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A numerical procedure has been developed to study the linear stability of nonlinear 
three-dimensional progressive gravity waves on deep water. The three-dimensional 
patterns considered herein are short-crested waves which may be produced by two 
progressive plane waves propagating at an oblique angle, y, to each other. It is shown 
that for moderate wave steepness the dominant resonances are sideband-type 
instabilities in the direction of propagation and, depending on the value of y ,  also in 
the transverse direction. It is also shown that three-dimensional progressive gravity 
waves are less unstable than two-dimensional progressive gravity waves. 

1. Introduction 
The present study extends the work of many authors on the stability of two- 

dimensional progressive and standing waves to three-dimensional waves of finite 
amplitude. While the former waves have been intensively analysed, up to now the latter 
have been the object of very few studies. The stability of two-dimensional progressive 
Stokes waves which are periodic, irrotational surface waves propagating under the 
influence of gravity has been investigated by Benjamin & Feir (1967). Using a 
perturbation method, they showed that a weakly nonlinear wave train is unstable to 
modulational perturbations. In other words, a Stokes wave of wave steepness ak and 
frequency w is unstable to two-dimensional perturbations of frequency w( 1 f 6) when 
0 < 6 < 2/2ak. The maximum growth rate is obtained for 6 = ak. This instability 
produces an amplitude modulation of the original wave train. The instability of a two- 
dimensional uniform wave train to three-dimensional perturbations was shown by 
Zakharov (1968), using the nonlinear Schrodinger equation. 

Longuet-Higgins (1978 a, b) extended numerically the investigation of the stability of 
finite-amplitude Stoke waves up to ak = 0.42 to superharmonic and subharmonic 
disturbances. He showed that Stokes waves are marginally stable to superharmonic 
perturbations and discovered that when the wave steepness reached the value of 
ak = 0.405 subharmonic disturbances of twice the wavelength of the unperturbed wave 
and travelling with the same speed become unstable. McLean et al. (1981) and McLean 
(1982) considered the stability of finite-amplitude Stokes waves up to ak = 0.41 to 
three-dimensional perturbations using a collocation method; they established that for 
amplitudes smaller than h = 0.30, the dominant instability is two-dimensional while 
for larger amplitudes it becomes three-dimensional. Extending McLean’s work, Kharif 
(1987) showed that the instabilities are no longer predominantly three-dimensional 
when the wave steepness reaches a value of approximately ak = 0.429. Recently Kharif 
& Ramamonjiarisoa (1988, 1990) reported an important result concerning the relative 
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strength of McLean's class I and class I1 instabilities for basic wave steepness larger 
than 0.4 1 and predicted new two-dimensional superharmonic instabilities utilizing the 
condition of instability of MacKay & Saffman (1986). Their work completed the study 
of the linear stability of Stokes waves. 

In the case of two-dimensional standing waves little has been done except for the 
work of Okamura (1984, 1986) who considered the instability of weakly nonlinear 
standing waves using Zakharov's equation and Mercer & Roberts (1992) who very 
recently considered finite-amplitude standing waves on deep water. In the latter it was 
shown that all but very steep standing waves are generally stable to harmonic 
perturbations and unstable to subharmonic perturbations. From these studies we now 
have useful results concerning two limits of three-dimensional gravity waves, that is, 
two-dimensional progressive waves and two-dimensional standing waves. 

While the stability of two-dimensional water waves to infinitesimal disturbances has 
been intensively analysed, the stability of three-dimensional waves has for the most 
part been ignored. The work of Ioualalen & Kharif (1993) is an exception. The present 
investigation extends the latter stability analysis of approximate three-dimensional 
doubly periodic surface gravity waves of permanent form on water of infinite depth to 
subharmonic disturbances. 

The three-dimensional waves considered herein are short-crested waves which may 
be produced by two progressive plane waves propagating at an oblique angle to each 
other or by a sea-wall reflection of a plane progressive wave. Many authors have 
calculated analytically or numerically these forms. In a linear description, the short- 
crested waves are obtained by a superposition of the linear progressive surface wave 
solutions. Fuchs (1952) was the first to obtain second-order solutions while Chappelear 
(1961) extended them to third order. Using a different perturbation parameter Hsu, 
Tsuchiya & Silvester (1979) calculated a third-order expansion in a dimensionless form. 
With the aid of an algebraic manipulator Ioualalen (1993) extended the formal power 
expansions to fourth and fifth orders. Roberts (1983) computed numerically high-order 
solutions using also a perturbation method. Fully numerical methods have been 
developed by Roberts & Schwartz (1983) and Bryant (1985) to calculate highly 
nonlinear short-crested waves. In the limit in which the length of the wave crests 
become long, Roberts &Peregrine (1983) obtained an analytic solution to fourth order. 
In elucidating some of the highly nonlinear properties of steadily propagating short- 
crested waves Roberts (1983) discovered the occurrence of a doubly infinite family of 
harmonic resonances which cause the perturbation series to have a zero radius of 
convergence everywhere. However, he showed that useful results can still be extracted 
from a perturbation series which involves harmonic resonances. Although the 
resonances are densely distributed, almost all of them are of very high order. These 
very-high order resonances contribute to the fine structure of the solutions and the 
error produced by truncating the expansion at an order N and thus ignoring such 
details is at most (ak)"13 where ak is the wave steepness. Roberts (1983) showed that 
the singularities due to the harmonic resonances are extremely weak and do not in any 
way affect the coefficients of a finite truncation of the perturbation series. Numerical 
calculations by Roberts (1983) have revealed the occurrence of pole-zero pairs 
extremely close to one another, establishing the weakness of the resonant structures. 

Ioualalen & Kharif (1 993) computed the stability of these fully three-dimensional 
surface gravity waves to superharmonic disturbances in order to evaluate the 
timescales of these resonances and discovered that the associated instabilities are 
sporadic bubbles of instability due to the collision of superharmonic modes and 
correspond to weak three-dimensional extensions of McLean's class I instabilities. The 
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main purpose of this paper is to study the linear stability of short-crested waves to 
evaluate their initial behaviour and also to compare subharmonic instabilities to 
superharmonic instabilities. Following Roberts (1983) and Ioualalen (1990) the basic 
waves are numerically calculated using a high-order perturbation expansion. 
Convergence acceleration techniques, like the p-method developed by Gilewicz (1 978) 
selecting the best Pad6 approximant, are applied to amplitude expansions in order to 
obtain solutions for amplitudes up to and past the singularities. As in Ioualalen & 
Kharif (1 993), the eigenvalue problem derived from the stability analysis of three- 
dimensional waves is numerically solved using collocation and Galerkin methods. Both 
methods are compared and it is shown that the Galerkin one is more efficient to treat 
three-dimensional wave patterns. A classification of the instabilities is carried out, 
superharmonic and subharmonic instabilities are compared and maximum growth 
rates and frequencies are computed. 

2. Mathematical formulation 

depth. The flow is assumed irrotational. The governing equations are 
We consider surface gravity waves on an inviscid incompressible fluid of infinite 

V2$ = 0, < T ( X , Y ,  0, (2.1) 

lim 4 = 0, 
2-t--cc 

where $(x,y, z ,  t )  is the velocity potential and z = ~ ( x , y ,  t )  the equation of the free 
surface. The classical equations (2.1k(2.4) are given in a dimensionless form which is 
equivalent to setting g = k = 1, where g is the gravitational acceleration and k the 
wavenumber of both incident wave trains. Now let h denote the wave steepness instead 
of ak. 

Following Roberts (1983) we define 

X=xsinO-ot,  Y=ycosO, Z = z ,  

where o is the frequency and 8 the angle between the direction of propagation of the 
incident wave and the normal to the sea wall: 8 = +(n -7). The values 0 = 90" and 
8 = 0" correspond respectively to Stokes' progressive waves and fully reflected standing 
waves. Both are two-dimensional limiting forms of short-crested waves. The angle 
0 characterizes the three-dimensionality level of the flow. 

The solutions of Laplace's equation (2.1) must satisfy the condition (2.2) and the 
nonlinear conditions (2.3) and (2.4) on the free surface. Progressive waves in deep 
water which are periodic in two orthogonal directions and are steady relative to a 
frame of reference moving in one of these directions are given by Roberts (1983) and 
Ioualalen (1990) as doubly periodic Fourier series using a perturbation expansion in 
the wave steepness, h, up to 27th order. The velocity potential and free-surface 
elevation of unperturbed waves are respectively denoted by &I, Y, Z )  and v(I,  Y ) .  
The wave steepness of the basic wave is defined by 

h = ;cil<o, 0) - 5% O)), 

which is half of the non-dimensional peak-to-trough height since the peak of the wave 
will be fixed at ( X ,  Y )  = (0,O). 
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We seek expressions for the velocity potential, the surface elevation and the 
frequency of the form 

m 

5 = C C di, mn sin (mx) cos (n Y )  exp (ymn 2)  hi, 

7 = C C ci, mn cos (mx) cos (n  Y )  hi, 

i=l m,  n 

m 

i=l m,  n 

m 

w = C oi hi, 

a = sin 0, 
i=O 

p = cos 0, ymn = (in"' + n'p');. 

The symmetry and the nonlinearity in the wave require that the indices i, m and n be 
of the same parity. 

Figure 1 displays short-crested water waves for 8 = 80" and 45". For 8 = 80" the 
waves are long-crested due to the proximity of 0 = 90" and for 0 = 45" the waves are 
fully three-dimensional. 

Now consider a frame of reference (x*, y*,  z*) where 

x* = X-ct, c = w / a ,  y* = y ,  z* = z. 

In this reference frame moving in the x-direction with the speed c, the short-crested 
waves are steady. The velocity potential, $*, in this frame is related to 4 by 

$* = $6 - cx.  

For simplicity asterisks are omitted hereafter. 
The main purpose of the present investigation is to study the stability of approximate 

three-dimensional waves, propagating in the x-direction without change of shape, to 
infinitesimal disturbances. Let 

where (7,$) and (v', 4') correspond, respectively, to the unperturbed and infinitesimal 
perturbative motions (7' 4 7, $6' 4 6). 

After substituting (2.5) and (2.6) into (2.3) and (2.4), recasting them in the new 
coordinate system and linearizing, we obtain the first-order perturbation equations 

V'$' = 0, z d q(x,y), (2.7) 

lim $' = 0, (2.8) 

(2.9) 

z+-m 

4; = - 6z 4; - 6 y  4; - 6 z  4: - (1 + 6z 6 x 2  + 6u 6 y 2  + 6 2  6 z z )  7', '1 
Z = 7k.Y). (2.10) 

7; = (Fa - TX 6x2 - 7u 5l/J 7' - 7% $; - 5x 7; - Ty 4; - FY 7; + $:>j 
Extending the procedure of Ioualalen & Kharif (1 993) to subharmonic disturbances, 
we look for non-trivial solutions of (2.9) and (2.10) of the form 

m m  

(2.11) 

C C a,Kei(J"x+K/Lv) (:I) = e-iut ei(px+qu) 
m m  C C b,, ei(Jgx+KPu) 

J=-x K=-m 

where KJK = [ ( p  + + (q  + Kp)2]i. 
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e =  800 \ e = 450 

FIGURE 1 .  Free surface of short-crested water waves for h = 0.30. 

I fp  = Ncr and q = M p  with ( N ,  M )  E N 2 ,  then the wavelengths in the x-direction and 
y-direction of the perturbation are the same, respectively, as the longitudinal 
wavelength and the transversal wavelength of the basic wave and the perturbation is 
called superharmonic. I fp  $. Ncr and q $. Np,  then in general the perturbation contains 
components with wavelengths in the x-direction and y-direction which are greater 
than, respectively, the longitudinal wavelength and the transversal wavelength of the 
basic wave and the perturbation is called subharmonic. There are also perturbations 
subharmonic in one direction and superharmonic in the other. 

The coefficients atlK, b d K  and the eigenvalue v, the frequency of the perturbations 
relative to the three-dimensional basic wave, are to be determined. Since the system of 
equations (2.7t(2.10) is real valued the eigenvalues (T appear in complex-conjugate 
pairs. Thus instability corresponds to Im (r) + 0. 

For h = 0, the unperturbed wave is given by ?j = 0 and 6 = -cox with co = I /a  
being the celerity of the wave. Then the eigenvalues are 

The sign of s determines the direction of propagation of the disturbance relative to a 
frame of reference moving with the speed c,. Note also that there exists a degeneracy 
with respect to p and q since 

As noted by McLean (1982) this degeneracy is artificial since the corresponding 
eigenvectors are physically the same. This degeneracy is removed by restricting p and 
q to the ranges 0 d p < a and 0 d q < p. 

The set of eigenvalues { ( T > ~ }  is spectrally stable for h = 0. Instabilities can arise when 
the parameter h increases. Recently, MacKay & Saffman (1 986), taking advantage of 
fundamental work on Hamiltonian systems, formulated a necessary condition for 
instability in terms of the coalescence of two eigenvalues of opposite signatures or at 
zero frequency. A change from stability to instability can occur only if, for some h, two 
modes have the same frequency: 

In a linear approximation this loss of stability may be written in the following form: 

v;K = - ( p + J c r ) c , + s [ ( p + J ~ ) 2 + ( q + K p ) 2 ] f ,  s = f 1. 

a;K(p, 4) = v>-&J, K-N(P + crM, 4 + p N ) ,  ( M ,  N ,  E w. 

a?, K,(P? 43 h, = K2(P) 49 h). 
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with s, = -s,- 1. 
The coalescence of two eigenvalues may be interpreted as a resonance between two 

infinitesimal modes of wave vectors k,  and k,  and the basic wave with fundamental 
eigenvectors k,, and k,,. These conditions given by Phillips (1960) are 

M .  Ioualalen and C. Kharif 

k ,+k ,  = C+k,,,, w i f w k  = C ~ W ; ) ~ ,  
i i 

with i = 1,2, at least for gravity waves, where w i ,  w i  and ohi represent, respectively, the 
frequencies of the disturbances and the frequencies of the unperturbed wave in a fixed 
frame of reference. 

The choice of k,  and k,  leads to the different classes of instabilities. Following 
McLean (1982) we define two general classes from (2.12): class I corresponds to 
(4 - 4) even and class I1 corresponds to (4 - J,)  odd. The degeneracy noted previously 
allows us to choose J1 and J ,  such that 

and j =  1,2,3 ,.... J1 = j ,  J ,  = - j -  1 for the class II(j) 
J1 = j ,  J ,  = - j  for the class I(j) 

The present study will be limited to class I and class I1 f o r j  = 1 which corresponds to 
the dominant resonances. Over the range considered herein, 0 < h < 0.30, the higher- 
order resonances ( j  = 2,3, ...) are very weak as suggested by Zakharov (1968). Then 
the symmetry and the nonlinearity in the basic wave require K, and K, to satisfy 

and 
K, = f 1 and K, = f 1 for class I 
Kl = f 1 and K, = f 2  for class 11. 

CZassIa( j= I ,K,=K,= l ) o r c l a s s I a ’ ( j =  l , K , = K , = - l )  
For class I a  equation (2.12) may be written in the following form 

[ ( p + a ) 2 + ( q + p ) 2 ] a + [ ( p - a ) 2 + ( q + p ) 2 ] ~  = 2. (2.13) 

If we let P = p and Q = q + p, then (2.13) becomes 

In the (P, Q)-plane the resonance curves for class I a  are symmetrical about the P-axis 
and the Q-axis. So symmetry allow us to limit the study to P 2 0 and Q 2 0. The 
geometrical interpretation derived from resonance conditions is plotted in figure 2 (a) 

[ ( P + a ) 2 + Q 2 ] ~ + [ ( P - a ) 2 + Q 2 ] ~  = 2. 

with 
k,  = k ,  + k,, + k,, 

and w; = w;+2w;, 

with k,  = (p+a,q+p)t,  k,  = (p-aa,q+fi)t;  k,, = k: = (~,/3)~,  k,, = k; = (a, -p)‘. 

w; = lk,l; = [ ( p  + a), + (q +/3)’]1”, 

w; = lk,,16 = lk,,16 = 1. 

The frequencies in a fixed frame of reference are 

(,J; = - lkzl: = - KP - 4, + (4 + P ) ” ~ ,  

Figure 2(b) displays the resonance curves for different angles 8 plotted from the 
relation (2.13). Class Ia’ and class Ia  are symmetrical about the p-axis. Note that 
0 = 90” corresponds to class I ( N  = 2) in figure 1 of McLean (1982). 

Class I b  ( j  = 1, K, = 1, K, = - 1) or class Ib’ ( j  = 1, Kl = - 1, K, = 1) 
For class I b equation (2.12) becomes 

[ (~+a)2+(q+p)”~+[(p -a ) z+(q -p ) z l~  = 2. (2.14) 
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P 
FIGURE 2. (a) Resonance curves of class I a  ( j  = 1, Kl = K, = 1) from the linear dispersion relation. 

(b) Resonance curves for various values of the angle 8. 

Using P = p a  + q/3 and Q = -p/3+ qa the dispersion relation is transformed into 

[(P+ 1)'+Q2]~+[(P- 1)2+Q2]i = 2 .  

The resonance curve is symmetrical about the P-axis and the Q-axis. Following the 
same procedure previously described we have 

k,  = k,  + 2k,,, 

0; = w; + 2 4 ,  

and k,  = (P+a,q+PY, k,  = (P-&4-p) t ,  k,, = k,f = (a,p)t, 
0; = Ik$, w; = - IkJ;, W ;  = 1. 

Figure 3 (a)  exhibits the corresponding geometrical construction and in figure 3 (b)  are 
plotted the resonance curves for different values of 0. Class Ib' and class I b  are 
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FIGURE 3. Same as figure 2, for class I b ( j =  1,K, = 1,K, = - 1 ) .  

symmetrical about thep-axis. Note that classes Ia, Ia', Ib,  I b' are identical for 0 = 90". 
For given values of p and q instabilities of class l a  and class I b (respectively class I a' 
and class I b') cannot appear simultaneously. 

Class IIa ( j  = 1, Kl = 1, K, = 2) or class Ira' ( j  = l ,K, = - l,Kz = -2) 
For class IIa the resonance condition (2.12) is 

[ ( p  + a)Z+ (4 +p)"]"+ [ ( p  - 2a)2+ (4 + 2p)"lt = 3. 
Using the transformation 

(2.15) may be written 

P = (pa-&P-$pp2)/(1 -$I2) and Q = (-qa+&p-$a/l)/(1-$32) 

[(P+ 1)z+Qz]~+[(P-2)2+Q2]~ = 3/((1 -!$')i). 

(2.15) 
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-4 -3 -2 -1 0 1 2 3 4 

P 
FIGURE 4. Same as figure 2, for class IIa ( j  = 1, K, = 1 ,  K, = 2). 

The resonance curve is symmetrical about the P-axis. Figure 4(a) shows the 
geometrical construction of the resonance while figure 4 (6) displays resonances curves 
for a set of angles 0: 

k,  = k ,  + k,, + 2k,,, 

and kl = ( p + ~ , q + P ) ~ ,  k ,  = ( ~ - 2 a , q + 2 P ) ~ ,  

w; = w;+3w;, 

k,, = k i  = (cx,P)~, k,, = k,  = (a,  -/3)t ,  
OJ; = Iklli, w; = - Ik21i, w;, = 1. 

Resonance curves corresponding, respectively, to class I1 a and class TI a' are 
symmetrical, about the p-axis. The case of I9 = 90" corresponds to McLean's class I1 
( N  = 3 ) .  
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Q 4 

2 -  

1 -  

-4 -3 -2 -1 0 1 2 3 4 

P 
FIGURE 5.  Same as figure 2, for class IIb ( j  = 1, K, = 1, K, = -2). 

(2.16) 

ClassI lb( j= l , K , =  1 ,K2=-2)  orc lus s l Ib ' ( j=  1,K, = - l , K , = 2 )  
For class IIb, equation (2.12) may be written in the form 

[(p+a)2+(q+p)z]f+[(p-2a)2+(q-2p)2]a = 3 .  

Using P = pa  + q/3 and Q = -pp+  qa, equation (2.16) becomes 

[(P+ 1)2+Q2]i+[(P-2)2+Q2]i = 3 .  

The resonance curve is symmetrical about the P-axis. Figures 5 (a) and 5 (b) correspond 
to this case for different angles 0 with 

k,  = k ,  + 3k,,, 

w; = 0); + 3 4 ,  
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23.5 l ~ ~ I ~ - I ~ ~ I ~ I  

- (4, 4)  = (-1, -2) - - - - - - - - _ _ _ _ _ _ _ _  

'. 
-. - - -  - -  - -  - - -  - -  

N 

2 
X - (4, K2) = (1, 1)  

by 
h ** 23.0 - - 

W 

2 

s = l  
s = -1 - - - - - - - - 

22.5 I I I I I . I I I I I I  

and k ,  = (P + a,q + PIt, k,  = (P - 2a, - 2Plt, = k i  = (a, PIt, 
ui = Ik$, ui = - IkJ;, u;l = 1. 

Herein also stability diagrams of class I1 b' are symmetrical with diagrams of class I1 b 
relatively to the p-axis. Classes IIa, IIa', IIb, IIb' are identical for 0 = 90". Class I1 
interactions require one more fundamental wave vector for the basic wave than class 
I interactions and therefore are of higher order. 

Note that the harmonics of the basic wave which give rise to the instability must 
exhibit symmetry with respect to a reflection. Figure 6 describes a crossing of two 
eigenvalues of different signatures without any loss of stability. In that particular case 
the basic wave does not contain the harmonic (1,2) which would allow an instability 
of class I ( j  = 1, Kl = 1, K2 = - 2) to appear. 

Instabilities for which corresponding eigenvectors have dominant components 
aJIKl, aJgK,, bJIK, and bJ,Kq will be identified as class (4, J,, K,, K,) instabilities. The 
instabilities are detected by investigating the vicinity of the linear resonance curves in 
the (p,q)-plane for h > 0. 

Let us illustrate briefly the superharmonic case, i.e. p = q = 0, previously studied by 
Ioualalen & Kharif (1993). The authors identified harmonic resonances described by 
Roberts (1983) as superharmonic instabilities of class I. Roberts (1983) showed the 
occurrence of a doubly infinite family of harmonic resonances for critical angles 0, 
densely distributed on the 0-interval [OO, 90'1. The equation relating the angle Oc to the 
(m, n)th harmonic with which resonance may occur is given by 

m4 - m2 
cos2 8, = ~ 

n2 - m2 ' 

For example when (m, n) = (2,6) the critical angle 0, = 52O.23 . . . Ioualalen & Kharif 
(1993) showed from a stability analysis point of view that the two eigenvalues, 
corresponding, respectively, to (+ 2,6) and ( - 2,6) modes, coalesce generating an 
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1.0 

0.5 

. . . . I . . . . , . . . .  . . . . , . . . . , . . . .  
; (4 

: 

55.00" - c - - - -. 

instability of class I ( j  = 2, Kl = K, = 6)  for h 3 0. For h = 0 the resonance condition 
is 

[ ( p  + 2a)2 + (q  + 6p)2]a + [ ( p  - 2 ~ 5 ) ~  + (q  - 6,8)21f = 4. 

Resonance curves in the ( p ,  q)-plane are shown in figure 7 for different angles 0. The 
curve for 6' = 52O.23 crosses the origin ( p ,  q)  = (0,O) which corresponds to an 
instability with zero frequency as shown by the authors. 

-0.5 

-1.0 

3. Numerical schemes 
In this section indices ( j ,  k) will be used instead of ( J ,  K ) .  The series (2.11) are 

truncated withj and k up to the orders M and N ,  respectively, and substituted into (2.9) 
and (2.10), which leads to the following eigenvalue problem for cr with eigenvector 
u = (ajk, b J :  

Au = irBu. 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  . :  
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h = 0.10 

M = N  Im (4 -Re (a) 

2 0.2667558643( -02) 0.4612204728( -01) 
3 0.1 174960579(-02) 0.4540438254( -01) 
4 0.1 179979978( -02) 0.4540342927(-01) 
5 0.1 179888091(-02) 0.4540325445(-01) 
6 0.1 179889936(-02) 0.4540325698(-01) 
7 0.1179889837( -02) 0.4540325688( -01) 
8 0.1179889840( -02) 0.4540325689( -01) 
9 0.1179889840( -02) 0.4540325689( -01) 

h = 0.20 

0.3516755(-02) 0.4294063(-01) 
0.2894755( -02) 0.4323800( -01) 
0.2963601(-02) 0.4326600(-01) 
0.2949847( -02) 0.4326989( -01) 
0.2944620(-02) 0.4326811(-01) 
0.2951998( -02) 0.4327083(-01) 

Time 
CPU 
6) 

5.3 
13.7 
35.9 
77.7 

161.6 
316.6 

TABLE 1. Examples of the dependence of the eigenvalues on the truncation p = 0.10, q = 0.075 
and 8 = 80" (collocation method) 

Here A and B are complex matrices depending on the basic wave and the real 
wavenumbers p and q. Two numerical solution methods have been used and 
compared: (a)  a collocation method developed by McLean (1982) to study the linear 
stability of Stokes waves and (b)  a Galerkin method developed by Zhang & Melville 
(1987) to study the linear stability of gravity-capillary waves. Ioualalen & Kharif 
(1993) extended both methods to the three-dimensional stability analysis and 
established that the Galerkin method is more efficient. Using a Galerkin method for 
short-crested nonlinear waves they obtained values for the relevant eigenvalues with 
two or three more significant figures than those obtained using a collocation method 
for M , N  given and h greater than 0.19; here, both methods are used to treat 
subharmonic perturbations. The computational efficiencies of the two methods are 
compared. 

3.1. Collocation method 

This method consists in satisfying the system of equations (2.9) and (2.10) at 
(2M+ 1 )  (2N+ 1 )  collocation points distributed over one period of the free surface in 
the two horizontal directions x and y .  We obtain the following equations: 

where 

(3.1) 

(3  4 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 

(3 .3R  

A standard eigenvalue solver (QZ algorithm) is used to find the 2(2M+ 1)(2N+ 1) 
eigenvalues of the system (3.1)-(3.2). The integers M and N are increased until the 
eigenvalues c have converged. Table 1 shows examples of eigenvalue convergence 
for two different values of the wave steepness of the basic wave. The last column 
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gives the CPU calculation time on a CRAY I1 computer, proportional to L3 with 
L = 2(2M+ 1)(2N+ 1). This table reveals that as the wave steepness increases, the 
method yields less accurate results. To improve the accuracy it is necessary to increase 
the number of collocation points, and thus the order of the matrices A and B may 
become too large to treat the eigenvalue problem accurately. The limitation of this 
method for highly nonlinear short-crested waves is due to the fact that the number of 
modes in the truncated eigenvectors is fixed equal to the number of discrete points on 
the free surface. In this way the effects of these two numbers on the convergence are 
treated equally. Consequently either the number of modes may be much larger than 
necessary for a given accuracy or the number of collocation points may be insufficient 
to correctly describe the free surface. A Galerkin method has been used in order to 
dissociate the effect of the two numbers. 

3.2. Galerkin method 
Zhang & Melville (1987) pointed out that the number of modes required for a sufficient 
accuracy using a Galerkin method is less than the number of collocation points, i.e. the 
corresponding number of modes in the collocation method. The main advantage of this 
method is the generality allowed in the spectral representation of the surface. The 
method developcd by Zhang & Melville (1987) is extended to the case of a three- 
dimensional basic wave. Applying Fourier transforms to (3.1) and (3.2) and 
approximating integrals on a grid of v x p  points, the coordinates of which are 

27cu 
x =- , u = 0, ...) v-1, 

uv 

2x2, 
3’ = - , 2, = 0 ,..., 1 6 - 1 ,  

PP 

v-1 15-I 

The functions T ~ ~ ,  k -v{dk~  = 
‘C hilt eia(j-1) xu eiB(k-r) uv ,  

u=o 1;=0 

where I = - M, . . . , M and r = - N ,  . . . , N are computed using two-dimensional fast 
Fourier transforms (FFT). The weak constraints to be satisfied are M <  iv and 
N < &. An eigenvalue problem is also derived from (3.4) and (3.5). For a given value 
of the wave steepness h and a fixed value of the angle 8, the integers v and ,u are 
increased until the Fourier coefficients have converged. The convergence of the 
eigenvalues is obtained by increasing M and N .  Generally, the number of discrete 
points required to describe the free surface is much larger than the number of modes 
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(v, PI Re (Ez, 4) Im ( F z ,  -2) 

(10,lO) 0.2657612477(-02) 0.4349091737(-01) 
(12,12) 0.2850392756( -02) 0.4336533422( -01) 
(15,15) 0.284072401 l(-02) 0.4337641063(-01) 
(18,18) 0.2840717591(-02) 0.4337640590(-01) 
(20,20) 0.2840723404( -02) 0.4337641234( -01) 
(25,25) 0.2840723271( -02) 0.4337641 093( -01) 
(30,30) 0.2840723272( -02) 0.4337641093( -01) 
(60,60) 0.2840723271( -02) 0.4337641093( - 01) 

TABLE 2. Convergence of the E2,-z  coefficient for h = 0.20, 0 = 80", p = 0.10 and q = 0.075 

h = 0.10 
~- 

M = N  Im (4 - Re (u) 

2 0.1128301558(-02) 0.4543339417( -01) 
3 0.1 179391342(-02) 0.4540385737(-01) 
4 0.1 179779460(-02) 0.4540349248( -01) 
5 0.1 179888153( -02) 0.4540325936( -01) 
6 0.1 179889672(-02) 0.4540325741(-01) 
7 0.1 179889836(-02) 0.4540325689( -01) 
8 0.1 179889839( -02) 0.4540325689( -01) 
9 0.1 179889841(-02) 0.4540325689(-01) 

h = 0.20 

Im (d - Re ( CT) 

0.5273342( - 02) 0.497191 6( - 01) 
0.2779965( -02) 0.4341529( -01) 
0.2840723( -02) 0.4337641( -01) 
0.2944414(-02) 0.4327712(-01) 
0.2949270( -02) 0.4327394( -01) 
0.2951 651( -02) 0.4327102( -01) 
0.2951841( -02) 0.4327084(-01) 
0.2951882(-02) 0.4327078(-01) 

Time 

2.8 
3.9 
9.2 

16.1 
38.6 
85.7 

170.8 
334.7 

CPU (s) 

TABLE 3. Examples of the dependence of the eigenvalues on the truncation p = 0.10, q = 0.075 
and 0 = 80" (Galerkin method) 

required for convergence of the eigenvalues, avoiding aliasing errors. Table 2 shows the 
convergence of the E2,-2  coefficient as a function of the (v ,p)  grid of points. For 
h = 0.20 a relative accuracy of order 10-l' with (v,p) = (25,25) allows a consistent 
description of the free surface. 

Table 3 which is similar to table 1 shows that both methods are of the same order 
of accuracy for small wave steepness. However, for higher wave steepness the Galerkin 
method is more efficient with relative accuracy of order and for, respectively, 
( M ,  N )  = (5,5) and ( M ,  N )  = (7,7) while the corresponding values are only 10-1 and 

for the collocation method. Thus, the Galerkin method has been retained herein 
for further calculations. 

4. Numerical results 
The instability regions corresponding to the two classes I previously described are 

plotted in figures 8 and 9 for, respectively, 8 = 80", h = {0.10,0.20} and 8 = 60", 
h = {0.10,0.20}. For a fixed value of 8 the unstable regions of class I b  grow as the 
wave steepness increases. Class I a  exhibits similar behaviour except for values of the 
parameter 0 near 60" where the unstable region shrinks dramatically. 

In figure 8 the dominant instability belongs to class I a  with p + Na and q = 0 while 
in figure 9(b) the dominant instability belongs to class I b  and is located on the axis of 
symmetry q = p/tan 8 withp + Na and q =t= Mp. From these two examples we observe 
that the most unstable disturbance of classes Ia, a' is subharmonic in the x-direction 
and superharmonic in the y-direction: the most unstable disturbance of classes Ib,  b' 
is subharmonic in the two orthogonal directions. 
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(j = 1, k ,  = k, = 1) 4 

0 

1 .o 
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4 

0 

-0.5 
0 0.5 1 .o 1.5 

P 
FIGURE 8.  Instability regions of class I for 0 = 80". The labelled dots correspond to the maximum 

growth rate of the instability. (a) h = 0.10, (b)  h = 0.20. 

In figure 10 are plotted the maximum growth rates of classes I as a function of the 
angle 0 for different values of the wave steepness h. Instabilities of class I a  are similar 
to the Benjamin-Feir modulational perturbations in the x-direction. At 0 = 90°, their 
rates of growth for small amplitudes are of order (h/n)' and decrease rapidly as 0 
decreases to become very weak near 0 = 55O.t A restabilization of instabilities of this 
class may occur for steep three-dimensional gravity waves but these are beyond the 
scope of our study. Kharif & Ramamonjiarisoa (1988) showed that class I(m = 1) 
instabilities of Stokes waves (0 = 90') disappear for the wave of maximum energy. The 
maximum growth rates of instabilities of Stokes waves (0 = 90') for h = 0.10 and 0.20 
are respectively 0.4 x lo-' and 1.33 x lo-' (see table 2 of McLean 1982). Extension to 
h = 0.15 gives as maximum growth rate 0.83 x lo-'. These values are markedly higher 

t As suggested by a referee, minimum values near 0 = 55" seem to be close to the complement of 
the angle between groups and waves on the boundary wedge of the Kelvin ship-wave pattern. 
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FIGURE 9. Same as figure 8, for 0 = 60" 

than one would guess for 8 = 90" from figure 10 and so it is shown that two- 
dimensional progressive gravity waves are strongly more unstable than fully three- 
dimensional progressive gravity waves. Near-standing waves which correspond to 
small values of 0 are subject to modulational instabilities of class I a  with rates of 
growth close to those of long-crested waves (8 close to 90"). Mercer & Roberts (1992) 
showed that pure standing waves (6' = O"), which cannot be treated by the present 
formulation, are unstable to subharmonic perturbations. 

Instability regions of classes I a and I b associated with long-crested waves intersect 
near the origin (p, q) = (0,O). As previously noted these instabilities cannot appear 
simultaneously at the same point in the ( p ,  q)-plane, which avoids the most unstable 
perturbation of class I b  being located on the axis of symmetry q = ptan 0. This 
explains the gap between the growth rates of instabilities of the two classes for 6' near 
90". The resonance curves of classes I a  and I b  become identical for 8 = 90" and 
h = 0. For any given steepness, h, the maximum rate of growth of class I b  remains 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 09 Aug 2009 IP address: 134.246.166.17

282 M .  Ioualalen and C. Kharif 

100 

80 

5 60 
G 
v 

20 

0 

0 (deg.) 
FIGURE 10. Maximum growth rates of class I as a function of the angle 8 :  

-0- ,  class I a ;  --o--, class Ib. 

almost constant when 8 varies. This is not surprising since this class has linear resonance 
curves invariant under rotations as shown in figure 3(b). In the range defined 
approximately as 60" < 8 < 90" and 0 < 25" the dominant instabilities are of class Ia, 
subharmonic in the direction of propagation of the basic wave and superharmonic in 
the transversal direction. Our results are restricted to angles 8 + 0" because the present 
formulation is inadequate to study the linear stability of pure standing waves. In the 
range 25" < 8 < 60" dominant instabilities are of class I b and are subharmonic in the 
two horizontal directions. Figure 10 also shows that Stokes waves (8 = 90"), which are 
two-dimensional, are more unstable than three-dimensional surface gravity waves. 

Figures 11 and 12 show wave patterns of undisturbed and disturbed flows 
corresponding, respectively, to class I a and class I b. The perturbed flow is composed 
of the superposition of the basic wave ( ~ ( x , y )  and the perturbation 

Re {&, &, v) + &I, -&x, Y)>. 

Figure 11 (c) shows that modulation occurs only in the longitudinal direction while 
figure 12 (c) reveals modulation in both the longitudinal and transversal directions. 
Figures 13 and 14 display longitudinal profiles in the plane y = 0 and transversal 
profiles in the plane x = 0 for the surface waves shown, respectively, in figures 11 and 
12 and illustrate more clearly the modulation phenomenon. 

Using a pseudo-spectral method Poitevin & Kharif (1991) computed the nonlinear 
evolution of a Stokes wave train subject to a sideband-type instability and observed the 
frequency down-shifting phenomenon when dissipation is taken into account. In order 
to study subharmonic transitions it would be relevant to extend the direct numerical 
calculations to three-dimensional deep water waves. These subharmonic transitions 
would change the angle 8 into angle 8'. In this case for classes Ia,  a' the dominant 
components of unstable modes lead to 

sin 8 - p  
cose+q 

8' = arctan with q = 0. 
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FIGURE 11. Wave pattern for 19 = 70°, p = 0.32, q = 0 and h = 0.20 over several periods in the 
horizontal direction: (a) unperturbed wave, (b) perturbation (t. = 0.05), (c) perturbed wave. 
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FIGURE 12. Same as figure 11, for 0 = 40°, p = 0.112 and q = k0.1335. 
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-0.4 I I 

2Tc 4Tc 6n 
A 

FIGURE 13. Wave pattern for 8 = 70°, p = 0.32, q = 0 and h = 0.20: -, unperturbed wave; 
- - -, perturbation; ---, perturbed wave. (a) In the plane y = 0, (b) in the plane x = 0. 

For classes I b, b' the dominant components of the unstable modes lead to 

sin 8 -p 
6' = arctan with q =ptanB 

cos8-q 

and so 6' = 8. 

For classes Ib, b', the wavenumbers of the two component waves are down-shifted 
together so there would be no change in the angle 8 of propagation, while for classes 
Ia, a' only the longitudinal wavenumber is down-shifted (q  = 0) so the angle 8 would 
be affected. This means that for 8 > 45" class I a  instabilities would produce three- 
dimensional wave trains which become more three-dimensional via nonlinear 
interaction. 

Ioualalen & Kharif (1 993) investigated numerically the stability of three-dimensional 
10 FLM 262 
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FIGURE 14. Same as figure 13, for 0 = 40°,p = 0.112 and q = f0.1335. 

progressive gravity waves on deep water to superharmonic disturbances, also called 
harmonic resonances. As their main result they showed that these resonances are 
sporadic ‘bubbles ’ of instabilities which correspond to weak three-dimensional 
extensions of McLean’s class I(m) instabilities for m 3 2. They computed the growth 
rates of different harmonic resonances which never exceed the value hZm(m 2 2) in the 
range 0.10 < h < 0.30. Herein classes l a  and I b  have been identified as extensions of 
McLean’s class I(m) instabilities for m = 1. Thus, the characteristic timescales of 
harmonic resonances discovered by Roberts (1983) are much greater than those for the 
subharmonic resonances of modulational type. 

The instability regions corresponding to the two classes TI defined in $2 are plotted in 
figures 15 and 16 for, respectively, 19 = 80°, h = {0.10,0.20} and 6’ = 60°, h = {0.10,0.20). 
These resonances are of higher order than those of classes I and so are weaker 
for small and moderate values of the wave steepness of the unperturbed wave. The 
maximum growth rates of classes I1 a and I1 b are located on their respective axis of 
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P 
FIGURE 15. Instability regions of class I1 for 0 = 80". (a) h = 0.10, (b) h = 0.20. The dots label the 

maximum growth rates and the dashed lines correspond to neutral stability. 

symmetry P =  t. The dashed lines drawn in the neighbourhood of the stability 
boundaries of class IIa are points of neutral stability. Generally, the point of maximum 
instability occurs with Re(cr) =l 0 except for 0 = 90". Therefore, the most unstable 
perturbation is not phase locked to the unperturbed wave. However the stability 
boundary at P = may represent a bifurcation of the initial wave pattern. Figures 15 
and 16 show that the dominant instabilities for respectively 0 = 80" and 0 = 60" belong 
to class I1 a. Comparison of the growth rates of classes I1 a and I1 b for h = 0.10 and 
0.20 as a function of 8 is shown in figure 17 and illustrates that class IIa instabilities 

10-2 
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are dominant in the approximate region 6' > 55". The behaviour of the maximum 
growth rate of class I1 b which remains almost constant when 6' varies is similar to that 
of class I b. 

Figure 18 shows the maximum growth rates of classes I and I1 for two values, 
6' = 40" and 6' = 80". The present computations show that modulational instabilities of 
class I are predominant over the range 0 < h < 0.30. For 0 = 80" an extrapolation of 
the curves beyond h = 0.30 suggests that class I1 instabilities would dominate at a criti- 
cal wave steepness h,(6'). The latter is consistent with the results of McLean et al. (1981) 
and McLean (1982) who established that for Stokes waves (0 = 90") h,(0) = 0.30. 
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FIGURE 17. Maximum growth rates of class I1 as a function of the angle 8 :  -, class IIa;  
- - -, class I1 b. 

0 ‘  0.1 0.2 
h 

0.3 

FIGURE 18. Maximum growth rates of dominant instabilities as a function of the wave steepness: 
-0-, class l a ;  -0-, class Ib;  --0--,  class I l a ;  --o--, class IIb. 

5. Conclusions 
The stability analysis presented herein allows the determination of the relevant wave 

interactions in more realistic water wave fields such as short-crested waves. The 
mathematical existence of such waves is still an open question. However, useful results 
have been obtained from approximate solutions via perturbation series and their 
stability to infinitesimal disturbances. From the latter it has been shown in the range 
of wave steepness 0 < h < 0.30 that the dominant instabilities are subharmonic in the 
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direction of propagation of the basic wave and belong to an extension of McLean’s 
class I. Moreover, it is found that the timescales of harmonic resonances given by 
Ioualalen & Kharif (1993) are much larger than those corresponding to the 
subharmonic resonances calculated herein; thus harmonic resonances would not have 
time to develop significantly if compared to subharmonic resonances. It has been also 
shown that three-dimensional progressive gravity waves are less unstable than two- 
dimensional progressive gravity waves. 

Beyond a wave steepness of h = 0.30 the stability computation becomes tedious and 
thus our analysis has been limited by this value. The numerical scheme presented herein 
is appropriate for the study of instabilities of classes I1 which would dominate the 
resonances occurring in short crested-water waves but further calculations would be 
necessary since Roberts (1983) showed that the maximum steepness estimates can 
reach values over 0.7. 
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