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We further investigate the dynamics of nonlinear structures that arise from the
Kadomtsev–Petviashvili equation. When the analysis is linear, assuming perturba-
tions grow exponentially in time, we find the growth rates of two important instabili-
ties numerically. These are the only purely growing modes. The wavelength-doubling
instability is seen to dominate its rival, that of Benjamin and Feir, at least when the
amplitude of the wave is not too large. Approximate formulae, found to higher order
than in part I (referenced in § 1), are checked against the numerically found values.
The models are seen to be better than expected. For the dominant wavelength-
doubling instability, our model extends beyond the assumed region of validity. It is
surprisingly close, almost up to the soliton limit.

When we depart from linear stability analysis and include terms nonlinear in the
perturbation, a simple analysis shows that the linear instability eventually drives
a doubly space-periodic hyperbolic secans pulse in time. After a long time, initial
conditions are reproduced. A proof that the maximum amplitude achieved by the
perturbation is approximately proportional to the linear growth rate is given within
the limitations of the calculation. This fact was suspected from numerics. A second
class of possible dynamic behaviour, not arising from initially linear growth of a
perturbation, is found. This class involves fully two-dimensional stationary solutions
and their possible oscillations.

Keywords: Kadomtsev–Petviashvili equation; Benjamin–Feir instability;
wavelength-doubling instability; cnoidal waves; solitons; Landau-type equation

1. Introduction

The equation formulated by Kadomtsev & Petviashvili (1970),

ut + uux + uxxx − ∂−1
x uyy = 0, (1.1)

is generally designated KPI. It is integrable by inverse scattering (Zakharov & Sha-
bat 1971). New mathematical results, embracing interpretations of the Kadomtsev–
Petviashvili hierarchy, as well as new methods of finding solutions, can be found in
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Iliev (1997), Bagrov et al . (1998) and Deoniuk & Segur (1998). Physical contexts,
as well as methods of derivation in hydrodynamics, plasma theory and superfluidity,
have been described by Infeld & Rowlands (2000), Jones & Roberts (1982), and in
several other references listed by Infeld et al . (1999), henceforth referred to as part I.
This last reference described a model for the growth rates of perturbations to non-
linear wave and soliton solutions of equation (1.1). In that reference, cnoidal wave
solutions to this equation were derived. Next, charts of unstable regions in the space
of the wavevector K of the linear perturbations were drawn. When the amplitude
of the cnoidal wave was small (small m of the sn(x | m) function), approximate
formulae for the growth rates, Γ (K, m), were given. Formulae for the soliton limit
(m = 1) have been known for some time (Zakharov et al . 1980). Further large-
amplitude information (m < 1, but not small) was taken from Infeld et al . (1978)
and Infeld & Rowlands (1979a, b). All in all, a reasonably complete picture emerged.
This information would be extremely difficult to extract from the formal solution of
Kuznetsov et al . (1984).

In the present extension of part I, we find the growth rates Γ numerically and thus
test our model equations (which we improve). Two instabilities, one like Benjamin
& Feir (1967) (see also Lighthill 1965), and the wavelength-doubling mode, in which
Kx is exactly one half of 2π/λ of the nonlinear structure, are treated. The latter
instability is seen to be dominant. This is in contradistinction to the gravity wave
case, where this only happens for some cases (see Saffman & Yuen 1985). Somewhat
unexpectedly, an extension of the formula for Γ derived in part I is surprisingly good
almost all the way up to the soliton limit (m = 1) for the dominant instability.

When terms nonlinear in the perturbation are included, we find that the initially
exponential growth, characteristic of the linear regime, levels off. After a long time,
the initial structure is recreated. We give a proof that the maximum amplitude of
the perturbation is approximately proportional to Γ within the limitations of our
calculation (for small m, the proportionality coefficient is even m independent). This
was pointed out by Casali et al . (1998) and has been suspected to be true from
numerics for some time. Thus, in a Landau-type model, given schematically by (see,
for example, Infeld & Rowlands 2000, ch. 11)

da

dt
= Γa − βan, n � 2, (1.2)

an important subclass, in which β is not arbitrary, but can only depend on Γ ,
should be recognized. For our KPI calculation, β would then be a numerical coeffi-
cient divided by Γ , n = 3, and amax ∝ Γ . We will come back to this theme in § 5.
A second example will be quoted. Finally, different solutions for the dynamics of the
perturbations, not having any relevance to the linear regime, are found. Presum-
ably, an outside influence would be required to set one of them up. The common
denominator of all these solutions is their recurrent character.

The plan of the paper is as follows. First, in § 2, we rederive the formulae for the
nonlinear wave, so that part I need not be consulted. Next, in § 3, we derive the for-
mula for Γ of the wavelength-doubling instability, central to further considerations.
Derivation will be of higher order than in part I and geared to nonlinear extensions.
Numerical values of Γ for a wide range of situations are then given in two figures
in § 4. These are compared to what follows from the models. Next, in § 5, we per-
form a small-amplitude expansion including terms nonlinear in the perturbation and
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corresponding to the dominant instability. Removal of secular terms leads to a pulse
in time, of a chessboard spatial structure. After a long time, the pulse disappears
and the initial wave structure is recreated. The section ends with a discussion of the
limitations of our treatment.

Details of the numerics of § 4, as well as some further solutions to the nonlin-
ear problem, not in general associated with the build-up of a linear instability, are
relegated to Appendices A–C.

This paper can be read independently of part I.

2. Form of the background nonlinear wave

We now solve equation (1.1) for functions of x−u0t, working in the coordinate system
of the wave or soliton. Take U = u(x) − u0, x → x − u0t, to obtain from (1.1)

Uxxx + UUx = 0, (2.1)

Uxx + 1
2U2 = 8[(m + 1)2 − 3m]. (2.2)

The choice of constant will simplify calculations. We multiply equation (2.2) by Ux

and integrate, once again choosing our constant with an eye on the final result,

U2
x + 1

3(U − 4m − 4)(U − 4m + 8)(U + 8m − 4) = 0. (2.3)

Equation (2.3) is solved by

U0 = 4(m + 1) − 12m sn2(x | m), 0 � m � 1. (2.4)

(When m > 1, we find U0 = 4(m + 1) − 12 sn2(
√

mx | m−1) by multiplying equa-
tion (2.3) through by m−3, and so we will limit our considerations to m � 1.) Here, sn
is the Jacobian elliptic function (Milne-Thomson 1950). Its period is 4K(m), where
K is the complete elliptic integral. The square of sn, appearing above, has period
2K(m). For small m, we have

sn(x | m) � (1 + 1
16m) sin(ξ) + 1

16m sin(3ξ), (2.5)

ξ � x(1 + 1
4m + 9

64m2)−1. (2.6)

For m = 1, the wavelength is infinite and U0 = 12 sech2 x − 4. Our basic wave
only depends on one parameter, though it is often described by two or three in the
literature (two in Casali et al . 1998). However, as rescaling U0 and x will reproduce
these dependencies, we will work with this simplified version.

3. Small m models of two unstable modes

We now perturb the solution of § 2 and linearize (1.1),

U = U0 + δU,

δU = ũ(x)eΓt+iKyy,

ũ(x) = u(x)eiKxx.


 (3.1)

All these quantities will be needed. Now, from (1.1),

Γ
dũ

dx
+

d4ũ

dx4 +
d2

dx2 {[4(m + 1) − 12m sn2(x | m)]ũ} + K2
y ũ = 0. (3.2)
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We next perform an expansion around Kx = 1, Ky =
√

3, keeping Kx fixed, but
allowing Ky to vary. We know from part I that this region corresponds to the largest
growth rates, hence the physical motivation. We also simplify calculations by so
doing. We assume m small and expand in this quantity. This means that we consider
small background waves. We also change the independent variable to ξ,

ũ = ũ1 + ũ2 + · · · ,

K2
y = 3 + δK2

y1 + δK2
y2 + · · · .

}
(3.3)

Here, the subscript denotes a particular order in m. We find, defining L = ∂4
ξ +4∂2

ξ +3,

Lũ1 = 0, (3.4)
ũ1 = a cos(ξ + α). (3.5)

We assume a to be a small amplitude in ũ1. This assumption is not necessary in a
linear calculation such as this, but will be in the extension to come in § 5. In the next
order, we obtain

Lũ2 = [3m sin 2α+Γ1]a sin(ξ+α)+[3m(cos 2α−1)−δK2
y ]a cos(ξ+α)+non-secular.

(3.6)
So as to avoid secular terms, we demand that

[3m sin 2α + Γ1]a = 0,

[3m(cos 2α − 1) − δK2
y ]a = 0,

}
(3.7)

which is satisfied if
Γ1 =

√
(3 − K2

y)[K2
y − 3(1 − 2m)]. (3.8)

Instability thus appears between Ky =
√

3 and Ky =
√

3
√

1 − 2m in this, small-m,
approximation. The exact value of the lower limit is

√
3(1 − m) (see part I). We can

therefore improve our model with impunity by writing

Γ1 =
√

(3 − K2
y)[K2

y − 3(1 − m)2], (3.9)

equivalent in our approximation, but incorporating the exact lower limit. The upper
limit is exact as it is (see part I). The perturbation in question is y dependent and
has a wavelength twice that of the basic nonlinear structure (2.4). It thus breaks
the y symmetry and alters the x symmetry. It is sometimes called the symmetry-
breaking instability. Up to now, we have just been quoting part I, so as to render
this paper readable independently of its predecessor. From now on, results for this
mode are new. Calculation to next order vindicates (3.9). When secular terms are
removed, we obtain Γ2 = 1

4mΓ1. Thus

Γ = (1 + 1
4m)Γ1. (3.10)

The maximum value of Γ following from (3.10) is Γmax = 3m(1 + 1
4m)(1 − 1

2m).
The Benjamin–Feir (BF) instability is triggered by a perturbation having the same

wavelength in x as the background wave,

ũ1 = b cos(2ξ + α). (3.11)
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Figure 1. Growth rate Γ versus K2
y for both the BF and wavelength-doubling instabilities.

Numerical results designated by solid lines, our model by broken lines. The graphs emerging
from the origin for m = 0.1 are blown up by a factor of 10, and those for m = 0.3 by a factor
of 3.

Here, the name Benjamin–Feir is used somewhat loosely. In that original instability,
the perturbation was long wave in the x direction. Here, it is long wave in y. The
long-wave character of the perturbation, albeit in a different direction, might justify
the label. Derivation of Γ for small m is given in part I. If Kx = 0, the result is

Γ = 1
2Ky

√
3m2 − K2

y , Γmax = 3
4m2, (3.12)

and thus is weaker than the wavelength-doubling mode for all m, at least as follows
from our model. We will see in § 4 that numerics basically vindicate this. Unstable
Ky appear between 0 and

√
3m, shown in part I to be exact limits.

Thus we have models of both instabilities that, though derived for small m, give
correct limits of unstable regions. In § 4 we will compare these formulae with values
found from a simulation. The purpose of this exercise will be twofold. First, it will
give a check on our models. Also, we will see how far our formulae can be pushed.
Though derived for small m, there is always the possibility of extended validity.

A common feature of the two modes treated above is their purely growing character
(Γ real). In this respect, they are unique, as shown in part I.

4. Numerical results

We calculated growth rates Γ for the two instabilities numerically. This seems to
be simpler than trying to unravel the formulae of Kuznetsov et al . (1984). (See also
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Figure 2. As in figure 1, but just the dominant wavelength-doubling instability, 0.7 � m � 1.
For the soliton, m = 1, the solid line represents the exact formula of Zakharov et al . (1980).
Here, since the wavelength is infinite, the two instabilities merge.

part I for a discussion.) The results are presented in figures 1 and 2. The three frames
of figure 1 show numerically found values of Γ for both instabilities up to m = 0.5,
solid lines (details of the numerical simulation are given in Appendix A).

Clearly, as expected, wavelength doubling is dominant. Our model, indicated by
broken lines, yields a good approximation for both instabilities.

The first three frames of figure 2 are limited to the dominant mode; the fourth, for
the soliton, corresponding to the two merging. For wavelength doubling, agreement
up to m = 0.9 is surprisingly good. It so happens that Γ (Ky) for a soliton is known
(Zakharov et al . 1980),

Γsol = (4/31/2)Ky

√
1 − Ky/31/2, m = 1. (4.1)

In conclusion, our model yields good approximations to Γ of the wavelength-
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doubling instability up to m = 0.9. Critical values Kycrit are, on the other hand, all
exact. All this is surprisingly close for a small-m model.

5. Nonlinear behaviour of the perturbation

We will now concentrate on the further fate of the wavelength-doubling instability.
Exponential growth cannot continue past the stage when the perturbation becomes
comparable to the basic wave. Thus we are looking at a class of dynamics of the
perturbation such that initially equation (3.10) holds. However, the nonlinear term
in δU then curbs the growth. Equation (3.2) must be generalized to

∂2δU

∂t∂x
+

∂4

∂x4 δU +
∂2

∂x2 {[4(m+1)− 12m sn2(x | m)]δU + 1
2δU2}− ∂2

∂y2 δU = 0, (5.1)

yielding (3.2) when the δU2 term is neglected and δU ∝ eiKyy+Γt is assumed. Now
removal of secular terms is no longer possible when δU1 is merely proportional to
the right-hand side of (3.5). We will need all physically meaningful eigenfunctions of

L = ∂4
ξ + 4∂2

ξ − ∂2
y0

, (5.2)

where the last operator is of lowest order in m. Thus we start the calculation off with
a hybrid combination of eigenfunctions, extending (3.5), including (3.11),

LδU1 = 0, δU1 = a cos(ξ + α1) cos(Kyy) + b cos(2ξ + α2) + c. (5.3)

The end result is not influenced by taking α1 and α2 to be different. In this exposition
we will therefore take α1 = α2 = α for simplicity. Nonlinearity will generate the
second and third component from the first, etc. Here, a, b, c and α are functions of
time only. We demand

lim
a→0

at

a
= Γ, (5.4)

where Γ is given by (3.10). The calculation extends that leading to (3.9), but, of
course, there will now be more terms. Removal of secularities leads to four conditions
following from

LδU2 = secular + non-secular. (5.5)

Removal of secular terms yields

3am sin 2α + at = 0 removes sin(ξ + α) cos Kyy, (5.6 a)

[3m(cos 2α − 1) − δK2
y + αt + c + 1

2b]a = 0 removes cos(ξ + α) cos Kyy, (5.6 b)

bt + 12mc sin 2α = 0 removes sin(2ξ + α), (5.6 c)

b(αt + c) + 1
8a2 + 6mc cos 2α = 0 removes cos(2ξ + α). (5.6 d)

The first two conditions generalize (3.7), yielding them when αt = b = c = 0. The
middle two can be combined to yield

dw

dt
= 6mw sin 2α, w = c + αt. (5.7)

Solutions to equations (5.6) for w �= 0 are given in Appendices B and C. Here, we are
only concerned with solutions that describe a build-up from a linear perturbation,
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satisfying (5.4). These are found in Appendix C to correspond to w = 0. This restric-
tion leads to one equation for a when (5.6 b) is differentiated by time and combined
with (5.6 c) to remove bt. Finally,(

da

dt

)2

= Γ 2a2 − 1
8a4; (5.8)

a Landau-type equation when a is small. Importantly, there is only one parameter
(Γ ). The solution is

a = ±
√

8Γ sech[Γ (t − t0)]. (5.9)

Our solution uniquely describes a pulse driven by an initially linear instability. In
other words, this is what we will observe if we start out with a tiny perturbation
that falls within the instability range. Obviously, amax ∝ Γ , and hence (δU1)max will
be approximately proportional to Γ . This result was suggested in the literature as
following from numerics (see, for example, Casali et al . 1998).† The proportionality is
only approximate, as b can be seen from (5.6) and (5.9) to be non-zero but of higher
order than a in this calculation. (All terms in each of (5.6) are of the same order, but
not in (5.3) for our solution.) Ours is a simple confirmation of the above approximate
relation within the limitations of our ansatz (small amplitude of both background
wave and perturbation, periodicity in x with period double that of the background
wave). More generally, it argues for the recognition of a subclass of Landau-type
models in which there is essentially one parameter instead of two. A simple variant
of this calculation shows that the equation of Zakharov & Kuznetsov (1974) also
leads to equation (5.8). As mentioned in part I, and described in some detail for
solitons by Murakani & Tajiri (1992) and Pelinovsky & Stepanyants (1993), and for
waves by Infeld et al . (1995) and Infeld & Rowlands (2000, ch. 10), the appearance of
a pulse that disappears after a while does not tell the whole story. A two-dimensional
soliton, known as a lump, will detach itself from each crest of the wave (peaked at
ξ + α = 2nπ and Kyy = 2mπ in our model) and proceed forward at a greater speed
than that of the background wave. This, however, is outside the scope of the present
model. The lump was investigated numerically in part I and also by Senatorski &
Infeld (1998) in three dimensions, and in two dimensions by Infeld et al . (1995),
Minzouri (1996) and Feng et al . (1999).

In contradistinction to Casali et al . (1998), involving numerical work, the above
calculation is simple and straightforward.

Appendix A.

To determine the eigenmodes numerically, we first admit arbitrary x and t depen-
dence of the disturbance, i.e. we assume

U = U0 + ũ(x, t) cos(Kyy), (A 1)
† Actually, when we check the statement of Casali et al . that (δU1)max ∝ Γ , by comparing their

figure 5 with their figure 1, that is, (δU1)max against Γ , we find that the ratio of the two values is not
strictly independent of Ky and varies between 5 and 6.4. This, however, may well be due to the fact
that they invite us to compare curves for different background waves (this for the weaker instability
of Benjamin & Feir)! Their theoretical argument substantiating (δU1)max ∝ Γ is also unconvincing, as
there is no way of knowing that their complicated term that corresponds to β in our (1.2) (their last
term in equation (11)) has the required Γ dependence for this to be the case.
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where U0 is given by (2.4) and ũ(x, t) is periodic in x (with period 2L equal to
2K(m) for the BF mode, and 4K(m) for the wavelength-doubling mode). Inserting
this into (1.1) and linearizing, we obtain

[ũt + (U0(x)ũ)x + ũxxx]x + K2
y ũ = 0. (A 2)

This equation is not an evolution equation for ũ, but can be reduced to one by
integrating over x, starting from some x0. The result can be written as

ũt + F[ũ] = 0,

F[ũ] ≡ −ũt(x = x0, t) + [(U0(x)ũ)x + ũxxx]x|xx0
+ K2

y

∫ x

x0

ũ(x′, t) dx′.


 (A 3)

Equation (A 3) defines ũ(x, t) for any x and t if we specify

ũ(x, t = 0) = ũ0(x), initial condition at t = 0, (A 4 a)
ũt(x = x0, t) = ũt0(t), boundary condition at x = x0. (A 4 b)

As both U0(x) and ũ(x, t) are periodic in x, it is quite natural to represent ũ(x, t)
on the mesh by the inverse discrete Fourier transform (DFT). With this in mind, we
first linearly transform the x coordinate, so that the interval (−L, L) is mapped into
(0, 2π), i.e. replace x by x̄,

x̄ = αx(x + L), αx = π/L. (A 5)

Also transforming t into t̄ = αtt, αt = α3
x, and leaving out the tilde, we end up with

ut̄ + F̄[u] = 0,

F̄[u] ≡ −ut̄(x̄ = x̄0, t̄ ) + [c1(Ū0(x̄)u)x̄ + ux̄x̄x̄]x̄|x̄x̄0
+ c2

∫ x̄

x̄0

u(x̄′, t̄ ) dx̄′,

Ū0(x̄) = cn2(x | m) + c3,

c1 =
12m

α2
x

, c2 =
K2

y

α4
x

, c3 =
1 − 2m

3m
,

0 � x̄ � 2π, t̄ � 0.




(A 6)

We introduce the mesh x̄j = j∆x̄, j = 0, 1, . . . , N − 1, ∆x̄ = 2π/N , where N is an
even integer. To determine F̄[u] on the mesh, we first calculate the DFT,

ûk = N−1/2
N−1∑
j=0

u(x̄j)e−ikx̄j , k = 0,±1,±2, . . . ,±1
2N. (A 7)

The inverse DFT defines u(x̄j) in terms of ûk,

u(x̄j) = N−1/2
N/2∑

k=−N/2

ûkeikx̄

∣∣∣∣
x̄=x̄j

, (A 8)

where only one half of the contributions at k = ±1
2N should be included in the sum

over k. Equation (A 8) is, in fact, an interpolation formula for u(x̄j), which can be
used to determine the x̄ derivatives and the integral in F̄[u]. Thus, for example,

ux̄x̄x̄(x̄j) = N−1/2
∑

k

(ik)3ûkeikx̄j ,
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and similarly for (Ū0u)x̄(x̄j). The integral in F̄[u] must be periodic in x̄, which
requires û0(t̄ ) ≡ 0. In that case,∫ x̄j

x̄0

u(x̄′, t̄ ) dx̄′ = N−1/2
∑
k �=0

ûk

ik
eikx̄

∣∣∣∣
x̄j

x̄0

.

Equation (A 6) was integrated using the leapfrog time-step (second-order accuracy
in δt̄ ),

u(t̄ + δt̄ ) − u(t̄ − δt̄ ) + 2δt̄F̄[u(t̄ )] = 0. (A 9)

This explicitly defines u(t̄ + δt̄ ) in terms of u(t̄ − δt̄ ) and u(t̄ ). Starting from

u(x̄, t̄ = 0) = u0(x̄) and u(x̄, t̄ = δt̄ ) � u0(x̄) − δt̄F̄[u0(x̄) − (1
2δt̄ )F̄[u0(x̄)]]

(Euler–leapfrog algorithm, second order in δt̄ ), we can determine u(x̄, t̄ = 2δt̄ ), then
u(x̄, t̄ = 3δt̄ ) (from u(x̄, t̄ = δt̄ ) and u(x̄, t̄ = 2δt̄ )), etc.

The numerical stability of the leapfrog algorithm (A 9) was determined, as it is usu-
ally done (Richtmyer & Morton 1967; Fornberg & Whitham 1978; Infeld et al . 1995),
by examining the (exponential) time behaviour of a single Fourier harmonic. The lat-
ter is described by a linear differential equation with constant coefficients, following
from the algorithm. In our case, this equation is obtained by first replacing the vari-
able coefficient Ū0(x̄) in F̄[u] by a constant, Ū0(x̄) → a = const., abs a � 1 + abs c3,
and then differentiating equation (A 9) with respect to x̄. Assuming

u = κt̄/δt̄eikx̄, k = ±1, . . . ,±1
2N,

and using it in the differential equation just described, we end up with a quadratic
in κ,

κ2 − i2fκ − 1 = 0, f = δt̄[k3 − c1ak + c2/k],

i.e. κ = if ±
√

1 − f2. Numerical stability (absκ � 1) is obtained if and only if
abs f � 1, in which case abs κ = 1 (marginal stability). As k3 + c1 abs ak + c2/k
has a single minimum for k > 0, the maximum of this function for k = 1, . . . , 1

2N is
reached at k either 1 or 1

2N . This leads to a stability condition,

δt̄ < {max[1 + g + c2,
1
2N(1

4N2 + g) + 2c2/N ]}−1, g = c1(1 + abs c3). (A 10)

When this condition is fulfilled, the leapfrog algorithm (A 9) is both simple (i.e. fast)
and accurate.

For the eigenfunction with Γ > 0, neither the initial nor the boundary condition
is known (see (A 4)). We only know that ũ ∝ exp(Γt) = exp[(Γ/αt)t̄], i.e.

ut̄(x̄ = x̄0, t̄ ) =
Γ

αt
u(x̄ = x̄0, t̄ ). (A 11)

To determine both the eigenfunction and Γ by an iteration process, we start by
choosing Ky close to one of the stability limits, where Γ = 0, and the eigenfunction
is known (see equations (5.1) in part I). Putting Γ = Γ0 in (A 11) (e.g. Γ0 = 0, or
Γ0 given by (3.12)), and choosing the known eigenfunction as the initial condition,
we perform a number of evolution steps Nstp. We then calculate

Γ0calc =
∆ ln abs u(x̄1, t̄ )

∆t
, ∆t = Nstpδt, δt =

δt̄

αt
, (A 12)
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where x̄1 �= x̄0 must be chosen so that u(x̄1, t̄ ) �= 0. The next approximation to Γ is
defined as

Γ1 = (1 − τ)Γ0 + τΓ0calc, (A 13)

where τ is the interpolation parameter (0 � τ � 1). The procedure is then repeated
(with the same x̄1), starting from Γ1 in equation (A 11) and the already determined
ũ(x, t = ∆t) as the initial condition. This leads to Γ2 = (1 − τ)Γ1 + τΓ1calc, etc. We
conclude the calculation when successive approximations to Γ converge. The eigen-
function thus determined is then used as the initial condition for the neighbouring
value of Ky, for which again we assume Γ = Γ0 and calculate Γ1, Γ2, . . . , and so on.

For the BF instability, better convergence was obtained when starting iterations
from an analytical approximation to the eigenfunction (small-m expansion up to
terms of order m2),

ũ0(x) � cos(2ξ + α) + (1
4m + 1

8m2) cos(4ξ + α) + 9
256m2 cos(6ξ + α),

α = − arccos

√
K2

y

3m2 , ξ = 1
2π

x

K(m)
.


 (A 14)

Appendix B.

An equilibrium solution of equations (5.6) is given by one of α = 0 or α = 1
2π.

Starting with the first case, we can find α0 and b0 in terms of c0,

a2
0 = 16c0(c0 + 3mε) > 0, (B 1)

b0 = −2c0 − 6m(1 + ε), (B 2)

ε = [3(1 − m) − K2
y ]/(3m), −1 � ε � 1. (B 3)

If we now assume

a = a0 + δaeiωt, b = b0 + δbeiωt, c = c0 + δceiωt, α = δαeiωt, (B 4)

and linearize (5.6) around the equilibrium solution, we find that consistency demands

ω2 = 12c0(c0 + 2mε) > 0 from (B 1). (B 5)

Similarly, for α = 1
2π, b0 becomes −2c0 + 6m(1 − ε), but a2

0 and ω2 are still given by
the above expressions.

We have found both stationary chessboard-like solutions and also oscillations of a
perturbation with finite frequency around them. For the latter, curves in phase space
(a, at) would be ellipses around the centre (a0, 0). These solutions are far from the
linear regime and cannot be built up from arbitrarily small a. Phase curves never
emerge from the origin. An outside influence other than a very small perturbation
would be required to set them up.

Appendix C.

Equations (5.6 b) and (5.6 c) yield

dw

dt
= 6wm sin 2α, (C 1)

w = c + αt. (C 2)
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The trivial solution, w = 0, generates the Landau-type equation for a (5.8). Now,
from (C 1) and (5.6 a), assuming w �= 0, ln(wa2) = const. = ln k1, i.e.

a2 = k1/w. (C 3)

Next we use this in (5.6 b) minus (5.6 d) divided by 2ω. This removes b. Further
straightforward manipulation, once more using (C 1), finally gives just one equation
for w,

(
dw

dt

)2

= −4w4 + 8(3m − 3 + K2
y)w3 + 6k2w

2 − 1
2k1w = f(w), (C 4)

where k2 is a second arbitrary constant. The solution outlined in Appendix B is
recovered by looking for values of ki that yield

f(w) = 0, (C 5)
df

dw
= 0, (C 6)

where w = c0. These values are

k1 = c0a
2
0, (C 7)

k2 = 2c0(c0 + 4mε). (C 8)

When we take

w = c0 + δweiωt, (C 9)

using (C 7) and (C 8) in (C 4), we find ˙(δw)2 = −ω2(δw)2 and

ω2 = 12c0(c0 + 2mε), (C 10)

in agreement with the result of Appendix B. Phase curves in (a, at)-space are easily
drawn from (C 3) and (C 4),

(
da

dt

)2

= −k2
1a

−2 + 2(3m − 3 + K2
y)k1 + 3

2k2a
2 − 1

8a4. (C 11)

For large amplitudes, these curves depart from ellipses, but they never emerge
from the origin, due to the a−2 term and k1 �= 0. They generalize the solutions
of Appendix B to larger amplitudes. (In general, we can express a(t) in terms of
Jacobian elliptic functions by first multiplying by a2, and next using this squared
function as our new variable. However, the general behaviour can be seen from the
phase curve (C 11).) If we formally take k1 = 0, k2 = 2

3Γ 2, we recover (5.8).
The only solution to equations (5.6) not covered by § 5 and this appendix is that for

a ≡ 0. This, however, limits considerations to one space dimension, the Korteweg–
de Vries (KdV) equation, the nonlinear wave solutions to which are known to be
stable (Benjamin 1972; Whitham 1965). Consistency of equations (5.6 c) and (5.6 d),
a = 0, with known properties of KdV solutions has been checked.
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