave potential 0w is known and may be expressed as: 

0w(X) =exp[i(/cx cos O+ky sin 0) ] (9) 

where 0 is the incident wave direction measured clockwise from the x-axis. 
Along the boundary Fmatching conditions relating the flows in the interior 

and exterior regions may be imposed. Continuity of the free surface elevation 
and velocity normal to the boundary require that the potential 0 and its nor- 
mal derivative dO~On are continuous. These conditions are respectively: 

o(i) =Ow + O  (e) on/"  (10) 

O0 (i) OOw .~. OOs (e) 
On - On On on F ( 11 ) 

In addition, 0} e) is subject to a radiation condition in the far field, and 0~ (i) is 
subject to a boundary condition along the harbour boundaries. The radiation 
condition is: 

(O0(~e) ikO(~e))=O (12) rLim   
where r is distance measured away from the harbour. The boundary condition 
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along the harbour boundary should take account of partial reflections and is 
now considered. 

Partial reflection boundary condition 

A boundary condition corresponding to partial reflection may be intro- 
duced in the manner  proposed by Berkhoff ( 1976 ). Reflecting boundaries are 
not always vertical nor are fully reflecting. In order to treat these boundaries 
in the present model, they are schematized as vertical, and partial reflection 
is introduced into the model  by using a mixed boundary condition instead of 
the full reflection condition. This is: 

O~) bak~)=O (13) 
On 

in which n is distance into the fluid region measured normal to the boundary 
and a ( = a~ + ia2) is a complex transmission coefficient. This coefficient may 
be interpreted in a number  of ways, as indicated by Berkhoff (1976) and 
summarized by Isaacson and Qu ( 1989 ). These relate to: 
(a) its relation to the rate of  transfer of energy at the boundary; 
(b) its relation to the height and phase of the wave field at the boundary; 

and 
(c) its relation to the conventional reflection coefficient. 

The transmission coefficient a may be related to the reflection coefficient 
Kr which is commonly used and which is defined as the ratio of  a reflected 
wave height to an incident wave height. This definition is really only useful 
in the particular case of reflection of  a long-crested plane wave against a long 
wall, assuming that partial reflection has no influence upon the form of the 
reflected wave. In such a case it is possible to relate the transmission coeffi- 
cient a ( = al + ia2 ) to the conventional reflection coefficient Kr and a phase 
shift fl associated with the reflection, and the angle the incident wave train 
makes with the wall. 

Assuming that a wave train undergoes oblique partial reflection from a ver- 
tical wall located at x = 0 ,  such that the incident wave direction makes an 
angle 7 with the normal to the wall, the total potential of the combined wave 
field corresponds to a three-dimensional wave pattern and may be written as 
the sum of the incident and reflected wave potentials: 

O=A{exp[ ik (x  cos 7+y  sin 7) ] 

+ Kr exp [ - ik (x  cos 7 - Y sin 7 ) + ifl ] } ( 14 ) 

Substituting Eq. 14 into Eq. 13 the transmission coefficient o~ is given as: 



WAVES IN A HARBOUR WITH PARTIALLY REFLECTING BOUNDARIES 199 

2Kr sin ¢/cos y ] 
a ~ - 1 + Kr 2 + 2K~ cos/~ 

( 1 - K 2) cos 7 
0 / 2  - -  1 + Kr z + 2Kr COS fl 

(15) 

Equation 15 shows how the transmission coefficient depends on the conven- 
tional reflection coefficient Kr, the reflection phase angle/~ and the incident 
wave direction ?. This indicates that for normally incident waves (? = 0 ° ) the 
special cases of full reflection with Kr = 1 and ]~= 0 ° and full absorption with 
Kr = 0 and/~= 0 ° correspond to a = 0 and i, respectively. 

Greens function representation 

The boundary value problem which has been specified is solved by express- 
ing the scattered potential ~(e) in the exterior region as due to a distribution 
of point  wave sources along the matching boundary F, and the scattered po- 
tential ~ i )  in the interior region as due to a distribution of point wave sources 
along the matching boundary F and along the remaining harbour boundaries, 
denoted S as indicated in Fig. 1. Thus: 

0(e)(x)=~_~ f(e)(~) G(x;~) dS (16) 
F 

0~i) (X)  ~--- 1 ~f(i)(,)G(x;,)dS (17) 
S + F  

w h e r e f  (e) (~) a n d f  ") (~) represent the source strength distribution functions 
for the exterior and interior potentials, respectively, G(x;~) is a Greens func- 
tion for the general point  x =  (x,y) due to a point  wave source located at the 
point ~= (~,r/) on F or S, and dS denotes a differential length along F or S. 
The Greens function represents the potential at a general point x due to a 
point  wave source of  unit strength at point ~ and corresponds to a fundamen- 
tal solution to the Helmholtz equation which satisfies the radiation condition. 
It may be expressed as: 

G(x;~) = inH~ 1 ) (kr) ( 18 ) 

where Ho ~1) is the Hankel function of  the first kind and zero-th order, and r is 
the distance between x and ~: 

r = x / ( x _ ~ ) 2 +  ( y _ q ) 2  (19) 

The boundary conditions along F given by Eqs. 10 and 11 give rise to the 
following pair of  integral equations for f " )  and f (  ~): 
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14Zt f f(i'(~)G(x;~)ds-lf f(e)(~)G(x;~)dS=fbw(x) 
S + F  F 

_ f OG 4n f ( i ) ( ~ )  ~ (X;~)  d S +  ½ f ( e ) ( x )  - 

S + F  

for x on F 

(2O) 

f(e) (~) -~n (x;~) d S =  (x) for x on F (21) 
F 

In addition, the boundary condition along S for the general case of partial 
reflection given by Eq. 13 gives rise to an integral equation: 

_ f OG 4g f(i) (~) ~ (x;~) d S +  
S + F  

k f f(i) a ( x )  ~ (~) G(x;~) d S = 0  f o r x o n S  (22) 
s+r 

In Eqs. 20, 21 and 22, x is the point on F or S at which the boundary con- 
dition is applied, and n is distance in a direction normal to F or S at x. In the 
case of a fully reflecting portion of a boundary, a = 0 so that the second inte- 
gral in Eq. 22 is then absent. In the case of a fully absorbing portion of a 
boundary, a = i. Bearing in mind that r in Eq. 12 and n in Eq. 13 are in op- 
posite directions, it is seen that the radiation condition given in Eq. 12 may 
then instead be satisfied. Because the Greens function chosen satisfies this 
condition, this portion of  the boundary can then simply be omitted from Eq. 
22. 

In evaluating the integrals in Eqs. 21 and 22, the derivative of the Greens 
function aG/an is required. This may be expressed as: 

OG 
- - inkH[ l ) (kr )  cos d (23) 

On 

where HI ~ is the Hankel function of  first kind and order one, and: 

cos d ,  nx(X-~) + ny(y-rl) (24) 
r 

Here nx and ny are the direction cosines of the normal vector n with respect 
to the x and y directions, respectively. 

Numerical approximation 

In a numerical solution to the formulation given above, Eqs. 20, 21 and 22 
are solved by a numerical procedure in which the horizontal contour S +  F is 
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discretized into Ns short straight segments along S and Nr segments along F, 
and the source strength is assumed constant over each segment, and denoted 
by f}i) for the jth segment. Using this discretization, Eqs. 20, 21 and 22 are 
satisfied at the centre of each source segment and are thereby reduced to three 
sets of linear equations for the unknown source strengths at the centre of each 
segment. These correspond, respectively, to Ns, Nr and Nr equations for the 
Ns + Nr values off)  i) and the Nr values off~ e ) which are required. These may 
be combined into a single set of N= Ns + 2Nr linear equations for all the source 
strengths: 
N 

Ao2j=b~ for i= l, ..., N (25) 
j = l  

where: 

j- f}i) for j =  1, . . . ,  N1 
~.j= "~ f~e) forj=N1 + 1, ..., N (26) 

0 for i=  1, ..., Ns 
20w for i=  Ns + 1, ..., NI 

bi= 2O0_____~w for i=N1 + 1, N 
On "'" 

(27) 

B(/ {0 
+ 1 Go Sj Aij= - 2n 
+ 1 _ ~ j ]  

J 

for i=  1, ..., Ns ; j=  1, ..., N1 
for i = 1,..., Ns; j =  N~ + 1, ..., N 
for i = N s +  1, ..., N~ 

for i=N~ + 1, ..., N 
(28) 

Where alternative signs are given, the positive sign applies when j =  1, ..., N1 
and the negative sign when j=Nl  + I, ..., N. In the above NI =Ns+Nr and G o 
and (OG/On)~j denote, respectively, G and OG/On with argument (x~;~). Also: 

Bij = -~ij wl-~z [ ~-n + kOl ( Xi ) G ]ASj (29) 

~o is the Kronecker delta and ASj is the length of the jth segment. For i ¢j ,  B o 
is evaluated by assuming OG/On and G to be constant over the segment length. 
However, when i = j  a singularity arises so that an integration over the seg- 
ment is used in place of the mid-point approximation. Bearing this in mind, 
a suitable approximation for B o is given as: 
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~-n[ff~(xi ;~j)+kce(xi)  G(x, ;~j) ]  f o r i C j  

(30) 

B,j= - 1 + @ k ° t ( x ~ ) [ l n ( ~ ) -  11 for i = j  

Now that the coefficients A o are known, the sources strengths ~ may be 
obtained by solving Eq. 25, and the potential functions 0~ (e) (x) and 0~ i) (x) 
at a point x within the interior and exterior regions in turn may then be ob- 
tained by discretized versions ofEqs. 16 and 17: 

0 ~ i ) ( X ) - - - -  1 ~-' f 0 )  G(x ;~ j )  zJSj (31) 
- 4U j~ l  J 

1 N 
0~e) (X)=~-~jEl f j  ( e ) =  G(x;~j)ASj (32) 

Description of flow field 

Once the potentials O~ e) and O~ i) have been evaluated, any required prop- 
erties of the wave field may be obtained. In particular, the water surface water 
elevation ~/at time t=O, the wave height H and the wave phase angle ~, are 
given, respectively, as: 

Ho H 
r/(t= 0) =-~- Re(O) =~- cos ~u 

H=Hol01 

~=Arg(O) 

where Re ( ) denotes the real part and Arg ( 

(33) 

(34) 

(35) 

) denotes the argument. A three- 
dimensional plot of r/(t  = 0) is useful for obtaining a general view of the wave 
field at a particular instant, with no special significance attached to the in- 
stant chosen, t = 0. The wave height H and the wave phase angle ~, associated 
with 0 have been expressed as above by taking 0 in the form: 

H 
0=~-oo exp(i~) (36) 

A diffraction coefficient Ko may be defined as the ratio of the wave height 
at any point in the interior of the harbour to the incident wave height. Bearing 
in mind Eq. 34, this is given in terms of the scattered potential as: 

g~(x) = [0~i)(x) I (37) 

Finally, the wave direction at any point is also of interest, provided that 
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this can be identified in a meaningful way. The definition of wave direction 0 
adopted by Isaacson and Qu (1989) is that direction, measured clockwise 
from the x-axis, which is orthogonal to the wave phase angle contours and 
corresponds to increasing values of ~,. This definition can be expressed as: 

0= arctan \ 0 ~ , /  ( 38 ) 

The use of such a definition is really only suitable for portions of a wave field 
which have readily identifiable directions. In particular, for a wave field made 
up of component wave trains travelling in different directions, the wave di- 
rection at a point is somewhat artificial and not particularly meaningful. Pro- 
vided that the definition given by Eq. 38 is adopted, then information on 
wave direction derives directly and visually from plots of phase angle con- 
tours, and it then becomes redundant to plot the direction itself. 

Estimation of transmission coefficient 

The preceding formulation is based on the assumption that the transmis- 
sion coefficient a is known for all portions of the boundary S, and an appro- 
priate manner of estimating a is now considered. As mentioned earlier, por- 
tions of the harbour boundary which are fully absorbing may simply be omitted 
from S, while for portions of S along fully reflecting boundaries, we have sim- 
ply a = 0. At partially reflecting boundaries, a can be estimated on the basis 
of Eq. 15 provided that suitable values are assigned to the conventional re- 
flection coefficient Kr, the associated phase angle fl and the incident wave 
direction y. However, this may be rather difficult, and the estimation of each 
of these three parameters is considered in turn. 

Reflection coefficient, Kr. For a particular beach or wall, the reflection coef- 
ficient Kr depends on the incident wave height, period and direction, but for 
simplicity a constant specified value of K~ is assumed for a particular beach 
or wall and a particular wave frequency. 

Reflection phase angle ft. The reflection phase angle fl is directly related to 
the location at which the numerical vertical boundary is placed in relation to 
the actual boundary which may be sloping and in order to avoid ambiguity, 
the vertical boundary used in the numerical model is located where the still 
water level intersects the actual boundary. For a particular beach or wall, the 
reflection phase angle fl will also depend on the incident wave height, period 
and direction, although experimental work relating to normal reflection at 
beaches and walls has generally provided information on reflection coeffi- 
cients but not the associated phase angles. However, numerical tests have in- 
dicated that the results are not particularly sensitive to the value offl so that 
a value of f l=0  is chosen here. 
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Incident wave direction 7. The choice of ~, is complicated because the flow 
at any point on the boundary generally contains incident waves together with 
reflected waves from other parts of the boundary. As indicated earlier, there 
is consequently some difficulty in adopting an incident wave direction in a 
meaningful way. Even if such a direction is obtained, say on the basis of Eq. 
38, it will not generally be known a priori. 

The simplest approach, which may be used to provide an initial approxi- 
mation to the solution, is to take 7=0. Taken together with the assumption 
that fl=0, this gives from Eq. 15: 

o~1=0 } 
1 -Kr (39) 

o~2- l+Kr  

In order to obtain improved values of 7, the wave field arising from this 
first approximation may be used to obtain a wave direction 0 at any point on 
the boundary on the basis of Eq. 38. This direction may then be combined 
with the orientation of the boundary itself to provide the corresponding value 
ofT. 

7 = r r - X + 0  (40) 

where X is the angle the normal to the boundary makes with the x-axis. This 
suggests an iterative procedure in which an initial solution is first found and 
used to provide the wave direction 0 at each point on the boundary, and thus, 
by Eq. 40, the angle 7. The transmission coefficient a can then be estimated 
and a revised solution then obtained for the wave field. 

R E S U L T S  

The numerical model described above has been applied to the fundamental 
case of a rectangular harbour which is indicated in Fig. 2. The harbour has a 
length of 300 m and a width of 300 m, with a gap width B of 50 m between a 
pair of symmetrical breakwaters. The harbour is subjected to a uni-direc- 
tional incident wave train of a uniform unit wave height, a propagation direc- 
tion orthogonal to the breakwater gap as indicated in Fig. 2, and a length 
L =  50 m corresponding to a breakwater gap to wave length ratio B / L =  1. The 
incident wave train corresponds, for example, to a uniform depth d =  20 m 
and a wave period T= 5.7 s. In the numerical model, a source segment length 
to wave length ratio of 1/20 has been used. 

The wave field within the harbour predicted by the present method for the 
case of fully absorbing boundaries and impermeable breakwaters is indicated 
in Fig. 3. Since the harbour boundaries are fully absorbing in this case, they 
are not represented in the numerical model so that only the matching bound- 



WAVES IN A HARBOUR WITH PARTIALLY REFLECTING BOUNDARIES 205 

INCIDENT 
WAVE 
DIRECTION 

• 50 m I 
L=50m 

300 rn 

300 m 

Fig. 2. Rectangular  ha rbour  used in numer ica l  example. 

ary across the breakwater gap is discretized. Note that the reflection coeffi- 
cient along the breakwaters does not itself influence the solution in this par- 
ticular case since the breakwaters are colinear with the gap, so that the wave 
sources along the gap do not induce a normal velocity along the breakwaters 
and reflections from elsewhere in the harbour are absent. More generally, for 
waves approaching the breakwater obliquely, the breakwater would have to 
be discretized and its reflection coefficient would then influence the solution. 
Figure 3a shows the computed water surface elevation at time t=  0. This ex- 
hibits the expected features of wave crests which approximately form concen- 
tric arcs with centres at the breakwater gap, and wave heights which noticea- 
bly decrease in the shadow zone behind the breakwaters and which are close 
to the incident wave height outside the shadow zone. Figure 3b shows the 
corresponding contours of wave phase which reproduce this configuration of 
wave crests. Figure 3c shows the corresponding contours of wave height. These 
are compared to the predictions of the analytical solution (e.g. Blue and John- 
son, 1949; Shore Protection Manual, 1984) shown in Fig. 3d, the numerical 
solution of Pos and Kilner (1987) shown in Fig. 3e which is based on a finite- 
element method, and the experimental measurements of Pos and Kilner 
(1987) shown in Fig. 3f. The comparison is quite favourable, with the general 
features of the analytical solution reproduced by the present numerical model. 

In comparison to this case, Fig. 4 shows corresponding results for the iden- 
tical conditions, except that the boundaries of the harbour are fully reflecting, 
Kr= 1. This case of full reflection has been considered by Miles and Munk 
( 1961 ), Garrett (1970) and Mei (1983) in the context of harbour resonance. 
However, a simple closed-form expression for the wave height within the har- 
bour for arbitrary wave lengths is apparently not available. Figure 4a shows 
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the  c o m p u t e d  free surface e leva t ion  at  t ime  t = 0  and  indicates  the general ly  
confused ,  t h r ee -d imens iona l  wave  field wi th in  the  harbour .  Figures  4b and  4c 
show the co r r e spond ing  wave  phase  and  wave  height  con tours ,  respect ively,  
and  clarify the  i r regular i t ies  o f  the wave  field. 

Figure  5 shows co r r e spond ing  results  for  the  m o r e  general  case o f  b o u n d a -  
ries wi th  par t ia l  ref lec t ion co r r e spond ing  to a ref lec t ion  coeff ic ient  Kr = 0.1. 
These  results are based  on  the a s sumpt ion  tha t  f l=  0 ° and  7 =  0 °. F o r  the rel- 

(a) 

(b) )-" - -  

/ 
Fig. 3. Wave field in the rectangular harbour with fully absorbing boundaries, a, Surface eleva- 
tion at time t=0; b, wave phase contours; c, wave height contours - present solution; d, wave 
height contours - analytical (Shore Protection Manual, 1984); e, wave height contours - nu- 
merical (Pos and Kilner, 1987 ); f, wave height contours - experiment (Pos and Kilner, 1987 ). 
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(b) 
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Fig. 4. Wave field in the rectangular harbour with fully reflecting boundaries, a, Surface eleva- 
tion at time t=0;  b, wave phase contours; c, wave height contours. 
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(b) 

Fig. 5. Wave field in the rectangular harbour with partially reflecting boundaries: Kr = O. 1, r=  0 °, 
7=0 °. a, Surface elevation at time t=0; b, wave phase contours. 

atively low value of  reflection coefficient adopted here, the results are not too 
different from the case of  fully absorbing boundaries  already indicated in Fig. 
3. The water surface elevation at t ime t---0 and wave phase contours are shown 
in Figs. 5a and 5b, respectively, and exhibit no significant differences from 
the corresponding results for fully absorbing boundar ies  ( indicated in Fig. 3a 
and 3b, respectively).  

The wave height contours are more sensitive to the choice of  reflection 
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coefficient and the trend due to an increasing reflection coefficient is now 
considered. Figure 6 compares the wave height contours for the example 
problem being considered, but with the reflection coefficient along the har- 

(a) '7 1 I 

(b) ~ j -  / ~  ' ,,-/:t 
~ . . , - - , . d V  ,,, 4'1 ( I  

( c )  - " "  E ~ r t  ~ " " - 

F jt Jtl 
: L  _ ~ . ]  % M t , . .  ,, #l I 

Fig. 6. Wave height contours in the rectangular harbour showing the effects of partial reflection. 
a, Kr=O; b, Kr=O.l; c, Kr=0.2. 
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Fig. 7. Wave field behind a semi-infinite breakwater with fully absorbing boundaries, a, Surface 
elevation at time t=0; b, wave phase contours. 

bour boundaries taken as Kr=0, 0.1 and 0.2 in turn. The figure shows an 
increasing irregularity in the wave height contours as a transition to the more 
confused state of  full reflection, indicated in Fig. 4c, is being approached. 
This trend may explain the irregularities of  the wave height contours mea- 
sured by Pos and Kilner (1987) and shown in Fig. 3 f i n  comparison to the 
smooth contours of  the theoretical solution with no reflection shown in Fig. 
3d. 
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Fig. 7 (continued). W a v e  field b e h i n d  a semi - in f in i t e  breakwater  wi th  fully absorb ing  b o u n d a -  
ries. c, w a v e  he ight  con tours  - present  so lut ion;  d, w a v e  he ight  contours  - analyt ical  (Shore 
Protec t ion  Manual ,  1984). 

The above results for partial reflection have all been obtained with fl= 0 ° 
and y= 0 ° . Corresponding results for the same values of  reflection coefficient 
Kr but with other values of  fl and y have also been obtained. However, the 
general form of  the wave field has been found not to be particularly sensitive 
to the values off l  and y selected, although some irregularities in the contours 
appear when 7 is obtained by the iteration procedure described previously. 

Finally, the present numerical model has been used to provide results for 
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the fundamental case of a semi-infinite breakwater with an incident wave train 
directed normal to the breakwater, for which an analytical solution is readily 
available (e.g. Shore Protection Manual, 1984). In the present numerical 
model, the matching boundary Fwas  taken to have a length of 10 wave lengths 
extending from the breakwater tip, so that the case of a pair of  colinear semi- 
infinite breakwaters with a breakwater gap to wave length ratio B/L= 10 is 
actually modeled. For this particular set of  results a source segment length 
equal to L/10, corresponding to 100 sources, was used. 

Figure 7 shows the wave field in the vicinity of the breakwater. The com- 
puted water surface elevation at t ime t=  0 and the corresponding contours of 
wave phase are shown in Fig. 7a and 7b, respectively. The figures exhibit the 
general features which are expected: within the shadow zone of  the breakwa- 
ter the wave crests form concentric arcs whose centre is at the breakwater tip, 
while outside the shadow zone the wave crests are straight. Figure 7c shows 
the corresponding contours of wave height which are compared to the predic- 
tions of  the analytical solution shown in Fig. 7d. The agreement is generally 
quite favourable with the general features of the analytical model being repro- 
duced by the numerical model. One feature of the numerical results which is 
not given by the analytical solution is that the contours of smaller wave heights 
exhibit an oscillatory variation not predicted by the analytical solution. In 
fact these are not unexpected and are also given by the analytical solution for 
the finite gap width B/L = 10 which is actually being modeled. 

Experimental measurements are needed to provide a more quantitative 
validation of  the numerical model for the case of  partially reflecting bounda- 
ries. For the present, though, it appears that the model predicts the wave field 
within the harbour realistically. 

CONCLUSIONS 

A numerical method has been developed to predict the wave field produced 
within a harbour of constant depth and arbitrary shape which contains par- 
tially reflecting boundaries. The approach used is based on linear diffraction 
theory and utilizes a point source representation of  the harbour boundaries 
and a matching boundary at the harbour entrance. The boundary condition 
at a partially reflecting boundary involves a complex transmission coefficient 
which may be estimated from the conventional reflection coefficient Kr, a 
reflection phase angle fl, and an incident wave direction 7. 

Numerical results are presented for the wave field due to a specified inci- 
dent wave train approaching a rectangular harbour with a pair of symmetrical 
breakwaters. Cases which are considered include perfectly absorbing, per- 
fectly reflecting and partially reflecting harbour boundaries. In all these cases 
the numerical solution appears to predict the wave field within the harbour 
realistically. For cases of  partial reflection, the effect of  changes to the reflec- 
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ti0n parameters 1/and y on the numerical solution has not been presented but 
it has been found that their choice does not influence the solution strongly. 
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