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ABSTRACT

The wave breaking events in a continuous spectrum of surface gravity waves are investigated numerically in

2D within a framework of the potential motion model. It is claimed that the major physical mechanism leading

to wave breaking is ‘‘squeezing’’ of relatively short waves by the surface currents due to longer waves (the

‘‘concertina’’ effect), which causes the shorter waves to steepen and become unstable. It is demonstrated that

locations of the breaking events are well correlated with the maximum of local current convergence, although

slightly worse correlation of the locations with the local steepness of undulating surface cannot reliably ex-

clude the latter mechanism either. It is found also that the breaking events are very rare for random surfaces

with a root-mean-square (RMS) current gradient below a threshold value of about 1 s21.

The process of wave breaking was investigated by two numerical codes. One of them is based on ap-

proximation of continuous media with a discrete Hamiltonian system, which can be integrated in time very

efficiently and accurately but is limited to single-valued profiles. The other is the Laplacian approach, which

can explicitly exhibit the overturning of plunging breakers. Study of the discrete system shows that wave

breaking is associated with the explosive growth of a certain spatially localized mode of the system.

1. Introduction

Breaking waves are an important feature of sea surface

dynamics. Discussion of the role they play in different

air–sea interaction processes can be found in review pa-

pers (Banner and Peregrine 1993; Melville 1996) and in

an introductory part of many other papers (see, e.g., Nepf

et al. 1998), and we will not repeat it here.

Substantial literature is devoted to both experimental

and theoretical investigation of breaking waves. Most of

the experimental data are related to tank measurements,

although results of the field measurements are also

available (see Holthuijsen and Herbers 1986; Weissman

et al. 1984; Gemmrich et al. 2008; Gemmrich 2010;

Babanin et al. 2007; Banner et al. 2000, 2002). The exper-

imental results demonstrated, in particular, that incipient

breaking events of short waves are poorly correlated

with local steepness of underlying waves (Holthuijsen

and Herbers 1986), wind speed, or wave age (Banner

et al. 2000), although on average there is a correlation be-

tween frequency of breaking and significant wave steepness

(Banner et al. 2000; Nepf et al. 1998). It was concluded

that the intrinsic nonlinearity of the surface waves mo-

tion is a dominant reason for breaking with wind forcing

playing a secondary role (at least for winds that are not

too strong).

The breaking waves can be divided basically into spill-

ing and plunging. The spilling is characterized by small-

scale bulge at the crest of breaking waves. It is significantly

affected by surface tension, turbulence, and viscosity.

Substantial progress, both theoretical and experimental,

has been achieved in their description (see the review in

Duncan 2001), and they will not be considered in the

present work.

Most of the tank work was done by studying repeat-

able individual breaking waves (the dispersive property

of the surface waves was used to focus them onto a se-

lected point along the tank; both kinematic and dynamic

features were investigated: Baldock et al. 1996; Bonmarin

1989; Griffin et al. 1996; Nepf et al. 1998; Perlin et al.

1996; Rapp and Melville 1990; Skyner 1996; Stansell and

MacFarlane 2002; Wu and Nepf 2002; among others)
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and wave breaking caused by developing modulational

instability (see, e.g., Babanin et al. 2010); however, ex-

periments with random waves were also made (Caulliez

2002; Ochi and Tsai 1983; Xu et al. 1986). The experi-

ments confirmed that local parameters such as elevation

are not good indicators of breaking (Melville and Rapp

1988); spectrum-integrated steepness seems to be more

adequate. It was also found that the process of breaking

starts at a level of steepness significantly smaller than the

critical slope for Stokes waves (Griffin et al. 1996; Perlin

et al. 1996; Rapp and Melville 1990). Obviously, breaking

waves are always steep at the stage of wave collapse and

often it is difficult to separate the beginning of the

breaking from subsequent wave overturning. The goal of

the paper is to figure out the physical cause of the initial

stages of wave steepening.

Theoretical approaches to the problem of wave breaking

are obstructed by strong nonlinearity and nonstationarity

of the phenomenon, and most theoretical results are

obtained with the help of numerical simulations. These

were initiated by Longuet-Higgins and Cokelet (1976,

1978) and then followed by many others (Babanin et al.

2007; Banner and Tian 1998; Chalikov and Sheinin 1998,

2005; Dold 1992; Dommermuth et al. 1988; Longuet-

Higgins and Dommermuth 1997; Skyner 1996; Song and

Banner 2002, Iafrati 2009). Comparison of the results

with tank experiments led to the conclusion that the 2D

model of the irrotational motion of an ideal fluid pro-

vides an accurate description of the nonlinear surface

wave motion including an incipient breaking stage (Perlin

et al. 1996; Dommermuth et al. 1988; Skyner 1996). [Note

that, in Song and Sirviente (2004), Navier–Stokes equa-

tions accounting for viscosity and surface tension were

also treated numerically.] The 3D effects and turbulence

are known to play important role in the later stage

of breaking process (Melville 1982, 1996; Nepf et al.

1998; Wu and Nepf 2002; Gemmrich and Farmer 2004;

Gemmrich 2010); however, they do not seem to be a

prime cause of breaking. Similar to tank experiments,

most of the above-mentioned numerical works dealt

with individual waves or wave groups. The local insta-

bility of the crests of Stokes waves, which commences

at steepness slightly less than critical, was established

(referred to as ‘‘crest’’ or ‘‘superharmonic’’ instability;

MacKay and Saffman 1986; Longuet-Higgins and Cokelet

1978). As early as in Longuet-Higgins and Cokelet (1978),

it was noted that Benjamin–Feir modulation instability

of wave trains leads to the appearance of individual

waves with increased steepness, which can break be-

cause of the local instability of the wave crests. Essen-

tially the same mechanism, but with respect to wave

spectrum, was advocated recently by Babanin et al.

(2007). Works dealing with numerical simulations of

a spectrum of random nonlinear surface waves are rare.

We are aware of only one such work (Chalikov and Sheinin

1998, 2005), but it did not consider breaking waves. In

spite of many efforts, a complete description of the mech-

anisms of surface wave breaking under realistic conditions

existing in the open sea does not yet exist.

The purpose of the current paper is to present results

of numerical Monte Carlo simulations of nonlinear dy-

namics of 2D, potential, random surface gravity waves

which indicate that the dominant physical mechanism

causing wave breaking appears to be the ‘‘concertina’’ ef-

fect (using the terminology introduced by Longuet-Higgins

1988), which means contraction of waves at the zones of

convergence of surface currents. This effect is quite in-

tuitive and also obvious in the geometric optics limit, when

the wavenumber of the wave evolves according to the

equation

dk

dt
5�›u

›x
k, (1)

where k is wavenumber and u is current velocity; how-

ever, the concertina effect holds not only in the geo-

metric optics limit but for an arbitrary wave profile as

well (see section 3). Having this specific purpose of the

paper in mind, we will not provide a detailed account of

the existing literature, limiting ourselves to mentioning

the papers that have bearing on the results presented

below; for a comprehensive review, we address the in-

terested reader to Banner and Peregrine (1993), Duncan

(2001), Longuet-Higgins (1988), and Melville (1996). The

main result of our work is that there is a high correlation

between locations of breaking events and points with

maximal values of the surface current convergence V 5

2du/dx. It was found also that there is a critical value of

the convergence, V
*

’ 1 s21, below which wave break-

ing is extremely rare. In section 2, we briefly describe

numerical methods used. The main results of the work

obtained with the help of Monte Carlo simulations are

presented in section 3. Although it is not crucial for the

result, it is of interest also to investigate the stability of

background motion from the standpoint of evolution of

the eigenvalues of its linear perturbations; corresponding

study is presented in section 4. Section 5 briefly presents

some effects of surface tension that have been studied

in the paper only tangentially. Finally, in section 6 we

present some comparisons of the threshold value of the

current convergence V
*

with some data available in the

literature, and in the concluding section 7 we present

a scenario of surface wave breaking following from our

results. The appendix is devoted to verifying that the

breaking events under consideration are not numerical

artifacts.
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2. Numerical methods

We have investigated numerically the dynamics of the

potential surface waves in a 2D, deep-water, periodic case.

The initial conditions are a surface profile and values of the

potential at the surface. Two totally independent codes

were used.

The first one (‘‘Laplacian’’ or L-code) is quite tradi-

tional. It is based on time stepping following a set of

marked fluid particles on the surface (Longuet-Higgins

and Cokelet 1976). The crux of the approach is calcula-

tion of a linear Dirichlet-to-Neumann (DtN) operator

(matrix), which maps values of surface potential at the

markers into corresponding values of its normal deriva-

tive. Possible deviations from other implementations of

our numerical approach are 1) using cubic periodic splines

to interpolate the surface profile and surface potential

from the marked points onto the whole surface contour

and 2) using representation of the potential in terms of

distribution of the dipole sources on the surface. Because

parametric representation of the surface profile is used,

the solution is not restricted to the single-valued profiles

and includes overturning. The most time-consuming part

is calculation of the influence matrix corresponding to the

integral equation with respect to the density of surface

dipoles. The solution of corresponding linear equations

and time stepping per se is relatively fast. The sawtooth

instability characteristic for the method (Dold 1992;

Longuet-Higgins and Cokelet 1976) was not observed in

our simulations (possibly because of using cubic splines).

Evolution of wave profiles is governed by the equations

›r
a

›t
5 $u

›u
a

›t
5

1

2
($u)2 � gh

a
1 sk

a
, (2)

where ra 5 (xa, ha) and ua are horizontal and vertical co-

ordinates and velocity potential corresponding to a fluid

particle on the surface, s is surface tension, and ka is cur-

vature (a is an index marking the particle); $u is calculated

at the point r 5 ra. These equations are valid for multi-

valued surfaces.

The second code (‘‘Hamiltonian’’ or H-code) we have

used for studying single-valued surfaces solves the

Hamiltonian equations

dq
i

dt
5

›H

›p
i

dp
i

dt
5�›H

›q
i

(3)

for the following discrete Hamiltonian:

H(h, u)5
1

2
�
N�1

n,m50
G

nm
u

n
u

m
1

g

2
�
N�1

n50
h2

n

1 s �
N�1

n50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

h
n11
� h

n

Dx

� �2
s

� 1

2
4

3
5, (4)

where N is the total number of fixed points xn 5 nDx

equidistantly distributed along the x axis and the last

term represents the surface tension contribution. Here,

(hn, un) are elevation and surface potential at xn (they

are canonically conjugated variables), and the surface

profile–dependent matrix G
nm

5 �pmax

p50G
(p)

nm represents dis-

crete approximation of the DtN operator, which is ex-

pressed as a series in powers of elevations up to a certain

finite-order pmax (in our simulation, we used pmax 5 4).

The terms of this series can be calculated recurrently

starting from p 5 0. The nontrivial moment of this ap-

proach is to ensure that matrix G is symmetric and to

obtain a discrete analog of the Bernoulli law based on

this symmetry. As a result explicit calculation of matrix

G is avoided, and calculation of the right-hand side of

the Hamiltonian equations includes only fast Fourier

transform (FFT) of vectors (but not matrices) of approx-

imately N(pmax 1 1) order. Similar to the L-code, time

evolution is accomplished using the fourth-order Runge–

Kutta scheme. In contrast to the well-known pseudo-

spectral method, where the equations resulting after

discretizing corresponding continuous equations are

not necessarily Hamiltonian per se, in our approach the

FIG. 1. Surface profile progression calculated with L-code (solid

line) and H-code (solid line with dots). Time step between profiles

is 0.1 s. The first five profiles calculated by both codes practically

coincide with each other except a small area of the last (fifth)

H-profile, where high-frequency instability develops. The profile cal-

culated by the L-code shows no short-wave instability at this point,

but this area of long wave also shortly becomes steep and unstable.
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discrete equations that are solved numerically are explic-

itly Hamiltonian. In addition to somewhat philosophical

preference of approximating the original Hamiltonian sys-

tem by a simpler system that is also Hamiltonian (so that

energy and momentum conservation laws and integral in-

variants are carried over automatically), another advantage

of using explicitly Hamiltonian equations stems from

the fact that the linear operator describing evolution of

the linear perturbations of the fully nonlinear equations

is also Hamiltonian and its spectrum possesses well-

known symmetries (see section 4).

Both codes were carefully checked against each other

and using conservation laws. Being highly accurate, the

L-code is relatively slow, and the bulk of the calculations

corresponding to a ‘‘benign’’ stage of wave evolution

were done with the help of the H-code, with the L-code

being used to accurately calculate stages close to over-

turning. The comparison of two codes shows that a close

proximity between wave profiles is observed up to the

incipient overturning. In our simulations, we studied the

evolution of a periodic random surface with a period of

L 5 6.28 m and gravity acceleration g 5 9.81 m s22. In

most cases (except for those presented in section 5),

capillary effects were neglected, so the results of simu-

lations can be easily scaled. Unless it is stated otherwise,

we used N 5 200 points in the simulations.

In our study, we focused on a random surface. Two

different elevation power spectra, Fk 5 Ak23 and Fk 5

Ak24, with random phases of constituent harmonics and

Gaussian statistics of quadrature components of the el-

evation spectrum were taken as initial conditions. The

N/2 5 100 spectral components contained wavenumbers

ranging from k1 5 1 m21 up to k2 5 100 m21.

The H-code is restricted to single-valued profiles and

cannot, of course, describe overturning. However, if the

initial root-mean-square (RMS) slope exceeded a cer-

tain limit, the solution provided by the H-code demon-

strated development of fast-growing local instabilities

characterized by high-frequency spatial oscillations.

Figure 1 shows time evolution of wave profile calculated

by both codes: the solid line corresponds to the L-code

and dots correspond to the H-code. One can see that the

profiles calculated by both codes practically coincide

with each other until the development of oscillations in

FIG. 2. Four examples of the surface profile (top and third from top) h (solid) and (second from top and bottom)

velocity potential u (dashed) at the final stage of instability development.
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the H-code simulation. Despite such oscillations not

describing the process of wave breaking in a continuous

medium, we believe that the development of instability

is an indication of a locally instable area of long wave,

which ultimately breaks.

Four examples of such instability are shown in Fig. 2

(the initial condition corresponded in these cases to the

power spectrum ;k24 and different sets of random phases

of constituting harmonics). It was found (see the appen-

dix) that this instability, developing in the framework of

the H-code, is not a numerical artifact and is closely re-

lated to the wave breaking calculated by the L-code; for

this reason, we will also refer to such events as wave

breaking. One can see in Fig. 2 that the instability location

appears to be well correlated with the area of surface

velocity convergence (minimum or negative maximum of

second derivative of velocity potential).

A specific feature of this instability is its extremely fast

‘‘explosive’’ development. Figure 3 shows evolution of

the profile, obtained by the H-code, with a time step of

0.1 s (left panels); evolution of the last moments of it with

time step of 0.0005 s (middle panels); and evolution of the

same profile, calculated by the L-code (right panels). The

starting point of the last time interval with fine time step

(top-middle panel) corresponds to a few moments before

of the bottom-left panel labeled ‘‘b’’, so the amplitude of

the breaking oscillations is a little less than at the bottom-

left panel. One can see that, at the final moments, de-

velopment of the instability occurs on top of frozen

background waves (middle panels). It allows us to con-

sider the instability as explosive (see section 4). Such fast

development is quite unusual for numerical instabilities.

The L-code demonstrates actual final stage of evolution

of the same profile (the left panels labeled a and b cor-

respond to the right panels labeled a and b, respec-

tively), but it results ultimately in overturning of the

same part of the surface profile (Fig. 1). This is why we

consider H-code breaking as a precursor of wave over-

turning simulated by the L-code. Analysis of more than

100 random profiles supports this conclusion.

3. Monte Carlo simulations

We generated an ensemble of random surfaces with

elevation power spectra Fk 5 Ak23 and Fk 5 Ak24 and

FIG. 3. Surface profile progression with different time steps and numerical codes: (left) H-code 0.1 s,

(middle) H-code 0.0005 s, and (right) L-code 0.2 s. Shown in (middle) are the last moments of the in-

stability development; note that the underlying surface can be considered as frozen.
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studied its time evolution until the first breaking event

occurred.

Figure 4 shows the correlation between locations of

wave breaking events and the location of the maximum

of surface current convergence 2du/dx. The regression

was calculated for the spectrum Fk 5 Ak23, included

300 realizations, and was calculated as follows: After a

breaking event (explosive growth of local high-frequency

oscillations) was found by running the H-code, we se-

lected the surface profile calculated 40 time steps prior to

the breaking event (each time step was equal to 0.002 s)

and suppressed spatial harmonics with an order higher

than nf 5 20 with the help of exp[20.5(n/nf)
4] low-pass

filter. Then the progressive evolution of both the orig-

inal and smoothed surface profiles was calculated using

L-code only. The smoothed surface evolved without

wave breaking and remained relatively smooth, whereas

the original rough surface exhibited instability charac-

terized by very large local surface curvature. The loca-

tion of the breaking instability was found as a position

of the largest difference between rough and smooth

surfaces at the moment of wave breaking, and the lo-

cation of the strongest current gradient was found from

a solution for the smoothed profile. Taking into ac-

count very good agreement between both codes in the

absence of instability (Fig. 1), we can say that the H-code,

describing discrete Hamiltonian system, was used only

for acceleration of the computation, and the final stage of

the breaking events was studied by the L-code. It is free

from limitations of single-valued surface and finite number

of degrees of freedom.

Both the position of the wave breaking event and the

position of the strongest current convergence for a par-

ticular realization are shown as a scattered plot in Fig. 4

(the locations are normalized on the whole wavelength

of 6.28 m). Despite some data scattering, we see quite

good correlation with correlation coefficient C 5 0.74

(we took into account the periodic nature of the problem

for calculation of the correlation coefficient). The RMS

slope of the initial profile was 0.17, which provides

a trade-off between reasonably short computation time

and long enough time of the profile evolution before

breaking event occurs.

Similar dependence for the spectrum Fk 5 Ak24 and

the same RMS slope is shown in Fig. 5. Note that the

data scattering is much less in this case (C 5 0.93). It is

FIG. 4. Correlation between breaker position and the point of strongest current gradient.
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expected because the k23 surface has more local max-

ima of current convergence as compared to the k24

spectrum, and this obviously results in a poorer corre-

lation between breaking location and position of abso-

lute maximum of current convergence.

However, if one makes the same calculations using the

strongest negative slope location instead of current

convergence, very similar scatterplots will follow with

correlation coefficient C 5 0.74 for Fig. 4 replaced by a

somewhat smaller but close value of C 5 0.73. This is not

surprising, because the correlation coefficient between

current convergence and slope is quite high (0.85) for

running waves. To determine what physical parameter is

related to wave breaking, we calculated similar plots for

the spectrum k23, but with respect to a corresponding

statistical ensemble consisting of standing waves. This

way, we get better space separation between areas of

strong local slope and current gradient. The results are

shown in Fig. 6 for slope (C 5 0.70) and Fig. 7 for current

convergence (C 5 0.77). The difference shows that this is

rather current convergence, which causes wave breaking.

The case study in support of this conclusion is shown

in Fig. 8, which presents an example of time evolution of

a long standing wave with superimposed on it another

standing wave of 30 times shorter wavelength. Initial

amplitude of the short wave is 1000 times smaller than the

initial amplitude of the long wave (initial condition cor-

responds to flat surface and two-harmonic distribution of

surface potential). The top panel illustrates the evolution

of the wave profile, and the bottom panel shows the evo-

lution of high-frequency waves only (the high-frequency

profiles are shifted along the y axis). One can see a strong

enhancement of ripples at the final stage of wave evolution

near the crest of the long wave. This point is characterized

by zero slope but maximal value of the surface current

convergence. At the next time step, the simulation stops

because of dramatic increase of the local curvature.

The equations in (2) for single-valued surfaces are rep-

resented in the standard form,

h
t
1 h

x
u

x
5 u

z

u
t
1

1

2
(u2

x 1 u2
z) 1 gh 5�p . (5)

All values are to be calculated at surface points x, z 5

h(x). To obtain insight into the origin of the instability

FIG. 5. As in Fig. 4, but for a k24 initial spectrum.
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going beyond a geometrical-optics consideration, let us lin-

earize (5) with respect to the following time-independent

background state:

h
0

5 0, u
0

5
V

2
(z2 � x2), p

0
5�(Vx)2

2
(6)

[surface pressure p0 is introduced to ensure that (h0, u0)

itself is a solution of (5)]. The resulting equations read as

h
t
� Vh� Vxh

x
� u

z
5 0

u
t
�Vxu

x
1 gh 5 0 , (7)

where all values are calculated at z 5 0. The equations

become simpler in terms of corresponding Fourier

transforms ĥ
k
, û

k
with respect to x-coordinate h(x) 5Ð

ĥ
k
eikx dk:

›

›t
ĥ

k
� Vĥ

k
1 V

›

›k
(kĥ

k
)� kû

k
5 0

›

›t
û

k
1 V

›

›k
(kû

k
) 1 gĥ

k
5 0, (8)

where it is assumed that h(k) 5 0 for k , 0. Here it was

used that for k . 0,

(u
z
)

k
5 kû

k
. (9)

One can easily check by inspection that the solution of

Eq. (8) is as follows:

ĥ
k

5 Z
0

2

ffiffiffiffiffiffi
gk

V2

s !
f

g

V2
ke�Vt

� �

û
k

5�
ffiffiffi
g

k

r
3 Z

1
2

ffiffiffiffiffiffi
gk

V2

s !
f

g

V2
ke�Vt

� �
, (10)

where Z0,1 are cylindrical Bessel functions and f is an

arbitrary smooth function. The result is quite intuitive

and describes the concertina effect of contraction or

stretching the perturbation profile by a convergent or

divergent current, correspondingly. In particular, if for

a certain range of wavenumbers f ; k2c, the perturba-

tion will grow in time as exp(cVt). Hence, it is natural to

expect steepening of short-scale waves in an area of

converging surface currents. Because time evolution of

the background state is artificially suppressed here by

the p0 term in (6), the solution (10) should be considered

as an illustration only.

FIG. 6. As in Fig. 4, but for the point of strongest surface slope for standing waves.
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4. Normal mode analysis

The results presented in this section refer to the evo-

lution of discrete Hamiltonian system and are not es-

sential for the conclusion drawn in the previous section.

However they may be of interest from the point of view

of the Hamiltonian system dynamics and provide an

insight into the explosive instability we observed.

We study small perturbations of the Hamiltonian equa-

tions:

d

dt
dq

i
5 �

k

›2H

›p
i
›q

k

dq
k

1
›2H

›p
i
›p

k

dp
k

� �

d

dt
dp

i
5��

k

›2H

›q
i
›q

k

dq
k

1
›2H

›q
i
›p

k

dp
k

� �
. (11)

These equations are also Hamiltonian; in matrix form

they can be rewritten as

_z 5�JSz, (12)

where

J 5
0 �1

1 0

 !
,

S 5

›2H

›q
i
›q

k

›2H

›q
i
›p

k

›2H

›p
i
›q

k

›2H

›p
i
›p

k

0
BBBB@

1
CCCCA, and

z 5 [dq
i
; dp

i
].

We can look for eigenfunctions (modes) of the linear

problem (11), corresponding to time-independent (frozen)

matrix S, and study evolution of the modes’ amplitudes.

Figure 9 shows surface elevation (dashed), velocity po-

tential (dashed–dotted), and the fastest-growing mode for

surface elevation (solid) for the case illustrated in Fig. 3.

One can easily see that the unstable mode is localized in

a small area coinciding with the maximum of current

convergence or possibly wave slope. More than 80% of

FIG. 7. As in Fig. 4, but for the point of the strongest surface current convergence for

standing waves.
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the wave remains smooth and unaffected by the break-

ing mode. This observation indicates that the condition

for the development of instability can be related to some

local physical parameters of a large-scale background.

The fixed background state with respect to which

linearization (11) is made is selected at a moment of

time preceding and close to the moment of explosion.

Figures 10 and 11 show the dependence of the ampli-

tudes of a few fastest-growing modes for the final period

of the evolution of the wave shown in Figs. 1, 2, and 9

(Fig. 11 has a finer time scale). Simultaneous evolution

of 400 mode amplitudes makes it impossible to trace an

individual fastest growing mode until a few final time

steps, so we removed most of the 400 modes from Figs. 10

and 11 to make the pictures comprehensible. The fastest-

growing mode is clearly prominent among many others

with limited amplitudes. This particular mode is shown

in Fig. 9 and it is responsible for the ‘‘explosion’’ of the

Hamiltonian system; all other modes change insignif-

icantly during the single mode explosion, which justifies

frozen background state.

The numerically found dependence of da/dt versus

the amplitude a of the fastest-growing mode (see Fig. 11)

is shown in Fig. 12. The somewhat unexpected smooth

character of the dependence suggests a parabolic approx-

imation of da/dt,

da

dt
5 ba 1 da2, (13)

where the second term accounts for the lowest-order

nonlinear effects. By shifting the phase of amplitude a,

one can always make coefficient d here real and positive.

The solution of the equation reads as

a 5
b

(d 1 b/a
0
)e�bt � d

, (14)

where a0 5 a(0) is an initial mode amplitude.

FIG. 8. Evolution of short standing wave superimposed on a long

standing wave. (top) Wave profiles and (bottom) high-frequency

waves are shown. High-frequency profiles are shifted along the

y axis, and time increases from the bottom to the top. Time interval

between profiles is 0.05 s, and wavelengths of the long and short

waves are correspondingly 6.28 m and (1/30) 3 6.28 m. The initial

condition was posed as flat surface with periodic undulation of

surface current; starting velocity of short wave is 0.001 of the long-

wave velocity.

FIG. 9. The height of the surface profile (dashed), velocity potential (dashed–dotted), and the

fastest growing mode (solid) vs x.
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If a0 . 0, the solution is explosive; that is, it tends to

infinity in a finite time. The time of explosion te depends

relatively weakly (logarithmically) on the level of non-

linearity d and initial amplitude a0: te 5 ln[1 1 b/(a0d)]/b.

On the other hand, if a0 , 0, the solution tends to a finite

limit. Note that similar dependence of the instability on

the sign of initial perturbation was observed by Longuet-

Higgins and Dommermuth (1997).

Eigenvector analysis renders some interesting aspects

of the system evolution. It is easy to show that eigen-

values l of the matrix in (12) form quadruples (l, l*, 2l,

2l*), which degenerate into pairs (l, 2l) or (l, l*) if l

is purely real or imaginary. It is interesting also to look

into the time evolution of the eigenvalues. There are

2N 5 400 different eigenvalues altogether; they are in-

dicated by points on the complex plane (v, g), where

v 5 Im(l) is a frequency and g 5 Re(l) is an increment

(see Fig. 13). Apparently, the cluster of points should be

symmetric with respect to both horizontal and vertical

axes. As time progresses, these eigenvalues change po-

sition on the complex plane along certain trajectories.

Purely imaginary eigenvalues are located on the hori-

zontal axis and as a result of the evolution can collide. If

the two colliding eigenvalues correspond to the eigen-

vectors (modes) with different signs of the adiabatic in-

variant (different signatures using terminology of MacKay

and Saffman 1986), the eigenvalues after collision acquire

real parts with different signs and leave the horizontal axis.

Figure 14 shows a zoomed area around the v axis marked

by the rectangle in the Fig. 13 (time interval in Fig. 14 is

slightly increased compared to Fig. 13 to better show the

roots’ track).

Presence of the eigenvalues with a nonzero real part

does not necessarily mean instability of the wave, because

its increment g is usually small enough and evolution of

FIG. 10. Time dependence of some of the mode amplitudes at the final stage of instability

development. One single mode is growing much faster than the others. (Most of the modes

were removed to make visible the fastest growing one. Because of the original 400 modes are

randomly sorted at each time step, removing some of them resulted in a few dropouts.)

FIG. 11. As in Fig. 8, but for fewer modes and a finer time step.
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the wave profile does not let the instability enough time

to develop. After some time, the pair of complex roots can

return to the horizontal axis, collide, and become purely

imaginary again; such behavior produces ‘‘instability

bubbles’’ (MacKay and Saffman 1986) clearly seen in

Fig. 14 in the vicinity of the real axis. However, one can

see in Fig. 13 that there are also eigenvalues whose tra-

jectories are directed toward the vertical g axis. When

FIG. 12. Numerically calculated dependence of da/dt vs a.

FIG. 13. Evolution of roots in a complex plane. Four roots collide at an imaginary axis, resulting

in fast-growing, explosive modes.
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they reach the vertical (incremental) axis they collide, and

after the collision the pair starts to move along the axis.

The mode corresponding to the eigenvalue that moves

away from the origin is the fastest-growing mode consid-

ered above. It should be noted that, although collision

of the eigenvalues at the incremental axis is rather typical

for wave breaking, some cases of wave breaking were also

observed when the eigenvalues simply moved off the

horizontal axis reaching large g but without colliding

on the g axis.

At present time, we do not have a clear physical in-

terpretation of such root ‘‘kinematics,’’ but an interesting

and important finding is that the explosion of a discrete

Hamiltonian system [(3) and (4)] occurs because of the

very fast growth of a single mode.

5. Effect of surface tension

Until now we have not accounted for surface tension,

and it was assumed in (3) that s 5 0. Because of limited

range of wavenumbers from k1 5 1 m21 to k2 5 100 m21

for N 5 200, we increased the value of the surface ten-

sion T to make the parameter km 5 (rg/T)1/2 5 (g/s)1/2

equal to km 5 50 m21 compared with km 5 370 m21 for

clear water (this corresponds to a change of the surface

tension from T 5 0.072 N m21 to T 5 3.9 N m21).

Figures 15 and 16 show the evolution of the surface

power spectrum Fk with (lower lines) and without

(upper lines) capillary forces. Each spectrum was ob-

tained by averaging of 300 random surface profiles with

an initial condition corresponding to the k23 spectrum

from 1 to 50 rad m21 and flat white noise spectrum for

k . 50 m21. The level of white noise was taken at about

0.005 of the level of the spectrum at k 5 50 m21. Figure 15

shows the detailed spectra after 0.01 s of wave evolution,

and different panels of Fig. 16 show change of the spec-

trum in time. One can observe two main effects: smoothing

of the steplike discontinuity of the spectrum due to non-

linear wave–wave interaction and suppression of high-

frequency waves due to capillary forces. There are some

oscillations of the transitional spectra; the nature of which

is not quite clear, but the main features of the spectrum

evolution are not surprising. Note that the energy of the

system is conserved because of the Hamiltonian property

of the governing equations, so the capillary wave de-

pression is accompanied by enhancement of the longer

waves at k , 50 m21. This effect is obscured in Figs. 15

and 16 by a logarithmic axis scale. Despite suppression of

high-frequency waves, the surface tension does not pre-

vent development of the instability.

6. Breaking threshold

Figure 17 shows the dependence of the mean ‘‘breaking

frequency’’ versus RMS current gradient ›u/›x 5 ›2u/›x2

calculated for the initial spectrum ;k23 with random

FIG. 14. Example where most of the roots are grouped around real axis, producing local loops

without instability development.
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phases of harmonics. Breaking frequency was defined as

an ensemble average of h1/Ti, where T is the total time

of a particular run from starting moment until breaking

event (each data point in Fig. 17 was obtained by aver-

aging of about 300 realizations of random waves). We

changed RMS current gradient by changing the amplitude

A of initial wave spectrum Fk 5 Ak23. It is easy to see that

there is a threshold: for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(›u/›x)2i

q
, 1.25 s�1, breaking

is very rare (we linearly interpolated the dependency

down to the x axis), but it is growing rapidly with the in-

crease of the amplitude of the spectrum. The corre-

sponding threshold of RMS slope is 0.12.

It was determined experimentally by Ochi and Tsai

(1983) that the criterion of wave breaking is as follows:

H

gT2
$ 0.02, (15)

where H 5 2a is the wave height, T 5 2p/vk is the wave

period, and k is a wavenumber. Taking into account that

V5�u
xx

5 k2u 5
gk2

v
k

a, (16)

we can represent

H

gT2
5

2av2
k

g(2p)2
5

2Vv3
k

(2p)2g2k2
5

1

2p2

Vffiffiffiffiffiffi
gk

p . (17)

Substituting here k 5 1 m21 and V 5 1.25 Hz (see Fig. 17),

one finds that

H

gT2
5 0.02. (18)

In Fig. 1 of Banner and Tian (1998), two cases are shown

that correspond to very close initial steepness. Benjamin–

Feir instability causes modulation which leads a steeper

wave train to breaking, and a gentler wave train to re-

currence. Horizontal velocities at the steepest crests for

these two cases are u 5 0.94cg and u 5 0.70cg, where cg is

the group velocity of the corresponding linear wave. Then

one evaluates the horizontal velocity gradient as

V 5
du

dx
5 k

1

2

ffiffiffi
g

k

r
u

c
g

5
1

2

ffiffiffiffiffiffi
gk

p u

c
g

. (19)

From Fig. 1 in Banner and Tian (1998) one can esti-

mate k ; 1 m21 and to obtain V 5 1.25 Hz one must have

u/cg ; 0.8, which is close to the middle of the interval of

steepness for the two cases indicated above. We should

take this estimate with caution because of subsequent

revision of some of their results (Song and Banner 2002).

Similarly, from Fig. 11b of Baldock et al. (1996), one can

estimate

V 5
du

dx
5

1

c
p

du

dt
5

g

2p f

� ��1du

dt
; 1.3 s�1, (20)

FIG. 15. Power spectra of the surface with (lower line) and without (upper line) surface tension

at the very first moment of surface evolution (t 5 0.01 s).
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where f 5 1 Hz (case D). This value of V is also close to

the critical value found in our work.

In a statistical case, one has

s 5

ðk2

k1

F
k

dk

 !1/2

and (21)

V 5 hu2
xxi

1/2
5 g2

ðk2

k1

k4

v2
k

F
k

dk

 !1/2

5 g

ðk2

k1

k3F
k

dk

 !1/2

, (22)

where Fk is the wave height spectrum. Assuming Fk 5

Ak23, we obtain

s 5
V

k
1

ffiffiffiffiffiffiffiffiffiffi
2gk

2

p , (23)

where we took into account that k1� k2. Significant spec-

tral peak steepness « is defined by Banner et al. (2000) as

follows: « 5 2sk1. That leads us to the following dimen-

sionless breaking criterion:

« 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k
2

ðk2

k1

k3F(k) dk

s
. «*. (24)

Using k1 5 1 m21 to k2 5 100 m21, the parameters used

in our numerical simulations, one finds that «
*

5 0.056.

The threshold value suggested by Banner et al. (2000) is

«
*

5 0.055. Taking into account the highly idealized model

used in our numerical simulations, the near coincidence of

the appropriate numbers above should be considered as

accidental; however, their closeness indicates that the

suggested criterion of wave breaking,

V . V*, (25)

is consistent with the data of the other researches.

7. Conclusions

We can suggest the following scenario for wave break-

ing in a random field of surface gravity waves: The whole

wave ensemble generates zones of convergence of surface

currents. The waves with lengths less than the size of the

convergence zone start to contract. If the parameter V 5

›u/›x for the convergence zone, initial amplitude of

the contracting wave, and duration of the existence of the

convergence zone are large enough, the steepness of the

wave will exceed critical value and a breaking event will

take place. The breaking event is not necessarily re-

lated to a particular wave from the background, which

creates a convergent current, and in this sense it is not

FIG. 16. Change of the power spectra in time with (lower lines) and without (upper lines)

surface tension forces.
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quite accurate to say that a particular wave from the

ensemble of longer waves breaks; the breaking event

is rather a collective effect of an ensemble of longer

waves, which leads to the contraction and breaking of

shorter waves. For power-law surface elevation spec-

trum Fk 5 Ak2n where n . 4, the dominant contribu-

tion to V comes from the low-frequency end of the

spectrum [see (22)]; for n , 4, it is due to the high-

frequency end. If the contracting wave that eventually

breaks is long enough, the plunging breaker will be gen-

erated; if it is sufficiently short so that surface tension

becomes important, it will be a spilling breaker.

The zones of divergence of surface currents play op-

posite role and have a tendency to smooth the surface.

This conforms to the casual observations that the back

side of waves is usually much calmer than their front side.

Acknowledgments. We are thankful to Alexander

Babanin and anonymous reviewers for numerous very

valuable corrections and suggestions.

APPENDIX

Dependence on Number of Points

Our model Hamiltonian (3) describes a discrete sys-

tem that fundamentally differs from a continuous system

by a finite number of degrees of freedom. This appendix

is devoted to study how critical is the presence of the

highest, most oscillating mode for the development of

the instability.

To clarify this issue we conducted a series of the cal-

culations for a different number of points from N 5 200

to N 5 600 for the three different situations:

1) the original discrete Hamiltonian system;

2) the discrete Hamiltonian system with capillary forces;

and

3) the original Hamiltonian system with low-pass fil-

tering applied at each time step, where the filter damps

all spatial harmonics with k . 80 m21 (the highest

wavenumber for N 5 200 is k2 5 100 m21).

Figure A1 shows the dependence of the mean breaking

frequency (see section 7 for the definition of this pa-

rameter) versus the maximum wavenumber for all three

versions. We can see that the breaking frequency depends

on the highest wavenumber for the original Hamiltonian,

but accounting for the surface tension (the surface ten-

sion corresponds to km 5 50 m21) results in a saturation

of the dependence. The process of wave breaking be-

comes weakly dependent on (or independent of) the

number of points if capillary forces are introduced. The

low-pass filtering results in complete independence of

the breaking frequency on the number of points. Never-

theless, one can see that the instability develops even

in this case. Moreover, the cases with the same initial

condition (i.e., the same amplitudes and phases of the

FIG. 17. The dependence of the averaged breaking frequency on mean surface current gradient.
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harmonics), but with a different number of points evolve

to the same final state.

Figure A2 shows an example of such system evolution

for a different number of points. The area marked by the

rectangle is shows in Fig. A3. It illustrates the in-

significance in the difference between unstable modes

despite a complete absence of high-frequency harmonics

in the cases with N 5 200 and N 5 600. We see that even

FIG. A1. Breaking frequency vs maximal wavenumber (numerically equal to ½ of point

number for surface period of 6.28 m). Circles correspond to motion without capillary forces,

squares correspond with the model surface tension, and triangles correspond with low-pass

filtering at each time step.

FIG. A2. Comparison of the solutions with a different number of points at a final time step.

Low-pass filtering is applied at each time step.
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fine details of the system evolution are preserved despite

filtering. This observation supports our claim that the

observed instability is not a numerical effect related to the

finite-dimensional approximation of the system but is of

a physical origin.
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