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A Model on the Turbulent Wind Field over Wind-waves
in Curvilinear Co-ordinates*

Hiroshi IcHIRAWA**

Abstract: The wave-induced fluctuations of wind velocity over wind-waves measured in the
wind tunnel experiment (ICHIKAWA and IMASATO, 1976) are compared with the numerical
results estimated by a linear model (Model II) on the turbulent wind field over a dominant
component of wind-waves. In the Model II, the undulation of mean air flow is introduced
by adopting the curvilinear co-ordinates, and the existence of viscous sublayer and the influence
of underlying wind-waves to background atmospheric turbulence are taken into account. The
numerical results estimated by the Model IT are in good agreement with the experimental
results. The good agreement, which was not obtained from the previous model (Model I)
in the Cartesian co-ordinates, is shown to be attributed to the undulating mean flow introduced

in the Model II.

1. Introduction

In order to understand the mechanism of
momentum and energy-transfers from wind to
wave, it is necessaty to clarify the structure of
wind field over wind-waves. BARNETT and
KENYON (1975) concluded that the earlier theo-
retical models which did not account for the
existence of atmospheric turbulence have been
unable to explain the actual wind field over
wind-waves. ICHIKAWA and IMASATO (1976)
reaffirmed that the vertical changes of the
wave-induced fluctuations of wind velocities and
the wave-induced Reynolds stress over wind-
waves are different from those predicted by the
Miles’ (1957) quasi-laminar model. They com-
pared their experimental results with the nu-
merical results estimated by a model (hereafter
refered to be as Model I) on the turbulent wind
field over wind-waves and confirmed again that
the discrepancy may be attributed to the ex-
istence of atmospheric turbulence neglected by
MILES (1957). In the Model I, the wind field
is formulated in the Cartesian co-ordinates and
the boundary conditions are given at the mean
water surface level assuming the infinitesimal
wave.
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However, the Model I was not necessarily
appropriate to predict the wind field over wind-
waves. Actually, it could not predict the phase
difference of wind velocities in respect to the
underlying dominant component wave. The
critical layer, which plays an important role in
the energy transfer from wind to waves, is
undulated by the corrugation of wavy boundary
surface. In many cases of wind tunnel experi-
ment, this undulating critical layer crosses the
mean water surface level hecause the mean
height of the undulating critical layer is lower
than the wave-crests. Therefore, in the case
of wind tunnel experiment, it is not appropriate
to give the boundary conditions at the mean
water surface level assuming the infinitesimal
wave. The discrepancy in the previous paper
of ICHIKAWA and IMASATO (1976) may be
attributed to the facts that the undulation of
mean air flow was not taken into account and
that the boundary conditions were not given at
the wavy water surface.

In order to overcome these weak points, the
adoption of the curvilinear orthogonal system
of co-ordinates is the most natural way, 7.e.,
in the curvilinear co-ordinates (£,7) proposed
by BENJAMIN (1959), the boundary conditions
can be given just at the wavy boundary surface
and the undulating critical layer can be easily
represented by an undulating line of a constant
value of 7. MILES (1959) and BENJAMIN (1959)
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have already discussed the wind field over wavy
water surface by the use of the curvilinear co-
ordinates. However, neither of them took
into account the existence of the atmospheric
turbulence. Recently, using the curvilinear co-
ordinates, GENT and TAYLOR (1976) proposed
a nonlinear numerical model on the deep turbu-
lent wind field over a wavy water surface.
However, the viscous sublayer neglected hy
them will exist when the wind speed is fairly
small (IMASATO, 1976). GENT and TAYLOR
(1976) showed that the predicted fractional rate
of energy input from wind to waves for the
uniform surface roughness is of the same order
of magnitude as in Miles’ (1957, 1959) and
Townsend’s (1972) linear theories. This result
suggests that the contribution from nonlinearity
of wind field to the predicted wind field is not
large. They showed also that the variation of
surface roughness caused by the short waves
riding on the wavy surface significantly increases
the fractional rate of energy input. However,
the variable surface roughness in their model
is rather arbitrary. Therefore, another linear
model (hereafter refered to bhe as Model II)
on the turbulent wind field over a dominant
component of wind-waves in the wind tunnel
is proposed in this paper, using the curvilinear
co-ordinates. In the Model 1I, the existence of
viscous sublayer neglected by GENT and TAYLOR
(1976) is taken into account when the wind
speed is fairly small and a parameter represent-
ing the rate of increase of eddy viscosity due
to underlying wind-waves is introduced, con-
jecturing that the fluctuation of wind velocity
induced by underlying wind-waves will increase
the energy of background atmospheric tubulence
over wind-waves as proposed by GENT and
TAYLOR (1976).

In this paper, the previous results in the wind
tunnel experiment (ICHIKAWA and IMASATO,
1976) will be compared with the numerical
results estimated by the Model II.

2. Theoretical model
2.1. System of co-ordinates and govering
equation
‘We consider the turbulent wind field in a
frame of reference travelling in positive -
direction with the phase velocity C of a domi-
nant component wave of wind-waves. The
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Fig. 1. Curvilinear orthogonal system of co-

ordinates (&1, £z, £€3) and Cartesian system
of co-ordinates (x1, xe, 23).

Cartesian system of co-ordinates (1, xe, x3) is
illustrated in Fig. 1. The surface displacement
£ of the component wave in the reference frame
is represented by

€ =a cos (kx)) 2.1)

where @ is the wave-amplitude and k the wave-
number of the dominant wave. It is assumed
in this paper that (@k)* is negligibly small, the
wind field is homogeneous in the azs-direction
and that the mean horizontal wind wvelocity
U(xs)~C in the reference frame has only the
component parallel to x;-axis.

In the formulation of wind field over the
dominant wave, we adopt the curvilinear co-
ordinates (€1, £s, £3) illustrated in Fig. 1. In this
co-ordinates system, the Cartesian system of
co-ordinates (&1, x2, 23) is expressed as follows,

x1=E —aexp (—k&3) sin (kE))
x3=E

z3=&s+a exp (—kés) cos (Jt€1)

The curvilinear system of co-ordinates adopted
in this paper is essentially as same as those
adopted by BENJAMIN (1959) and GENT and
TAYLOR (1976). The Jacobian J of this trans-
formation, correct to the order of ak, is re-
presented by

J=8($1) 52: 53)/3(.%1, Xz, 13)
=1+2 ak exp (—ké&3) cos (ké1)
The undulating line of &=0 is expressed in the
Cartesian co-ordinates by
ZX3—a Cos (kEl)

which equals the water surface displacement {
in Eq. (2.1) to the order of ak. Therefore, the
wind field in the region between a wave-crest
and a wave-trough can be treated in this curvi-
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linear co-ordinates although it can not be treated
in the Cartesian co-ordinates assuming the infini-
tesimal wave. It must be mentioned here that
this curvilinear co-ordinates can be well defined
only over a monochromatic wave. The adoption
of this co-ordinates system in the formulation
of wind field over the random wavy surface
can only be qualitative. If the power spectrum
of wind-waves has a fairly narrow peak and the
crests of wind-waves are observed to be fairly
long, the adoption of this curvilinear co-ordinates
will be useful to formulate the turbulent wind
field over a dominant component of wind-waves.

Hereafter, all variables and co-ordinates will
be expressed in non-dimensional form, taking
k™' and C as the scales of the length and the
velocity, respectively.

The wind velocity u# in the turbulent wind
field in the reference frame is decomposed into
the undisturbed part &, the wave-induced periodic
part @& and the random background turbulence
u', ie.,

u:E(Ea)-FE(&, )+ u'(&y, &, &,0) (2.2)

where ¢ is the time. The time average at fixed
points in the reference frame, denoted by the
operator { », of w* is vanished and the time
average of u is represented by

> =u(€s)+u, &)

The non-dimensional mean wind velocity m:(&s)
parallel to £;-axis has not been clarified yet, and
it is assumed to be equal to the mean horizontal
wind velocity at the height x3=§&, 7.e.,

u(fs)=(U(%)—1,0,0) @3

Owing to this treatment, the mean flow undu-
lation caused by the corrugation of wavy
boundary surface can be easily introduced in
the analysis as a mean flow parallel to undu-
lating line of constant &;.

We define the stream function ¢ representing
the time averaged velocity components as
follows,

s, 9=, 80
3

61,6 = =P e 80

where u, is the £z-component of wind velocity.
¢ is decomposed into the undisturbed part ¢
and the wave-induced periodic part &, 7.e.,

@1, E) =€) +J(E1, &)
$(&3) is defined by

_ &3
¢(53)=50 a(Endes

(€1, &) is considered to be expressed by

$(&r, &)= aMe{¢(€s) exp (FEN)

where e indicates the real part of a complex
variable, gﬁ the complex amplitude of ¢ and
j=+v—1. From the definition of ¢, the wave-
induced periodic parts of the & and £s-com-
ponents of wind velocity, correct to the order
of a, are represented as follows, respectively,

#h1(€1, &)= aii (&s) exp (—&s) cos (£1)
+ afte{d (&5) exp (ED} 2.4)

(81, €3) = aMe] — j(€s) exp (GEO} (2.5)

where prime denotes the differentiation on ;.
The first term in the right-hand side of Eq.
(2.4) originates from the periodic part of the
Jacobian J and it represents the contribution
from undulating mean flow to #;.

The turbulent Reynolds stress 7u» denoted by

Tam = < . utn utm>

is assumed to be decomposed into the mean
part 7um and the wave-induced periodic part

Fams 1.€.,

Yam = fnm(é&) + ;"nm(él 3 53) (2 6)

Fam is assumed to be represented by
Fum(&1, £) = aRe{Fam(Es) exp (FE0

taking the first term of Fourier series expansion
of #wm. Here, #nm is the complex amplitude
of #um.

The equation of motion is expressed in vector

form as follows,

J 1 1
—a—;ui—grad (Eu u)—uXrot ug—;)—a—gradp

+uq (grad. divu—rot. rot w) (2.7)
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where p is the static pressure, 0. the density
of air and v, the kinematic molecular viscosity
of air. FEliminating the pressure term, the
vorticity equation in vector form is derived as
follows,

9
-Et—rot u—rot (X rot u)

= —upgq rot. rot. rot 2.8)

Substituting Eq. (2.2) into Eq. (2.8) and taking
the time average, the time averaged vorticity
equation in the reference frame is derived as
follows,

—rot (WXrot B+ Xrot u+uXrot i)
=—ygrot. rot. rot @+W)+T+W (2.9)

where T is the contribution from u' and W the
contribution from u. T and W are denoted
by Egs. (2.10) and (2.11), respectively,

T={rot (u’ xrot u?)) (2.10)

W =<(rot ( X rot )) (2.11)

Using the equation of continuity about u* and
Eq. (2.6), the &-component T2 of T, which is
correct to the order of a, can be represented by

Te=r13" +a exp (—ENe[{2(F1a” + 713’ — 2713)
+j(Fs’ — i’ =275 +271)} exp (F6)]
+aRe[{#15" + P+ (P — Fa3”)) exp (JED)]

2.12)

The second term in the right-hand side of Eq.
(2.12) originates from the periodic part of J.
In order to solve Eq. (2.9) on #, the turbulent
Reynolds stresses have to be related to # and 7.

The overall average of the & -component of
Eq. (2.7), which is correct to the order of a;
is represented by

718" (E3) +vatiy” (£2)=0
Then, the mean tangential turbulent Reynolds
stress 73 is represented by

Fra(Es) = uty® — Dol (§2) (2.13)

where wu, is the friction velocity of air. The
eddy viscosity v, associated with the vertical
shear of mean wind velocity satisfies the follow-
ing relation,

713(€s) =204(£3) €13(Ls)
=ps(&3)i" (€3)

where &3 (=1/2#') is the undisturbed part of
the tangential rate-of-strain es. From Egs.
(2.13) and (2.14), v, is represented by

v(Esy=uy/f ' (E3)— va

Tt is noticed in Eq. (2.13) that the dependency
of the mean tangential turbulent Reynolds stress
over the wavy surface to & is as same as that
over the flat wall boundary to the distance from
the wall boundary surface. Therefore, refering
to the experimental results on the pipe flow
(HINZE, 1959, Figs. 7-34 and 7-38), it is assumed
that the mean normal turbulent Reynolds
stresses over wavy surface are represented as
follows, respectively,

2.14)

(2.15)

F11(€a) = —5.8F13(&s)
Fa3(€a) = —0.6r13(&3)

(2.10)
2.17)

The wave-induced variations #m of turbulent
Reynolds stresses are assumed to have the same
form as in the Yefimov’s (1970) model, Z.e.,

Fii=733 218
5“'13:22)9513
=2p.afef{én(€s) exp (F&)) (2.19)

where é;3 is the complex amplitude of the wave-
induced periodic part &3 of tangential rate-of-
strain and p, is the eddy viscosity relating 73
to &3. In the curvilinear co-ordinates, éi3 is
expressed by

é13(53)=%[95”(§3)+(ﬁ(53)

+2exp (—Ea/(E)— (&)} (2.20)

The third term in the brackets [ ] originates
from the periodic part of J and it represents
the contribution from undulating mean flow to
é13.

Although u, is assumed to have an arbitrary
constant value in the Yefimov’s model, it will
be vanished in the viscous sublayer where the
turbulent fluctuation of wind velocity does
not exist. DAVIS (1972) and REYNOLDS and
HussaIN (1972) proposed a theoretical model in
which v, is always equal to v;. However, it is
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difficult to consider that v, relating 73 to &3 is
always equal to vs which satisfies Eq. (2.14). It
can be conjectured, as was proposed by GENT
and TAYLOR (1976), that the fluctuations of
wind velocity induced by underlying wind-waves
will increase the energy of background atmos-
pheric turbulence over wind-waves. It is as-
sumed in this paper that v, is a times v;, 7.e.,

Ue(&i) :a'.’)s(ga) (2.21)

where a is a non-dimensional parameter with
a positive constant value representing the rate
of increase of eddy viscosity due to underlying
wind-waves. The numerical solutions are ob-
tained for arbitrary values of o from 0.5 to 20.

Substituting Egs. (2.18) and (2.19) into Eq.
(2.12), the wave-induced periodic part of &-
component of vorticity equation (2.9), which is
correct to the order of @, can be derived as
follows,

A ~G)—ar” = —juu @ — 20" + )
— @ 20" + )~ 2@+ )
—id @ +)+A
where
A={Fa —7u1") —2F s —711) — 2§(F1s” — 2713)}
X exp (—&3)—2[ @ @+ j{va (@’ —2a,")
v — 3" +4iiy’ — 2@+ 20 (" — 2,
+a)+v (' —@n}] exp (—£) 2.23

(2.22)

and W in Eq. (2.9) is neglected because the
magnitude of wave-induced Reynolds stress is
the order of @®>. From Egs. 2.4), (2.12) and
(2.20), it can be said that the term A originates
from the periodic part of the Jacobian J, and
that the second term in the right-hand side of
Eq. (2.23) represents the contribution from
undulating mean flow to periodic part of vorti-
city equation.

2.2. Boundary conditions

The &-component {w3(&1,0)> of wind velocity
at the wavy water surface £&=0 must be vanished
because the wavy water surface is stationary in
the reference frame. From Egs. (2.3) and (2.5),
this condition is represented by

$(0)=0

The tangential component <ui(£;,0)) at the
wavy surface satisfies the condition of non-

(2.24)

slipping relative to the water particle just at
the wavy water surface, i.e.,

(€1, O = (0) + a1(é1, 0)
=Cuc(E1)>

where u. is the tangential velocity of water at
the wavy surface. <u.) is considered to be
represented in dimensional form as follows

<u6(€1)> =fc— C+ kCC(Sl) + ﬁrol(gl)

where #. is the mean tangential velocity of
water, kC{ the tangential component of orbital
velocity of wave at £3=0, which is correct to
the order of a, and @ the periodic part of
the tangential component of rotational velocity
of water. We assume that #, is negligibly small
compared with the phase velocity of the dominant
component wave. Then, the non-dimensional
mean wind velocity #:(0) is represented by

a{0)=-—1

The wind-wave can be considered to be fairly
irrotational. It is assumed that #:.o: is negligibly
small compared with kC{. Then, using Eq.
(2.4), the following condition is derived,

$'O)=2

The wave-induced periodic fluctuations of wind
velocity at £&=H are vanished and this requires
that

(2.25)

HH)=0 (2.26)
$(HY=—a(H) exp (—~H) (2.27)

where H is the height sufficiently far from the
wavy surface.

2.8. Mean wind profile

It is well known that the vertical profile of
mean horizontal wind velocity U(xs) in the
turbulent boundary layer higher than the wave-
crests is logarithmic with respect to x3. On
the other hand, U{zxs) in the region between
wave-crests and wave-troughs can not be
measured directly. It is assumed, as was pro-
posed by Davis (1972), that the vertical pro-
file of Ulxs) is linear with respect to a3 in the
layer (named as “‘linear sublayer’ in this paper)
of which thickness z; equals zo exp (4U) where
zp 1s the roughness height and 4U the thickness
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parameter of ‘‘linear sublayer’’. We assume
that the non-dimensional mean wind velocity
i4,(&3) parallel to &;-axis is represented as follows,

@& =U(gs)—1

“ InEs/z)—1, EsZz
. (2.28)
LUV zo-1, GrSm

using Eq. (2.3). Here, £ is the Kdrman con-
stant and GAU)=4U exp (—4U).

If we assume that the eddy viscosity vs defined
by Eq. (2.15) is not negative in the ‘linear
sublayer’’, AU satisfies the following relation,

Kty 2o/ G(AU) —ve 20 (2.29)

The function G(4U) has the maximum value of
exp (—1)at AU=1. Therefore, when the param-
eter D==guuzy/v, is smaller than G(1), 4U
has the minimum value of 4U, which satisfies
the relation (2.29). The ““linear sublayer’’ for
AU=4Un is coincident with the viscous sublayer
and in that sublayer v, vanishes. Neglecting
the existence of viscous sublayer, GENT and
TAYLOR (1976) assumed that the
vertical profile of mean wind velocity is re-
presented by

““initial’’

e ="%1n (&%[]Z“)—l (2.30)

However, the viscous sublayer will exist when
the wind speed is fairly small. The numerical
solutions are obtained for 4U=4Un, when the
parameter D is smaller than G(1). On the
other hand, when the parameter D is greater
than G(1), 4UJ can be arbitrary positive. In
this case, the numerical solutions are ohtained
for arbitrary values of 4U from unity to ten.
The finite differential equation derived from
Eq. (2.22) is integrated numerically with the
boundary conditions (2.24)~(2.27). The finite
difference length 4£&; and the upper limit H of
the integration are chosen to be 0,001 and 4.0,
respectively. The numerical solution estimated
for 4£3=0.0005 and H=6.0 is nearly equal to
that estimated for 4£;=0.001 and H=4.0.

3. Result and discussion
8.1. Numerical results
In the wind tunnel experiment performed hy

IcHIKAWA and IMASATO (1976), the power
spectrum of wind-waves had a fairly narrow
peak and the crests of the wind-waves seemed
fairly long. The numerical solutions estimated
by the present model Model II are compared
with the experimental results of ICHIKAWA and
IMAsSATO (1976) in quantities g,2, 6,°, 0y, 0 and
7 at the frequency of the wave spectral peak,
which are the non-dimensional powers of the
wave-induced fluctuations of horizontal and
vertical wind velocities, the phase-difference of
the wave-induced fluctuations of horizontal and
vertical wind velocities in respect to a component
wave of underlying wind-waves and the non-
dimensional wave-induced Reynolds stress, re-
spectively. They are expressed as follows,

0= o) 3.1

aw%xa):éwxa)iz 3.2)

O (xzy=tan [ —Dys(xs)/ +01xs)] (3.3
Ow(zs)=tan™'[ — Das(xs)/D3-(xs) ] 3.4

(z3)= :“é—l—{ﬁw(:va)ﬁsr(xa) +B1exs)Dai(as)}

(3.5

where suffixes » and { denote the real and
imaginary parts of the complex amplitude ?,(xs)
of the wave-induced fluctuation 7, of wind
velocity parallel to x,-axis, respectively. o, is
represented by

Dn(x1, x3) = aRe[On(zs) exp (Jz1)}

It must be noticed that o, and 93 are defined
at a constant height from the mean water sur-
face level, but that the stream function ¢ is
defined along the undulating line of a constant
value of £&. Owing to the relation between the
Cartesian system and the curvilinear system,
91 and 93 are related to 93(53), which satisfies
Eq. (2.22) at & =u3, as follows, respectively,

on(xa) =¢'(3)
—exp (—x){U(xs)— Ulzs)+1}  (3.6)

Frta(xs)=(Es)
—exp (— 2 Ulxa)—1) 3.7

which are correct to the order of a. Each
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second term in the right-hand side of Egs. (3.6)
and (3.7) represents the contribution from mean
flow undulation caused by the corrugation of
wavy boundary to the wave-induced fluctuations
of horizontal and vertical wind velocities.

In order to examine the calculated wind fields
in different conditions of mean wind velocity
and of dominant component wave, the numerical
solutions are obtained for the experimental cases
of Run-I, IT and ITI (ICHIKAWA and IMASATO,
1976). The parameters of the vertical profile
of mean wind velocity and the wind-wave field
in each experimental case are tabulated in
Table 1.
the experiment, but the parameters a and AU
are chosen so that the numerical solutions agree
with the experimental results.

Figs. 2, 3 and 4 show the measured and calcu-
lated vertical profiles of 0.2, 64%, 0., 0y and ©

u#y and zo are the known values from

RUN-1I
,L ¢ EXPERIMENT

in the cases of Run-I, IT and III, respectively.
The numerical solutions in these figures are
obtained for some values of o from two to ten.
In the cases of Run-I and 11, the parameter D
is smaller than G(1), and therefore, the existence
of viscous sublayer is taken into account. In
the case of Run-I, the value of AU, is 7.49,
and then, the thickness z; of the ‘linear sub-
layer”” which coincides with the viscous sublayer

Table 1. The conditions of the vertical profile
of mean wind velocity and the wind-wave field.

Run-I Run-II Run-II1
Uk (cms™") 9.39 23.0 43.3
zy (cm) 0.000167 0.00286 0.0209
fo (Hz) 3.60 2.30 1.80
k (em™)  0.512 0.212 0.130
Mean amplitude {(¢m)  0.132 0.840 1.74
wux/C 0.212 0. 338 0.499

X3

-0.4 0.2 0,0 0.z 0.8 06

Fig. 2. Vertical profiles of ¢,°, ou®, 0u, 0w and 7 obtained from Model II corresponding to
the experimental case of Run-I and those of the observed values (mark ®). The variable
range of @, 0w and v under the 95 % confidence limit is shown by the line through the
closed circle. x3 is the height non-dimensionalized by the wave-number. The value of

a is in the range from 2.0 to 10.0.
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is 0.153. The value of 4Un and z; in the case
of Run-IT are 2.25 and 0.006, respectively. On
the other hand, in the case of Run-III, the
parameter D is greater than G(1), and therefore,
AU can be arbitrary positive. The numerical
solutions for AU=3.0 (z;=0.055) are shown in
Iig. 4 as an example. It is recognized in these
figures that the vertical profiles estimated by
the Model 11 with a suitable value of « have
good agreement with the experimental results,
especially the vertical profiles of 4, and 8, which
were not explained well by the previous model
of ICHIKAWA and IMASATO (1976).

In Fig. 5 are shown the vertical profiles of
g’ estimated in the case of Run-I for the
logarithmic wind profile denoted by Eq. (2.30)
and those for 4U=8.0(z,=0.255). It is apparent
that the numerical solutions for the logarithmic
wind profile can not explain the experimental
results, and that the numerical solutions for
AU=8.0 have larger discrepancy from the ex-

AU=AUyp. Although it is not shown in any
figure, the influence of the existence of ‘“‘linear
sublayer’” to the numerical solution is fairly
small when the thickness z; of linear layer”
is much smaller than unity, and when the
parameter D is greater than G(1), the numerical
solutions estimated for large z; do not agree well
with the experimental results. It can be said
that the existence of viscous sublayer neglected
by GENT and TAYLOR (1976) must be taken
into account when the wind speed is fairly
small, and that the thickness of the ‘‘linear
sublayer’’ must be much smaller than unity
when the parameter D is greater than G(l).
The suitable value of a in the cases of Run-II
and IIT are found to be in the range from two
to ten. DBut, it is apparent that the suitable
value of @ to explain well the measured vertical
profile of ¢,> in the case of Run-I is in the
range from five to ten. This result suggests
that the suitable value of a may depends on

perimental results than those estimated for the underlying wind-wave field and the friction
T —
RUN-II

R ¢ EXPERIMENT | e

a= 2,0

a=5.,0

a-=i0,0
2r 2+
v "
1+ 1+
[ N L) S It

1072 107 o2 10® 10! 10!
3 3 2
“ k.
2 - \I 2 2
‘
1 7 -
-‘-1’ ] !
4’L
N A ol 3
-8 -90 [ 0 0 -180 0 € -1.0 0.0

Fig. 3. Vertical profiles of 4%, 04, 0u, 0y and 7 calculated from Model IE
in the experimental case of Run-II and those of the observed values.
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RUN-TIT

e EXPERIMENT

X3
X3

"

90

Fig. 4. Vertical profiles of 3%, ou®, #4, 0 and * calculated from Model 1I
in the experimental case of Run-III and those of the observed values.

velocity of air. A more elaborate discussion on
the parameter a will be made in the following
paper.

We have assumed rather arbitrarily the wave-
induced variations of normal turbulent Reynolds
stresses as described in section 2.1. REYNOLDS
and HussAIN (1972) proposed another model in
which 711 and 733 are related to the wave-
induced variation of normal rate-of-strain. #;
and 73 in their model are rewriten in the curvi-
linear co-ordinates as follows,

P61, £3) = —Fs3(€y, E3)
=2v.ale[ {j (£3)
+exp (—Ea(E)} exp (€] (3.8)

The numerical solutions estimated by the Model
IIa in which 711 and #ss are given by Eq. (3.8)
instead of Eq. (2.18) are nearly equal to those
obtained from the Model IT. This result sug-
gests that the contributions from #;; and 733 re-
presented by Eq. (2.18) or (3.8) to the numerical

RUN- [
. [ ] EXPERIMENT
N LOGARITHMIC
el N meeee LOG-LINEARIAL=8.0)

S TR [ B —

e .
1073 w? 2 -l Uil

Fig. 5. Vertical profiles of 04* calculated in the
case of Run-I for the logarithmic wind profile,
—— and those for 4U=8.0, ----. The value
of a is in the range from 2.0 to 10.0 (e=2.0,
2y a=5.0,[]; a=10.0, O). @®, experimental
results.
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solution are much smaller than those from other
terms in Eq. (2.22).

8.2, Undulation of mean flow

The Model II differs from our previous Model
I not only in the co-ordinates system but also
in introducing the mean flow undulation and in
the assumptions on the eddy viscosity and on
the vertical profile of mean wind velocity in the
close visinity of wavy surface. In order to
examine the influence of the difference between
the assumptions adopted in the Model II and
those adopted in the Model I, another numerical
model (named as Model 1Ib) was performed in
the curvilinear co-ordinates under the same
assumptions as is adopted in the Model I; 7.e.,
the eddy viscosity is constant with reprect to
&3 and the value of AU is zero.

Figs. 6 and 7 show the measured and calcu-
lated vertical profiles of @, and 6, in the case
of Run-II, respectively. The calculated vertical
profiles in these figures are estimated by the
Model I and ITb for the same value (1.5x10%
cm?®s™!) of the eddy viscosity. Comparing the
solutions estimated by the Model IIb with the
solutions in Fig. 3, it can be said that the
numerical results obtained from the Model II
and those obtained from the Model IIb are
qualitatively similar to each other although the
numerical solutions estimated by the Model 1I
have better agreement with the experimental
results than those estimated by the Model IIb.

T
RUN- II
®  EXPERIMENT
MODEL IIb ;
—————— MODEL 1 ,

°ea o 0 90 186
By tdeg)

Fig. 6. Vertical profiles of 8y calculated from
Model I and Model IIb in the experimental
case of Run-II and those of the ohserved value.
The variable range of #, under the 95% con-
fidence limit is shown by the line through the
closed circle. The value of veis 1.5% 10° cm2s 1.

Further, it is seen in Figs. 6 and 7 that the
numerical results obtained from the Model IIb
are largely different from those estimated by the
Model I in spite of the fact that the assumptions
on the eddy viscosity and mean wind profile
adopted in the Model IIb are equal to those
adopted in the Model I.

The undisturbed part (&) of the non-dimen-
sional stream function, which represents origi-
nally the mean flow undulation caused by the
corrugation of wavy boundary, is expressed by
the Taylor series expansion in the Cartesian
co-ordinates as follows,

HED=pi(an, 2+ ()
X{—aexp (—zx3) cos(x))?

+—El?221”{—a exp (—z3) cos (x)P+... (3.9
where

br(x1, x23) = p(x3) — aiy(xs) exp (— x3) cos (x1)

It must be noticed that only ¢, can be used in
a linear theory in the Cartesian co-ordinates to
represent the undulating mean flow. However,
@i(xs) vanishes at the critical height x3=z; and
the stream line of ¢i(x:, 23) =¢(z.) is parallel to
x1-axis at z3=z.. Therefore, the undulation of
mean flow can not be completely represented
by $: alone, It can be easily derived that the
numerical solution estimated by the linear model
Model Ia in the Cartesian co-ordinates, in which

. . .
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Fig. 7. Vertical profiles of 8y calculated from
Model T and Model IIb in the experimental
case of Run-II and those of the observed value.
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the undulating mean flow is represented by ¢
alone, coincides with that estimated by the
Model I. Therefore, it can be said that the
large difference between the numerical results
estimated by the Model T and those estimated
by the Model IIb originates from the higher
order terms than the order of «? in the right-
hand side of Eq. (3.9) which are originally in-
cluded in the linear model Model I by the use
of ¢(&). It can be concluded that the good
agreement between the experimental and nu-
merical results shown in Figs. 2,3 and 4 is
attributed to the fact that not only the existence
of atmospheric turbulence but also the undulating
mean flow are taken into account in the Model
II. Any linear model in the Cartesian co-ordi-
nates will be unable to explain well the wind
field over wind-waves in the wind tunnel where
the mean height of undulating critical layer is
lower than wave-crests. This result suggests
that the momentum and energy-transfers from
wind to waves must be estimated in the curvi-
linear co-ordinates when the mean height of
undulating critical layer is lower than wave-
crests.

It must be mentioned that the Model II can
be applied only to the wind field over a domi-
nant component wave of well long-crested wind-
waves. In order to clarify the wind field over
other component waves and that over random
wavy surface, many efforts will have to be made.
More detailed measurements of wind field over
wind-waves are needed, especially the direct
measurements of wind field in the region be-
tween the crest and troughs of wind-waves.
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