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ABSTRACT

Harmonic resonance of a short-crested water wave field, one of the three-dimensional water waves, is due to
the multiple-like structure of the solutions. In a linear description, the harmonic resonance is due to the resonance
between the fundamental of the wave and one of its harmonics propagating at the same phase speed for particular
wave parameter regions depending on the depth of the fluid, the wave steepness, and the degree of three-
dimensionality. Former studies showed that (i) an Mth-order harmonic resonance is associated with a super-
harmonic instability of class I involving a (2M 1 2)-mode interaction and (ii) the instability corresponds to one
sporadic ‘‘bubble’’ of instability. However, these first-step studies dealt with nonbifurcated solutions and thus
incomplete solutions. In the present study, the complete set of short-crested wave solutions was computed
numerically. It is found that the structure of the solutions is composed of three branches and a turning point
that matches two of them. Then, the stability of the bifurcating solutions along their branches was computed.
Of interest, another bubble of instability was discovered that is very close to the turning point of the solutions,
and the instabilities are no longer sporadic. Harmonic resonances of short-crested water waves are thus associated
with two bubbles of instability; the first one is located in a branch in which the turning point is present, and
the second one is located in another branch that is continuous in the vicinity of the bifurcation point.

1. Introduction

In a linear description, short-crested wave fields are
defined as a superposition of two two-dimensional pro-
gressive wave trains of equal wavelengths and inter-
secting at an angle g. The description of the geometry
of the propagation can be found in Hsu et al. (1979),
who defined an angle u so that u 5 (p 2 g)/2. The
three-dimensional fields admit two two-dimensional
limits: the progressive Stokes wave for u 5 908 for
which the two waves propagate in the same direction
and the standing wave for u 5 08 for which the two
waves propagate in opposite directions. Figure 1 shows
two wave patterns on deep water: Fig. 1 (left side) rep-
resents a short-crested wave field for u 5 108 that is
close to standing waves, exhibiting long crests in the x
direction as compared with the other horizontal direction
y; Fig. 1 (right side) represents a wave at angle u 5 458
exhibiting equal wavelengths in both horizontal directions.

The properties of short-crested waves have been dis-
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cussed in Roberts (1983) for deep water and in Marchant
and Roberts (1987) on water of finite depth. In partic-
ular, the authors showed how short-crested wave fields
may be unsteady through harmonic resonance phenom-
ena. Roberts and Peregrine (1983) calculated low-order
analytical solutions for u → 908 and found that harmonic
resonances correspond to multiple-like solutions. Oka-
mura (1996) calculated both weakly nonlinear and fully
nonlinear short-crested waves in deep water for u ø 08
and found that harmonic resonances correspond to mul-
tiple-like solutions. Marchant and Roberts (1987)
showed that harmonic resonances occur for short-crest-
ed waves in finite depth when harmonic (m, n), that is,
sin[ma(x 2 ct)] cos(nby) cosh[kmn(z 1 d)], is a solution
of the homogeneous differential equation derived from
the nonlinear surface conditions, where kmn 5 (m2a2 1
n2b2)1/2, a 5 sinu, b 5 cosu, c is the propagation ve-
locity of the wave, t is time, z is a vertical coordinate, and
d is depth. Such cases occur at critical angles uc for which

2k tanh(k d) 5 m tanhd.mn mn (1)

The critical angles for which a harmonic resonance
occurs are given in Marchant and Roberts (1987) and
in Ioualalen et al. (1996) for different depths. Without
loss of generality, in this study we would like to char-
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FIG. 1. Short-crested wave fields for angles u 5 108 (left) and u 5 458 (right) on deep water.

acterize the harmonic resonance phenomenon through
the computation of one of the critical angles. We have
chosen the harmonic resonance (2, 6) occurring at depth
d 5 1. In the linear description, the critical angle for
which this harmonic resonance occurs is uc ø 65.83548
(e.g., Ioualalen et al. 1996).

Ioualalen and Kharif (1993) and Ioulalen et al. (1996)
computed the stability problem associated with the har-
monic resonance phenomenon and found that harmonic
resonances are associated with sporadic and weak su-
perharmonic instabilities that have a bubblelike shape
in the wave steepness parameter space. This was the
first attempt to characterize the stability of resonant
short-crested waves. However, the stability problem
studied by the authors concerned nonbifurcated solu-
tions and not fully nonlinear solutions.

The aim of the present study is to extend their work
to fully nonlinear solutions exhibiting a multiple-like
solution behavior as shown by Roberts and Peregrine
(1983), who computed weakly nonlinear solutions. It is
fair to say that it is not the purpose of the present study
to perform an extensive parametrical study of these in-
stabilities (vs the depth of the water column, the wave
steepness, or the degree geometry of the flow). Rather,

we preferred to exhibit the characteristics of one par-
ticular resonance, (2, 6), because it is one of the stron-
gest given the number of mode interactions, and we have
fixed an arbitrary depth to avoid any particularities such
as deep water.

2. Mathematical formulation of the problem

We consider surface gravity waves on an inviscid,
incompressible fluid of finite depth in which the flow
is assumed to be irrotational. The governing equations
are given in a dimensionless form with respect to the
reference length 1/k and the reference time (gk)21/2,
where g is the gravitational acceleration and k is the
wavenumber of the incident wave train.

Let us define a frame of reference (x*, y*, z*, t*, f*)
so that x* 5 x 2 ct, y* 5 y, z* 5 z, t* 5 t, and f* 5
f 2 cx*, where c represents the propagation velocity
of the short-crested wave train and is equal to v/a, with
v being the frequency of the wave, a 5 sinu being the
x-direction wavenumber, and b 5 cosu being the y-
direction wavenumber. If we omit the asterisks for sake
of simplicity, the governing equations are

Df 5 0, for 2d , z , h(x, y, t), (2)

f 5 0, for z 5 2d, (3)z

2 2 2 2f 1 h 1 (1/2)(f 1 f 1 f 2 c ) 5 0, for z 5 h(x, y, t), (4)t x y z

h 1 f h 1 f h 2 f 5 0, for z 5 h(x, y, t), (5)t x x y y z

where d is the depth of the fluid, f(x, y, z, t) is the
velocity potential, and z 5 h(x, y, t) is the equation of
the free surface. In this new frame of reference prop-
agating at a speed c, the system of Eqs. (2)–(5) admits
doubly periodic solutions of permanent form (x, y)h
and (x, y, z).f

Like Ioualalen and Kharif (1993), we define the fol-
lowing functions to construct a stability problem:

h(x, y, t) 5 h (x, y) 1 h9(x, y, t), and (6)

f (x, y, z, t) 5 f (x, y, z) 1 f9(x, y, z, t), (7)

where we assume that the surface elevation and the
velocity potential are a superposition of a steady un-
perturbed wave ( , ) and infinitesimal unsteady per-h f
turbations (h9, f9) where h9 K and f9 K . Afterh f
substituting Eqs. (6) and (7) into Eqs. (2)–(5) and lin-
earizing, we obtain the zeroth-order system of equations
for which the permanent short-crested wave is a solution
and the first-order perturbation equations that represent
the stability problem. Both systems of equations will be
resolved in the frame of reference moving with the
wave.
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The zeroth-order system of equations follows:

Df 5 0, for 2d , z , h (x, y), (8)

f 5 0, for z 5 2d, (9)z

2 2 2
2h 1 (1/2)(f 1 f 1 f 2 c ) 5 0, for z 5 h (x, y), (10)x y z

f h 1 f h 2 f 5 0, for z 5 h (x, y). (11)x x y y z

The numerical method to solve this problem and obtain
short-crested wave solutions of permanent form is an
extension of the work by Okamura (1996) to finite
depth, so the reader can refer to this work to obtain
more details about the method. A concise description is
also provided in appendix A.

The first-order system of equations is then

Df9 5 0, for 2d , z , h (x, y), (12)

f9 5 0, for z 5 2d, (13)z

f9 5 2f f9 2 f f9 2 f f9t x x y y z z

2 h9(1 1 f f 1 f f 1 f f ),x xz y yz z zz

for z 5 h (x, y), (14)

h9 5 h9(f 2 h f 2 h f ) 2 h f9t zz x xz y yz x x

2 f h9 2 h f9 2 f h9 1 f9,x x y y y y z

for z 5 h (x, y), (15)

for which we look for nontrivial solutions of the fol-
lowing superharmonic form:

` `

h9 5 exp(2is t) a exp[i(Jax 1 Kby)], (16)O O JK
J52` K52`

and
` `

f9 5 exp(2is t) b exp[i(Jax 1 Kby)]O O JK
J52` K52`

cosh[k (z 1 d)]JK3 , (17)
cosh(k d)JK

where kJK 5 [(Ja)2 1 (Kb)2]1/2.
The resolution of this eigenvalue problem consists in

a stability analysis for which we need to determine the
set of eigenvalues s and the coefficients aJK and bJK of
their associated eigenvectors. Since the system of Eqs.
(12)–(15) represents a Hamiltonian structure, the eigen-
values s appear in complex conjugate pairs. Thus an
instability corresponds to T(s) ± 0. For the wave steepness
h 5 0 in Eq. (A3), the unperturbed wave is given by

5 0 and 5 2c0x with c0 5 v0/a 5 (tanhd)1/2/a.h f
Then the eigenvalues are 5 2Jac0 1 s[kJK

ss JK

tanh(kJKd)]1/2 with s 5 61, sign[sT(2is)] being the
signature of the perturbation (e.g., MacKay and Saffman

1986). The real-valued set of eigenvalues { } causesss JK

the wave to be neutrally stable for h 5 0. Instabilities
arise as the wave steepness h increases. We use here the
method by Ioualalen et al. (1996), who took advantage
of the useful work of MacKay and Saffman (1986) on
Hamiltonian systems; we apply the necessary condition
for instability in terms of collision of eigenvalues of
opposite signatures s or at zero frequency. An instability
can arise if two modes have the same frequency, that
is, 5 for some wave steepness h. This con-s 2ss sJ K J K1 1 2 2

dition takes the following form for s 5 1 (s 5 21
corresponds to an opposite direction of propagation):

1/2 1/2[k tanh(k d)] 1 [k tanh(k d)]J K J K J K J K1 1 1 1 2 2 2 2

1/25 (J 2 J ) tanh d. (18)1 2

The numerical procedure to solve the nontrivial eigen-
value problem is provided in appendix B.

3. Description of the multiple-like solutions of
permanent form

In this work we are interested in the harmonic co-
efficient f26 whose mode (2, 6) is responsible for a
harmonic resonance at angle uc ø 65.83548 for depth
d 5 1 in the linear approximation. Figure 2 exhibits the
multiple-like structure of the coefficient f26 as a func-
tion of the coefficient f11 of the fundamental mode for
the wave parameters d 5 1 and u 5 668 near the critical
angle uc. A high-density computation has been per-
formed in the vicinity of the turning point for which a
bifurcation of the wave occurs near the value f11 ø
0.167 091.

We have obtained all solutions of the short-crested
waves: branch 1; branch 2, including the critical point;
and branch 3. With their numerical perturbation method,
Ioualalen et al. (1996) obtained branch 1 and the part
of branch 3 on the right side of the turning point and
failed to find branch 2. Then they used the Shanks trans-
form to match artificially branches 1 and 3 in the vicinity
of the turning point that we obtain here. They computed
the stability of the solution corresponding to a nonbi-
furcated solution. Because their solutions are much dif-
ferent from ours near the critical point, we are now
interested in studying the stability of the multiple-like
solutions that represent the fully nonlinear wave field
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FIG. 2. Coefficient f26 vs coefficient f11 for depth d 5 1 and angle u 5 668. The different
branches of the solutions are numbered 1–3 and TP indicates a turning point. The plus signs
denote the unstable solutions; see Fig. 3.

along all the three branches and around the turning point
to characterize definitely the stability behavior of har-
monic resonances.

4. Resonant interactions: Superharmonic
instabilities associated with the harmonic
resonance (2, 6)

In this section, the superharmonic instability of short-
crested waves subject to a harmonic resonance (2, 6) is
computed for depth d 5 1 and angle u 5 668. We con-
jecture that one example is sufficient to assess the sta-
bility of the bifurcating solutions of short-crested waves
because all harmonic resonances are composed of the
same multiple-like structure. We have performed exten-
sive computations of harmonic resonances for other pur-
poses, and they do not need to be shown here because
their behavior is recurrent.

Following Ioualalen et al. (1996), a superharmonic
instability associated with a harmonic resonance (6m,
n) may arise only if the two eigenvalues 5 ofs 2ss smn 2mn

opposite signatures are equal at a given wave steepness
h. The collision of the two eigenmodes (6m, n) is then
interpreted as Ioualalen and Kharif’s (1993) class Ia (m,
n) instability, and it can be interpreted as a resonance
between the two eigenmodes (6m, n) and the 2m modes
(1, 61) of the basic short-crested wave; that is,

V 5 2V 1 mV 1 mV , and (19)1 2 01 02

k 5 k 1 mk 1 mk , (20)1 2 01 02

where V i 5 [ | ki | tanh(kmnd)]1/2; V0i 5 (tanhd)1/2, for
i 5 1, 2; k1 5 (am, bn); k2 5 (2am, bn); k01 5 (a,
b); and k02 5 (a, 2b).

In Fig. 3 are plotted the frequencies of the eigenvalues
s626 along all the branches of the short-crested wave
solutions shown in Fig. 2. The stability of branch 3
shows that frequencies of the modes (62, 6) coalesce
between f11 ø 0.160 and f11 ø 0.214. The two modes
are neutrally stable with a nonzero frequency for infin-
itesimal wave steepness h, that is, f11 → 0, and then
give rise to a bubble of instability in that range of f11

with zero frequency. The bubble of instability is phys-
ically associated with a resonant interaction; the coa-
lescence of the two eigenmodes with zero frequency
simply means that the harmonics (62, 6) propagate at
the same phase speed as the basic wave, bearing in mind
that the stability problem has been computed in the
frame of reference moving with the basic wave. This
phase-locking of the resonant modes with the basic wave
is what we have expected.

Most interesting, the superharmonic instability is no
longer sporadic, as mentioned by Ioualalen et al. (1996).
The authors found that the instability occurs in a range
of h of order h4; ours occurs in the range of order h3.
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FIG. 3. Frequency [2R(s626)] (open circles) and growth rate
[2 T (s626)] (plus signs) as a function of coefficient f11 for depth d
5 1 and angle u 5 668: (a) branches 1 and 2 including the TP area,
(b) a magnification of (a), and (c) branch 3. See Fig. 2 for definition
of the branches.

The difference comes out of the short-crested wave so-
lutions. Our short-crested wave, branch 3, is computed
numerically through a fully nonlinear method, whereas
theirs is obtained by matching artificially the solutions
by using the Shanks transform. Thus they obtained a
solution that is not strictly similar to our branch 3.

The stability of branches 1 and 2 of our solutions
shows that no instability appears on branch 1 while a
bubble of instability occurs for 0.1571 , f11 , 0.1656
on branch 2, the region that is very close to the turning
point (f11 ø 0.167 091). The superharmonic instability
is more sporadic and of lower intensity (larger time-
scale) than that of branch 3. Note that the inflexion of
the frequencies appearing around f11 ø 0.146 and f11

ø 0.155 on branch 1 is simply due to the presence of
a four-mode Benjamin–Feir instability; as in the super-
harmonic instability with which we are concerned, the
modes (1, 61) of the unperturbed wave of permanent
form are used in the interaction process of the instability.
At the end, the frequencies of the modes (62, 6) are
perturbed by the competition with the Benjamin–Feir
instability. For clarity we have not reported this insta-
bility in the figure.

5. Conclusions

In this work, we have characterized the potential evo-
lution of multiple-like solutions of short-crested water
waves subject to the harmonic resonance phenomenon.
We have studied their superharmonic stability and given
the values of the growth rates of their associated insta-
bility. The growth rates represent rough predictions of
their potential timescale evolution. For that purpose we
have revisited the work of Ioualalen et al. (1996) and
have numerically computed fully nonlinear solutions of
short-crested wave fields near a critical region in which
a harmonic resonance occurs. Our solutions differ from
theirs because they found only one unique solution with
a perturbation method. When finding accurate solutions
near the critical region where a small divisor occurs,
they matched the two solutions artificially by using the
Shanks transform and finally obtained one unique so-
lution. In the present work, we computed multiple-like
solutions through a fully nonlinear method. At the end,
we obtained three branches; the first one is nearly similar
to theirs except that ours is more relevant in the region
in which the harmonic resonance occurs, and we also
obtained two other branches connected by a turning
point in the vicinity of the harmonic resonance critical
wave parameter.

As a result, like Ioualalen et al. (1996), we recovered
a bubble of instability that is physically associated with
a resonant interaction for the common branch we found.
The growth rate differs, but, most interesting, the su-
perharmonic instability is no longer sporadic like the
one they computed. We then discovered another super-
harmonic instability that is very close to the bifurcation
point to which Ioualalen et al. (1996) had no access
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with their asymptotic method. The unstable solutions
are summarized in Fig. 2, and their behavior is thus
characterized through this study.
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APPENDIX A

Computation of the Multiple-like Solutions of Per-
manent Form

We look for nonlinear short-crested waves of per-
manent form that are solutions of the system of Eqs.
(8)–(10) and

2c f 1 (f 1 c)[(f 2 c)f 1 f f 1 f f ]xx x x xx y xy z zx

1 f [(f 2 c)f 1 f f 1 f f ]y x xy y yy z zy

1 f [(f 2 c)f 1 f f 1 f f 1 1]z x xz y yz z zz

5 0, (A1)

where the condition in Eq. (A1) is exactly the same as
the kinematic boundary condition in Eq. (11) and ex-
presses that the pressure on a free surface is constant
following the motion of the fluid. Though Eq. (A1) is
much more complicated than the usual kinematic con-
dition [Eq. (11)], the lack of a space derivative of the
surface elevation in the expression helps us to obtain
short-crested waves with our method.

The velocity potential is expressed as follows:f

N N

f 5 2cx 1 f sin( jax) cos(kby)O O jk
k50 j522(k mod2)

cosh[k (z 1 d)]jk
3 , (A2)

cosh(k d)jk

where N is the maximum order of expansion and is
chosen to be odd. All calculations are carried out using
N 5 19 in this paper. Further, we use the following three
conditions to obtain a short-crested wave field: the con-
dition for periodicity and symmetry,

f (x, y, z) 5 f (x, y 1 2p /b, z),

f (x, y, z) 5 f (x, 2y, z),

f (x, y, z) 5 2f (2x, y, z),

f (x, y, z) 5 f (x 1 2p /a, y, z),

f (x, y, z) 5 2f (p /a 2 x, p /b 2 y, z);

the wave steepness condition,

h (0, 0) 2 h (p /a, 0)
h 5 , (A3)

2

which shows one-half of the nondimensional peak-to-
trough height for nonresonant waves; and the zero mean
height condition,

p /a p /b

h (x, y) dx dy 5 0. (A4)E E
x50 y50

The above symmetry condition leads to

f 5 0, when j 1 k is odd. (A5)jk

Note that the relation between wave steepness h and the
coefficient f11 of the fundamental mode (1,1) in Eq.
(A2) is

1/2h → (tanhd) f , when f → 011 11

for nonresonant waves.
We use the collocation method to obtain short-crested

water waves. Substituting collocation points into Eqs.
(10) and (A1), we obtain independent equations. The
collocation points are selected as

j 2 1 N 2 1
ax 5 p, j 5 1, 2, . . . , , (A6)j N 2 1 2

and

i 2 1
by 5 p, i 5 1, 2, . . . , N 1 1. (A7)i N

Note that the symmetry condition gives

i 2 1 N 1 1
by 5 p, i 5 1, 2, . . . , ,i N 2

p
for x 5 . (A8)

2

We use the x derivative of the kinematic condition
in Eq. (A1) instead of only the kinematic condition for
x 5 0 because it becomes trivial at x 5 0. The number
of the collocation points is N(N 1 1)/2. We substitute
Eq. (A2) into Eqs. (10) and (A1) and the above col-
location points into x, y in them to obtain N(N 1 1)
independent equations. We have two further indepen-
dent equations: the wave amplitude condition [Eq. (A3)]
and the zero height condition [Eq. (A4)].

We solve the N(N 1 1) 1 2 nonlinear simultaneous
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equations by the Newton method. A third-order short-
crested wave is chosen as an initial solution of the
iteration. We stop the iteration if the maximum of the
differences between unknown quantities before an it-
eration and those after the iteration is smaller than
10211 .

APPENDIX B

Resolution of the Stability Problem

Once the series in Eqs. (16) and (17) are truncated
up to order M and the short-crested wave of permanent
form is computed, then both expressions are substituted
into the surface conditions in Eqs. (14) and (15). The
perturbation equations lead to a generalized eigenvalue
problem of the form: Au 5 isBu, where s is the set of
eigenvalues to be computed with the corresponding ei-
genvectors u 5 (ajk, bjk)T. Here, A and B are complex
matrices, functions of the basic flow. A spectral method
of Galerkin type is used to solve the eigenvalue problem.
For that purpose, Eqs. (14) and (15) are numerically
integrated over one space period in the two horizontal
coordinates using Fourier transforms over a set of n 3
m points whose coordinates are axu 5 2pu/n, u 5 0,
. . . , n 2 1 and byy 5 2py/m, y 5 0, . . . , m 2 1. The
following eigenvalue problem is obtained at z 5 (x,h
y):

M M M M

(1) (1)F {E }a 1 F {G }bO O O OJ2l,K2r JK JK J2l,K2r JK JK
J52M K52M J52M K52M

5 isa ,lr

M M M M

(2) (2)F {E }a 1 F {G }bO O O OJ2l,K2r JK JK J2l,K2r JK JK
J52M K52M J52M K52M

M M

5 is F {H }b ,O O J2l,K2r JK JK
J52M K52M

where

(1)E 5 2f 1 iaJf 1 ibKf 1 h f 1 h f ,JK zz x y x xz y yz

(1)G 5 {(iaJh 1 ibKh ) cosh[k (h 1 d)]JK x y JK

1
2 k sinh[k (h 1 d)]} ,JK JK cosh(k d)JK

(2)E 5 1 1 f f 1 f f 1 f f ,JK x xz y yz z zz

(2)G 5 {(iaJf 1 ibKf ) cosh[k (h 1 d)]JK x y JK

1
1 k sinh[k (h 1 d)]} ,JK JK cosh(k d)JK

cosh(k (h 1 d)]JKH 5 .JK cosh(k d)JK

The functions
F { f }J2l,K2r JK

n21 m21

5 f exp[ia (J 2 l)x ] exp[ia (K 2 r)y ],O O JK u y
u50 y50

where l 5 2M, . . . , M and r 5 2M, . . . , M, are
computed using two-dimensional FFT. Convergence of
the eigenvalues s is obtained by increasing M. All in-
stability calculations are carried out using M 5 15.
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