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Free-surface fluctuations behind microbreakers:
space–time behaviour and subsurface flow field
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The unsteady development toward breaking of the wavy flow generated by a sub-
merged hydrofoil starting from rest is investigated numerically by solving the two-
dimensional Navier–Stokes equations for the two-phase flow of air and water and
by using a level-set technique to capture the interface. The study, carried out for
hydrofoils with various chord lengths, shows that, when passing from longer to
shorter scales, the role played by surface tension becomes more and more relevant
and different flow regimes are recovered ranging from intense plunging jet, eventually
leading to a large amount of entrapped air, down to microscale breakers, in which
the jet is replaced by a bulge growing on the wave crest and the breaking event takes
place without air entrapment. The ‘toe’ of the bulge slides down upon the forward
face of the wave and large downstream-propagating surface fluctuations are observed.
Wavenumber and frequency spectra of the computed free-surface profiles, aimed at
understanding the downstream motion of free-surface fluctuations, are evaluated and
found in good agreement with similar investigations carried out experimentally and
available in literature.

A careful inspection of the instantaneous vorticity field under the microbreakers
reveals the presence of an intense shear flow originating at the toe, instability of which
eventually gives rise to coherent vortex-structures. These structures are convected
downstream by the flow at a growing speed, remaining confined in a thin layer just
beneath the free surface. This continuous interaction is responsible for the generation
of the free-surface fluctuations experimentally found.

1. Introduction
In the present paper the free surface and the flow-field evolution from the initial es-

tablishment of breaking waves up to the post-breaking quasi-steady state are numeri-
cally investigated with attention mainly focused on small-scale waves. Brocchini &
Peregrine (2001) proposed a tentative description aimed at classifying the different flow
regimes that take place in spilling breakers observable in nature, ranging from strongly
distorted free surface, with creation of drops and bubbles, down to low turbulence
levels for which the stabilizing effect of gravity and surface tension prevents air being
entrapped into the liquid. The latter regime, which is referred to as knobbly flow, is
of primary interest in the following.

Changes in the flow features induced by the increasing surface tension contribution
when reducing the length scale have been numerically analysed by Tulin (1996). The
study, carried out within the potential flow assumption, simulated the development
of breaking events in two-dimensional wavetrains caused by unstable side-bands
introduced at the wakemaker about the central frequency. In that study, it is shown
that surface tension effects become visible for wavelength corresponding to the central
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frequency shorter than 2 m and, for wavelengths shorter than 50 cm, the overturning
process characterizing plunging breakers is entirely suppressed. The breaking region
takes a bore-like structure with a well-defined initial point, usually called ‘toe’, and
a train of capillary waves appears in front of it. Owing to the different mechanism
for wave-breaking development, the amount of entrained air is significantly reduced
(Duncan 2001).

In open sea, short-wavelength spilling breakers, also referred to as ‘microbreakers’
by Banner & Phillips (1974), are usually caused by the wind and play an important
role in terms of momentum, heat and gas exchange between atmosphere and oceans
(Jessup, Zappa & Yeh 1997; Melville 1996). Short-scale wind-waves have been exper-
imentally investigated in the laboratory by Okuda (1982) and Ebuchi, Kawamura &
Toba (1987), among others. Through accurate flow visualizations, the occurrence
of an intense vorticity field at the wave crest has been revealed by Okuda (1982)
to be a defining feature of microbreakers. In Ebuchi et al. (1987), the free-surface
configurations taking place in the presence of wind have been measured by using
an optical method and the bore-structure of the breaking crest is highlighted along
with the formation of a capillary wavetrain ahead of the toe and the occurrence of
streamwise streaks on the backward face of the crest. A possible explanation has
been proposed by Longuet-Higgins (1992) who speculated that, for steep capillary
waves, the flow separates at the wave trough ahead of the bulge, giving rise to an
intense vorticity field inside the bulge. For milder waves, flow separation does not
occur and no strong vortical roller is formed at the crest. Vorticity is only generated
by the free-surface curvature, and is thus much weaker and of opposite sign (Mui &
Dommermuth 1995). A numerical study of the capillary ripples developing in front
of short waves has been carried out by Ceniceros (2003) where the vorticity field
beneath the free surface is carefully analysed and the role played by surfactants on
the vorticity field and on the ripple formation is investigated.

To gain more insight into the flow field taking place inside the bulge, small-scale spil-
ling breakers have been produced by using the dispersive focusing technique (Rapp &
Melville 1990; Duncan et al. 1994) and by towing a hydrofoil beneath the free
surface (Lin & Rockwell 1995; Duncan & Dimas 1996). In Duncan et al. (1994), very
gentle breakers have been achieved by progressively reducing the amplitude of the
wavemaker motion. It is shown that, at an early stage, the bulge grows while the toe
is substantially fixed with respect to the bulge. In a next stage, the toe begins to slide
down upon the forward face of the wave and a train of downstream-propagating free-
surface fluctuations appears between the toe and the crest. A plausible explanation
for this phenomenon has been proposed by Longuet-Higgins (1994) who introduced
a distinction between the capillary ripples in front of the bulge (Type I) and the
downstream propagating free-surface fluctuations, classified as Type II. According to
Longuet-Higgins, these latter are produced by the instabilities of the vorticity shed
by the highly curved troughs of the capillary wave system ahead of the toe.

A better understanding of the mechanisms responsible for the formation of down-
stream propagating fluctuations has been provided by Duncan et al. (1999) and
Qiao & Duncan (2001). In those studies, an accurate experimental investigation of
the evolution of the free-surface profiles and of the flow field beneath is presented,
showing that no vorticity appears within the bulge until the toe motion begins. As soon
as the toe experiences its motion, a shear layer develops between the gravity-induced
downslope flow near the free surface and the underlying upslope flow. Instabilities
of this shear layer eventually develop into a train of downstream-propagating free-
surface fluctuations coming out between the toe and the crest of the bulge.
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The velocity field observed in this unsteady breaking process has some resemblance
to that experimentally observed by Lin & Rockwell (1995) beneath the steady breakers
produced by a hydrofoil. Flow measurements by a particle image velocimetry (PIV)
technique give evidence of the shear flow that arises from the toe as a consequence
of the flow separation. Instabilities of this shear flow lead to the formation of
vortical structures which induce free-surface distortions and grow in size while moving
downstream.

The generation and the downstream propagation of free-surface fluctuations have
been the subject of much research work, mostly in connection to breakers induced
by submerged hydrofoils. Duncan & Dimas (1996), along with an analysis of
the frequency spectrum decay of the free surface and of the velocity fluctuations,
presented a careful study aimed at proving the shear-flow instabilities as the primary
effect responsible for the free-surface fluctuations. The occurrence of free-surface
fluctuations behind microbreakers is important in the interpretation of the radar back-
scatter when remote sensing is used for evaluating the free-surface state (Banner &
Fooks 1985). Actually, the analytical model commonly adopted in deriving the free-
surface elevation (Bragg model) may fail if the free-surface roughness exceeds its
limit of applicability. An accurate analysis of this issue has been carried out by
Walker et al. (1996) where free-surface measurements are used as an input for the
Bragg model and the expected radar backscatter is evaluated and compared with the
measured one. A detailed analysis has been also presented aimed at understanding
the mechanisms governing the downstream propagation of the free-surface fluctua-
tions. Wavenumber–frequency spectra indicate that the wavelength grows during their
downstream motion while the temporal frequency of fluctuations, recorded at different
longitudinal position, remains substantially constant. This led authors to speculate
that the free-surface fluctuations behave like surface waves on a spatially varying
current.

In the present paper, the unsteady wavy flow generated by a submerged hydrofoil
starting from rest is simulated numerically. By varying the chord length of the
hydrofoil, the relative importance of viscosity, gravity and surface tension is altered
and a broad range of variation of some of the characteristic phenomena of unsteady
breakers is modelled and studied. Several flow regimes are recovered, from plunging
breaking down to very short spilling breaking wave. The action of the surface tension
on the jet formation and on the entrapment of air is evaluated and the differences
in the vorticity generation mechanisms are highlighted. At the smallest scale, the
development of an intense shear flow arising from the toe is found, instabilities of
which lead to the formation of coherent vortex structures that interact with the free
surface giving rise to the downstream propagating fluctuations. Spectral analysis of
the wave profiles is found to be in qualitative and quantitative agreement with the
experimental results by Walker et al. (1996). Furthermore, details of the evolution
of the coherent structures beneath the free surface show that secondary separations
from the troughs of the free-surface fluctuations can occur as well.

The numerical approach is based on a two-dimensional unsteady Navier–Stokes
solver for an incompressible two-fluid flow. In order to significantly reduce the compu-
tational effort, when simulating the wavy flow generated by a submerged hydrofoil, the
domain decomposition approach developed in Iafrati & Campana (2003), is adopted.
Although attention is mainly focused on the quasi-steady free-surface flow generated
when the hydrofoil is moving with a constant speed, a sinusoidal ramp is used to
accelerate the hydrofoil from rest with the aim of reducing the spurious free-surface
fluctuations connected with the impulsive start. The air–water interface is captured
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by using a level-set approach (Sussman, Smereka & Osher 1994), thus allowing the
description of free-surface flows even in the presence of complex interface topologies.
The jump in the physical properties of the two fluids is spread across a small region
about the interface. The surface tension contribution to the momentum equation is
introduced by using the model originally suggested by Brackbill, Kothe & Zemach
(1992) in the form of a continuum force obtained as the gradient of a smoothed
Heaviside function. In this way, surface tension effects are spread on a narrow region
about the interface.

The role played in terms of vorticity production by the thicknesses of the finite
regions, along which jumps in fluid properties and surface tension effects are spread,
is carefully evaluated in the case of a vortex dipole rising toward the free surface.
For the purpose of validation, comparisons are established with results obtained
by Ohring & Lugt (1991) through a surface fitting Navier–Stokes solver. This kind
of vorticity–free-surface interaction is found to be particularly appropriate in this
context since it exhibits strong similarities with the interaction, occurring behind
microbreakers, between the downstream propagating coherent structures and the free
surface.

2. Numerical model
2.1. Domain decomposition technique

The numerical description of free-surface flows can be challenging when changes
in the interface topology take place. In the case of breaking waves, for instance,
drops and air bubbles resulting from the plunging of the water jet onto the free
surface need suitable numerical approaches to describe them accurately. In spite of
the remarkable development of techniques able to handle complicated two-phase
flows (see Scardovelli & Zaleski 1999 for a survey on the subject), the computational
cost required by a detailed investigation of the breaking and post-breaking stages is
still very high.

In the present study, attention is primarily focused on flow details occurring
near the free surface while the hydrofoil is used only as a tool to generate waves.
Hence, the use of a domain decomposition technique, with the adoption of the most
appropriate model in different zones of the fluid domain, is helpful. Based on the above
considerations, an unsteady heterogeneous domain decomposition approach has been
developed for dealing with the wavy flow induced by a submerged hydrofoil in the
presence of breaking (Iafrati & Campana 2003). A viscous model with an interface
capturing technique is adopted in the free-surface region while, in the bottom region
including the body, a potential flow approximation is used (see figure 1). A suitable
coupling procedure is developed which allows the exchange of information between
the sub-domains without overlapping.

In the bottom sub-domain ΩB , the flow field is governed by a Laplace equation
for the velocity potential ϕ which satisfies Neumann boundary conditions at inflow,
outflow, bottom of the channel and all along the body contour. At the matching
line, the velocity potential is assigned by integrating in time the unsteady Bernoulli
equation:

ϕ =

∫ t

0

(
∂ϕ

∂t

)
dt = −

∫ t

0

(
pB

�
+ gx2 +

|u|2
2

)
dt, (2.1)

where � is the fluid density, g is the acceleration due to gravity, x2 is the vertical
coordinate oriented upwards with x2 = 0 at the still water level, u is the local fluid



Free-surface fluctuations behind microbreakers 315

–2.5

–2.0

–1.5

–1.0

–0.5

0

 0.5

–3 –2 –1 0 1 2 3 4 5

x2

x1

Figure 1. Sketch of the bottom and free surface sub-domains used for the domain decom-
position approach. The body is moving from right to left beneath the air–water interface. The
dashed line represents the matching line which separates the upper and lower sub-domains.

velocity and pB is the pressure at the matching line evaluated as the limit from
below.

Since normal stresses have to be continuous at the matching line Γ , the limit values
from the lower and upper sub-domains must be equal. With the assumptions made for
the flow in the lower sub-domain, only the pressure term pB contributes to the limit
from below, whereas the normal component of the viscous stresses has to be added
to the pressure contribution when taking the limit value at the matching line from
the upper sub-domain (Quarteroni & Valli 1999). Hence, by enforcing the matching
between the two limit values it follows that

pB =p − 2µ
∂u · n
∂n

on Γ, (2.2)

n being the unit vector normal to the matching line, while µ and p are the fluid
viscosity and the pressure field, respectively. The pressure p is that provided by the
Navier–Stokes solver in the upper sub-domain.

The boundary-value problem is solved with the help of a boundary integral method
which provides the normal derivative along the matching line. The latter and the
velocity potential given by (2.1) determine the velocity field at the matching line
which is used as a boundary condition along Γ when solving the Navier–Stokes
equations in the upper sub-domain at the next time step.

In order to account for the circulation about the lifting body properly, a steady
Kutta condition is enforced requiring that the fluid velocity at the trailing edge be
directed along the hydrofoil mid-line. In the acceleration phase, during which the foil
is accelerated from rest up to the final speed, the circulation about the hydrofoil is
varying in time inducing shedding of vorticity that is not considered in the present
model. This choice, which reduces the computational effort, is motivated by the fact
that interest here is mainly concerned with the free-surface flow during the quasi-
steady regime, that is in the later stage when the foil is moving with a constant speed
and the shed of vorticity from the body is already ended. A more detailed discussion
and validation of the coupling strategy is reported in Iafrati & Campana (2003).

2.2. Navier–Stokes solver

The two-phase flow of air and water is approximated as that of a single fluid with
physical properties smoothly varying across the interface. By assuming the fluids to
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be incompressible, the continuity equation in generalized coordinates reads:

∂Um

∂ξm

=0, (2.3)

where

Um = J −1 ∂ξm

∂xj

uj (2.4)

is the volume flux normal to the ξm iso-surface and J −1 is the inverse of the Jacobian.
Correspondingly, the momentum equation, in non-dimensional form, is

∂

∂t
(J −1ui) +

∂

∂ξm

(Umui) = − 1

�

∂

∂ξm

(
J −1 ∂ξm

∂xi

p

)
− J −1 δi2

Fr2

− κ

� We2

∂

∂ξm

(
J −1 ∂ξm

∂xi

HδT
(d)

)
+

1

� Re

∂

∂ξm

(
µGml ∂ui

∂ξl

+ µBmlji ∂uj

∂ξl

)
, (2.5)

where ui is the ith Cartesian velocity component, δij is the Kronecker delta and

Fr =
Ur√
gLr

, Re =
UrLr�w

µw

, We = Ur

√
�wLr

σ
(2.6)

are the Froude, Reynolds and Weber numbers, respectively. In (2.6), Lr and Ur are
the chord of the hydrofoil and the towing speed, which are used as reference values
for length and velocity, respectively, σ is the surface tension coefficient while �w, µw

are the values of density and dynamic viscosity in water which are used as reference
values for density � and dynamic viscosity µ. In (2.5),

Gml = J −1 ∂ξm

∂xj

∂ξl

∂xj

, Bmlji = J −1 ∂ξm

∂xj

∂ξl

∂xi

(2.7)

are metric quantities and κ is the local curvature of the interface.
In order to avoid the introduction of surface forces, surface tension effects are

modelled as a continuum force, by following the model originally suggested by
Brackbill et al. (1992) and employed by Sussman & Puckett (2000). In the present
model, the signed distance from the interface d , positive in water and negative in air,
locates the interface. By introducing a smoothed Heaviside function

HδT
(d) = 1

2
+ 1

2
sin

(
πd

2δT

)
if |d| <δT , (2.8)

with HδT
(d) = 0 if d < −δT and HδT

(d) = 1 if d > δT , the surface tension forces are
spread in a small neighbourhood, of thickness 2δT , about the interface.

The system of Navier–Stokes equations is discretized on a non-staggered grid
as proposed by Zang, Street & Koseff (1994): Cartesian velocity components and
pressure are defined at the cell centre, whereas volume fluxes are defined at the
mid-point of the cell faces. A fractional step approach is employed: the momentum
equation is first advanced in time by neglecting the pressure contribution (predictor
step) which is successively reintroduced by enforcing the continuity of the velocity
field (corrector step). The diagonal part of the dominating diffusive terms, i.e. that
originated from ∇u, are computed with a Crank–Nicolson scheme, whereas all the
other terms are computed explicitly through a three-step Runge–Kutta scheme (Rai &
Moin 1991).

Apart from convective terms, which are discretized by a second-order upwind
scheme (QUICK), the system of equations discussed above is spatially discretized by
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a second-order accurate central finite-difference. At each sub-step of the integration
in time, the momentum equation is solved by using an approximate factorization of
the diffusive part, as suggested by Kim & Moin (1985), for instance. For stability
reasons, the time step is chosen so that the Courant number is always smaller than√

3 and the constraint required by surface tension (Brackbill et al. 1992)


t <We

√
(1 + �a)

4π

x3

1 ,

is satisfied as well, with �a being the air density. Since not all the viscous contributions
are treated implicitly, further limitations to the time step may be required.

A multigrid technique is adopted for the solution of the Poisson equation for the
pressure correction, which is the most expensive part of the computational procedure.
A corrector scheme is used for restriction and prolongation (Brandt 1992) and an
LSOR method is employed as a high-frequency smoother. A simple average of
the metric and of the distance function is used for deriving the coefficients of the
discretized Poisson equation on the coarser grids. Additional details concerning the
numerical solution of the Navier–Stokes equations are given in Iafrati & Campana
(2003).

2.3. Free surface capturing via a level-set technique

The zero level of a function d(x, t) is used to capture the free-surface location
(Sussman et al. 1994). At t = 0, the function d is initialized as the signed normal
distance from the interface, with d > 0 in water, d < 0 in air. Physical fluid properties
are assumed to vary across the air–water interface according to the following equation:

f (d) =




fa if d < −δP ,

fa + (fw − fa)HδP
(d) if |d| <δP ,

fw if d > δP ,

(2.9)

where the smoothed Heaviside function is given by (2.8) with the thickness δP used
instead of δT . The parameter δP is the half-width of a smooth transition region
which is needed to evaluate numerical derivatives appearing into the governing
equations (Iafrati, Di Mascio & Campana 2001). During the motion, the function d

is transported with the flow. The equation

∂d

∂t
+ u · ∇d = 0 (2.10)

is integrated in time and the air–water interface is located as the level-set d =0. The
integration in time is carried out with the three-step Runge–Kutta scheme by using
the same discretization scheme as that adopted for the convective terms.

When simulating free-surface waves, disturbances propagate toward the upstream
and downstream boundaries of the computational domain. In order to avoid spurious
reflections from them, a numerical beach model is introduced in the transport equation
(2.10)

∂d

∂t
= −u · ∇d − ν(d + x2). (2.11)

The beach model (2.11) is applied to two regions close to the ends of the computational
domain. The damping coefficient ν is zero at the inner limit of the beaches and grows
quadratically toward the boundaries.

For fluid particles not lying on the free surface, the function d , initialized as the
distance from the interface, loses its physical meaning during the motion, that is, for
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Figure 2. Sketch of the method adopted to locate the interface in the staggered grid. The two
configurations indicate how the numerical technique deals with the changes in the interface
topology.

the new configuration, the actual distance from the interface differs from the local
value of the function d provided by integration of the transport (2.10). Hence, if the
latter values were used in (2.9), the actual width of the transition region would become
non-uniform along the interface and variable in time. In order to avoid this unwanted
effect, the function d has to be reinitialized as the minimum (signed) distance from
the interface.

From the numerical standpoint, as the distance function is defined at the cell centre,
the system of staggered cells is considered and the interface passage within each of the
staggered cells is easily recognized by the occurrence of a change in the sign of the
distance function at two vertices. Once the interface passage within one staggered
cell is identified, the intersection of the interface with the face of the staggered cell is
found by linear interpolation of the distance values at the two corresponding vertices
(see figure 2). It is worth remarking that, owing to the linear variation assumed for the
distance function, only two or four intersections of the interface with the four faces
of the staggered cell can be found, giving rise to one or two interface segments within
each of the intersected cells (see Iafrati & Campana 2003 for additional details). Of
course, owing to the linear variation assumed for the distance function within the
staggered cells, the method adopted to locate the interface is only first-order accurate
in space. The advantage of this assumption is that the interface portion lying within
the cell is found without involving the distance values in the adjacent cells. The
interface is represented in terms of a set of unconnected segments.

The occurrence of a change in the interface topology is easily managed by the
adopted technique. It directly follows from the integration in time of the transport
equation of the distance function (2.10). To explain how it works, in figure 2(a) two
interface portions are shown along with the direction of the velocity field. Owing to the
local gradient of the distance function and to the local velocity field, it happens that,
after the numerical integration of the transport equation (2.10), the distance at the
mid-point becomes positive, thus indicating that water is present. As a consequence,
when the interface location is reconstructed on the basis of the new values of the
distance function, the topology change appears.

About the reinitialization of the distance function, several efficient procedure have
been developed by Russo & Smereka (2000) and Sussman & Fatemi (1999), among
others. Varying from those procedures, in the present work, a direct reinitialization is
used which consists in taking the minimum distance between cell centres and interface
segments as reinitialized distance (Sussman & Dommermuth 2000). Attention being
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mainly focused on two-dimensional applications, the computational effort required by
a direct reinitialization of the distance is not prohibitive (Iafrati & Campana 2003).
For the sake of saving the computational effort, the reinitialization of the distance
function is carried out only in a narrow band about the interface location and at the
boundaries of the computational domain (Sethian 1999).

3. Numerical results
3.1. Validation of the numerical method for the viscous interaction

of two-dimensional vortices with a free surface

Breaking waves generate a suite of processes that are among the most challenging
for numerical methods. Direct numerical simulations of the Navier–Stokes equations
for breaking waves have recently appeared in literature. In this framework, the use of
fixed grid two-fluid methods, such as volume-of-fluid (Hirt & Nichols 1981; Lafaurie
et al. 1994), particle tracers (Unverdi & Tryggvason 1992) or level-set (Sussman et al.
1994), able to describe the free-surface dynamics and to correctly capture the changes
of the interface topology, has been the subject of much work.

The level-set technique, which is used here, has the ability to handle flows where the
topology of the interface reaches great complexity. However, there are some concerns
about the method’s use of a finite thickness for the regions across which the jump
of the fluid properties (2δP ) and the surface tension forces (2δT ) are spread. Since
results presented in the following sections are primarily related to large-amplitude
deformations generated by strong vortex–free-surface interaction, and owing to the
strong assumptions made by the level-set approach about the interface, a validation
step, through which the capability of the numerical procedure is carefully analysed,
is deemed necessary. In particular, the purpose of the validation is twofold: verifying
(i) the correct interaction of a vortex with the curved free surface, in particular in
connection with the generation of secondary vorticity as a result of this interaction;
and (ii) the capability of the continuum model to describe surface tension effects.

The validation is performed against the numerical results obtained by Ohring &
Lugt (1991, hereinafter referred to as OL), who investigated the two-dimensional
viscous interaction of a vortex pair with a deformable free surface, through a moving-
grid approach. In that paper, only the flow field in the liquid phase is described via
a boundary-fitted approach with exact boundary conditions directly applied at the
sharp interface. A thorough discussion of the interaction of a viscous vortex pair
with the free surface is provided when varying both the intensity of the ascending
vortex pair and the free-surface compliance through several combinations of the
Froude, Reynolds and Weber number values. It is shown that a secondary vorticity
is generated as a result of the interaction of the primary vortex with the curved free
surface. The influence of surface tension on the generation of secondary vorticity and
on the paths of the primary vortices is investigated as well.

Bearing in mind the twofold scope of the comparison, two different flow conditions,
without and with surface tension, are analysed. With the aim of investigating the role
played by the grid resolution on the interface motion, two grid resolutions are
employed (400 × 304 and 800 × 608) in a computational domain −11 <x1 < 11,
−6 < x2 < 6. In the region where the interaction takes place, the coarse grid has a grid
spacing comparable to that adopted in OL: 
x1 =
x2 = 0.02. Outside this region
(|x1| > 3, x2 > 0.5 and x2 < −4), grid spacing is gradually increased. The initial velocity
distribution is assigned according to Lamb’s formula for the decaying vortex. More
details concerning initial and boundary conditions are reported in OL and are not
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repeated here. It is worth recalling that definitions of the non-dimensional parameters
in OL differ from those adopted here and then, in the following, their values are
denoted by the superscript OL. In particular, the initial distance of the vortex centres
is used as the reference value for length, the initial translation velocity of the dipole
is used as the reference value for the velocity and, moreover, the Weber number in
OL is defined as

WeOL =
σ

�wLrU 2
r

.

The validation is carried out by using the full Navier–Stokes solver in the whole
fluid domain while the validation of the domain decomposition approach is the
subject of the next section. Since the present method deals with a two-fluid flow,
density and viscosity ratios between the two fluids are assumed as the real ones as
for air and water.

In figure 3, the evolution of the vorticity contours is shown for the two grids in the
case ReOL = 100, FrOL =0.2, WeOL =0. In both cases, δP = 0.05 is used, which means
that five and ten grid cells are within the transition region in the coarse and fine
grid computations, respectively. From the time sequence, a striking similarity with
results obtained by OL can be observed. Looking at the configurations at t = 3.5,
even though the free surface at the mid-line x1 = 0 is only slightly raised, a sharp
depression, called a ‘scar’, appears as a result of the interaction with the primary
vortex. The flow behind the scar is unable to follow the sharp curvature, causing the
formation of secondary (counter-clockwise) vorticity. At a later stage (t = 6.5), the
primary vorticity (negative on this side of the fluid domain) leads to the detachment
of a weak secondary vortex, which swings around the primary one, leaving behind a
weak tongue of positive vorticity. At least on the fine grid, the occurrence of a small
region of positive vorticity still attached to the free surface can also be recognized. As
discussed below, although this region is almost entirely inside the transition region
adopted for the fluid properties, a very good agreement with the results reported in
OL is achieved.

The comparison between the two sequences in figure 3 show that the evolution of
the vorticity field is essentially the same on both grids. The most relevant difference
is that the results provided by the coarse grid slightly underestimate the generation
of secondary vorticity, missing the highest positive vorticity contour (ω = +0.45) at
t = 6.5.

In order to investigate this point, the dissipation rate of the primary vortex has
been evaluated and compared with the theoretical law given by Lamb, as done in OL.
Both grids predict the vorticity decay with good agreement (see figure 4a), at least
up to t � 6 when the viscous interaction with the free surface begins to matter, thus
indicating that the coarser grid is sufficiently refined to provide a correct vorticity
diffusion. Hence, it is here conjectured that the small number of cells distributed
within the transition region prevents the coarse grid computation describing the
interaction between vorticity and free surface with the same accuracy provided by
the finer one. Further comparisons have been established in terms of the path of
the vorticity peaks and of the free-surface elevation at x1 = 0. The two grids provide
nearly identical results, not shown, with differences always smaller than the cell size.

Mass conservation properties are evaluated in terms of the total non-dimensional
mass M , defined as

M = Aw + Aa�a/�w,
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Figure 3. Vorticity contours (dashed line for positive vorticity) for dipole–free-surface inter-
action without surface tension effects: ReOL = 100, FrOL =0.2 and WeOL = 0. Results for coarse
and fine grid resolutions are shown in the left-hand and right-hand columns, respectively.
From top to bottom, configurations refer to time t =1.5, 3.5, 6.5. According to results shown
in Ohring & Lugt (1991), vorticity contours are . . . , −3, −1,+1,+3, . . . for t = 1.5, 3.5 and . . . ,
−0.45, −0.15,+0.15,+0.45, . . . for t = 6.5. To highlight the extension of the transition region
used for the physical properties, three density contours (� = 0.03, 0.50, 0.95) are plotted with
thicker lines.

where Aw and Aa denote the area of the water and air sub-domains, respectively.
The value of M divided by the corresponding initial value M0 is plotted versus time
in figure 4(b), showing that the mass variation is always a very small fraction of
the initial value, being 7 × 10−4 M0 and 5 × 10−4 M0 for the coarse and fine grid,
respectively. In both calculations, an abrupt variation takes place about t = 3.5 when
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Figure 4. Effect of the grid resolution on the maximum of vorticity (ωmax) and on the mass
conservation M(t)/M(0). Coarse and fine grid results are shown with solid and dashed lines,
respectively. Lamb’s law for the decaying vortex is also reported with a dash-dotted line in (a).

a intense vorticity–free-surface interaction takes place and the interface undergoes a
strong deformation (see figure 3).

With regard to the use of a finite thickness for the transition of the fluid properties,
the results obtained seem essentially unaffected by this assumption of the numerical
model. At t = 3.5, the difference between the maximum and the minimum free-surface
elevation is about 0.18, which appears rather small compared to the thickness of the
transition region 2δP = 0.1. This large value of δP is required in order to have at least
five points within the transition region when using the coarse grid. In spite of the
rather large transition region, in comparison to the free-surface deformations, a good
agreement with OL is achieved. Hence, concerning the first of the two purposes of
the validation, provided that a reasonably large number of grid cells are inside the
transition region, the spreading of the fluid properties across a finite region about
the interface does not prevent a reasonably accurate prediction of the free-surface
dynamics and of its interaction with the vorticity field.

In order to evaluate the capability of the numerical model to describe surface
tension effects correctly, another case, among those presented by OL, is considered
for which ReOL = 100, FrOL = 0.4 and WeOL = 1. With respect to the previous case,
the rising speed of the primary vortex is doubled, but, in this case, surface tension
plays a relevant role in reducing the deformation of the free surface and, in turn,
the production of secondary vorticity. Two numerical computations are carried out
by using the finer grid with surface tension forces spread across regions of different
extensions: δT =0.05 and δT =0.025. Results at three time instants, displayed in
figure 5, do not exhibit substantial changes in terms of the primary vortex evolution.
However, by comparing the vorticity fields at t = 5.0, it can be seen that for δT =0.05,
the contour ω = +1 in the water domain is lost. For δT = 0.025, results are much
closer to those reported in OL, although the vorticity contour at ω = +1 is still
slightly smaller.

On the basis of the above considerations, it follows that, for correct evaluation
of their effects, surface tension forces ought not be spread across a region that is
too wide compared to the local radius of curvature of the interface. Conversely, the
thickness of this region cannot be smaller than, say, five grid cells in order to ensure
a correct evaluation of the interface curvature through numerical differentiation of
the smoothed Heaviside function (2.8).
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Figure 5. Vorticity contours for dipole–free-surface interaction with surface tension effects:
ReOL = 100, FrOL = 0.4 and WeOL =1. Left-hand and right-hand columns refer to the cases
δT = δP = 0.05 and δT = δP /2 = 0.025, respectively. Both calculations are performed on the fine
grid. From top to bottom, configurations at times t = 3.5, 4.0, 5.0 are shown. As in Ohring &
Lugt (1991), vorticity contours are . . . , −3, −1,+1,+3, . . . . To highlight the extension of the
transition region for physical properties, three density contours (� = 0.03, 0.50, 0.95) are plotted
with thicker lines.

In the following, numerical calculations are always carried out by assuming δP = δT .
The reason is that, owing to the large extension of the computational domain in the
horizontal direction, the cell size is increased when moving from the (central) breaking
region towards the upstream and downstream boundaries. Hence, δP and δT are chosen
as the smallest values (about 2.5 grid cells) that allow reasonably accurate results to
be obtained throughout the computational domain, even in those regions where the
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largest cell size is used. Starting from this small value, a further reduction of δT is
not advisable.

3.2. Validation of the domain decomposition approach in the case of a regular
wavetrain generated by a submerged hydrofoil

With the aim of validating the domain decomposition approach, the numerical model
is used for simulating the free-surface flow generated by a NACA 0012 hydrofoil
moving beneath the interface at an angle of attack α = 5◦. The hydrofoil is initially
at rest under a flat free surface located at x2 = 0 and is gradually accelerated with a
sinusoidal ramp up to the final speed in a time t = tR . The chord of the hydrofoil Lr

is used as the reference value for lengths, the final speed Ur is used as the reference
value for velocities and their ratio Tr = Lr/Ur is used as the reference value for time.
It is worth noting that, in all the simulations presented in the following, the viscosity
and density ratios are assumed to be equal to the real ones for air and water.

On the basis of the experimental conditions used in Duncan (1983), the hydrofoil has
a chord of 20.30 cm and is towed at 80 cm s−1, which corresponds to a Froude number
Fr =0.567. At this Froude number, a regular wavy flow has been experimentally found
when using a non-dimensional submergence at a quarter of the chord hs = 1.285. The
Weber number is assumed equal to the experimental one, We = 42.20, while a smaller
Reynolds number, Re = 10 000, is used in the numerical calculations. As important
viscous effects are not expected in the free-surface region for this calculation, such a
high Reynolds number does not pose any problem concerning the grid resolution.

In a frame of reference attached to the body, the computational domain horizontally
spans from x1 = −15 to x1 = 15. Before the rotation, the hydrofoil is between x1 = 0
and x1 = 1 (see figure 1). Then it is rotated clockwise about a quarter of the chord
of an angle α = 5◦. In this frame of reference, a uniform velocity profile u = (U (t), 0)
is applied on the upstream and downstream boundaries, where U (t) is the non-
dimensional velocity of the hydrofoil and is given by

U (t) =




1
2
sin

[
π

(
t

tR
− 0.5

)]
+ 1

2
, t < tR,

1, t � tR.

(3.1)

For the present calculation, in order to make smoother the achievement of a steady
solution, a long acceleration ramp (tR = 50) is used. In the vertical direction, the upper
sub-domain extends from x2 = −0.2 to x2 = 0.4 whereas the domain ΩB extends from
x2 = −2.1477 (the bottom of the channel) up to x2 = −0.2 (the matching line). On the
top boundary, x2 = 0.4, a uniform velocity profile u =(U (t), 0) is assigned, with U (t)
given by (3.1). Numerical beaches (2.11) are placed at both the sides of the domain,
that is for x1 ∈ (−15, −8) and x1 ∈ (8, 15). The damping coefficient of the beach
model takes its maximum value ν = 3 at the two ends of the computational domain.

In figure 6, the free-surface profile obtained at t = 100 by the unsteady domain
decomposition approach is compared with an inviscid fully nonlinear solution, with
a finite-volume solution of the Reynolds averaged Navier–Stokes equations (RANS)
(Muscari & Di Mascio 2003) and with the experimental data obtained by Duncan
(1983). The comparison shows that the domain decomposition approach provides
a satisfactory result which is in good agreement with the fully nonlinear inviscid
solution and with the experimental data. Concerning the gains from using the domain
decomposition approach, the efficiency stems from the smallness of the (vertical)
portion of the whole computational domain (about a quarter) where the more
expensive viscous flow solver is employed. Deeper validation tests and further details
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Figure 6. Regular wavy flow past a towed hydrofoil. Results obtained by —, domain decompo-
sition are compared with - - -, those obtained by a fully nonlinear boundary element solver, . . . ,
a RANS model and �, experimental data. The chord of the hydrofoil is used as a reference
value for lengths, leading to a non-dimensional wavelength λ∞ = 2.02.

Lr (cm) Ur (cm s−1) Ref s We

20.300 80.00 162400 42.20
10.150 56.57 57417 21.10
5.075 40.00 20300 10.55

Table 1. Non-dimensional parameters of hypothetical full-scale experiments at several values
of the chord of the hydrofoil Lr and towing speed Ur .

of the unsteady domain decomposition approach are discussed in Iafrati & Campana
(2003).

3.3. Scale effects on wave breaking onset

In order to study the unsteady flow generated by the breaking wave, the experimental
observations by Duncan (1981) are followed and the non-dimensional submergence
of the hydrofoil is reduced to the value hs = 0.783. With the aim of resolving flow
details taking place in the breaking region, a locally refined grid is adopted with a
minimum grid spacing 
x1 = 0.0027 and 
x2 = 0.0025, thus resulting in a grid of
768 × 192 points for the upper sub-domain. The thickness of the transition region is
reduced correspondingly. Surface tension forces and jumps in the fluid properties are
spread across a stripe with a half-thickness of δT = δP =0.02. Initial and boundary
conditions are essentially the same as those used in the previous section. The only
difference is the duration of the acceleration ramp which is now reduced to tR =10
units of time, since a steady solution is not expected for this hydrofoil’s submergence.

In order to analyse the role played by the surface tension when the length scale is
progressively reduced, three different numerical simulations are performed by keeping
constant the Froude and Reynolds numbers (Fr =0.567 and Re= 1000) and halving
twice the Weber number, starting from the full-scale value in Duncan’s experiments.
From (2.6), as the Weber number is varying by keeping constant the Froude number,
it follows that

We= Fr Lr

√
�wg

σ
, (3.2)

which implies that halving the Weber number experimentally would correspond to
halving the chord of the hydrofoil Lr (see table 1).

In figure 7, three different stages of the breaking wave establishment for the case
We =42.20 are shown in terms of vorticity and density contours. This condition
corresponds to a hydrofoil with chord 20.30 cm towed at 80 cm s−1 (table 1), and the
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Figure 7. Vorticity contours at three different stages of the wave-breaking establishment for
the case We = 42.20. Thicker lines represent density contours at � = 0.03, 0.50, 0.95, respectively.
From top to bottom t = 13.8, 14.2, 14.4. Reference values for length and time are 20.30 cm and
0.2537 s, respectively.

reference value for time is Tr = 0.2537 s. It is worth noting that, owing to the baroclinic
contribution, the behaviour of the vorticity contours within the transition region can
be somewhat misleading. Hence, beside the mean density level, two density contours
are also plotted to bound the transition region.

At such a Weber number, surface tension is not yet able to prevent the wave
overturning and the jet formation at the crest, but it is already strong enough to
round the tip of the jet as a consequence of the large curvature values (Tulin 1996).
This jet propagates upstream and impacts on the free surface, giving rise to the
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Figure 8. Velocity field in air and water at two different stages of the free-surface reconnection
process (We= 42.20). From top to bottom t = 13.8, 14.0. Thicker lines represent density
contours at � = 0.03, 0.50, 0.95, respectively. For clarity, only one in every three velocity
vectors is drawn.

formation of a new jet (figure 7, t = 14.2). Depending on the violence of the first jet
impact, several splash-up cycles may take place (Bonmarin 1989), see figure 7, t = 14.4.

A careful observation of the sequence in figure 7 reveals that strong interactions
take place between the plunging jets and the underlying water surface even before the
mid-density lines, representing the interface, are in contact. Aside from the obvious
numerical effects related to the spreading of the density jump onto a finite region,
it has to be noted that the two-dimensional assumption allows the escape of the
air only upstream. On the contrary, in a real three-dimensional flow, any transversal
fluctuation greatly helps the air to escape in any direction. In spite of the interest
of this point, a deeper investigation is out of the scope of the present paper which
is mainly concerned with the description of breaking waves when surface tension is
strong enough to prevent air entrainment.

In a recent numerical study by Chen et al. (1999), a close-up view of the velocity
field in the splashing region shows that, at the initial stage of the impact, the liquid
in the new developing jet is mainly composed of fluid coming from the jet itself. A
similar consideration can also be drawn on the basis of the present results, although
a careful inspection of the velocity field reveals a more complicated time-dependent
behaviour. At the beginning of the impact, the jet seems to rebound from the
free-surface split into two opposite branches, with the largest one almost entirely
flowing toward the new jet (figure 8, t = 13.8). At a later stage (figure 8, t =14.0), the
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impinging jet penetrates deeply into the free surface and pushes the upper layer of
the incoming current to flow into the developing jet. These two conditions correspond
to the two extreme modes of slash-up discussed in Peregrine (1983); present results
indicates that these two extreme modes take place at different stages of the jet impact
process.

As a consequence of the jet impact after wave overturning, the fluid domain changes
from simply connected to doubly or multiply connected, with a significant amount
of circulation around the cavities (see figure 8, t = 14.0). The impulsive generation
of circulation originated by the free-surface reconnection is an essentially inviscid
mechanism and fluid viscosity does not play a significant role on this respect. This
important mechanism for generation of circulation has been investigated by Best
(1993) and by Zhang, Duncan & Chahine (1993) in the framework of the re-entrant
jet impact on collapsing cavitation bubbles. In Battjes (1988) and Tulin (1996), the
same effect is discussed in the context of the breaking waves. On the basis of the
present numerical results, the marginal role played by viscosity in this process is
further confirmed by the small amount of vorticity spread about the cavity (see
figure 7, t = 14.2, 14.4), in spite of the low Reynolds number.

When reducing the length scale, the increasing surface tension effect progressively
changes the mechanism governing the breaking-wave establishment, gradually
reducing the intensity of the jet and the amount of air entrapped. For a Weber
number We= 21.10, which corresponds to a hydrofoil chord of 10.15 cm, towing speed
of 56.57 cm s−1 (table 1) and Tr = 0.1794 s, it can be noted that a jet is still present,
but it is much slower and the subsequent impact on the free surface is much milder
than that found for We = 42.20. Furthermore, by looking at the vorticity contours,
instead of a violent impact, the jet appears to slide down carrying a whole body
of water, thus giving rise to a shear-layer development starting from the jet root.

A careful observation of figure 9 reveals that the shear layer develops although
there is no contact with the middle density level. This means that it is the result of
the viscous interaction between two fluid layers which have density values larger than
air, but smaller that the middle density layer and move in opposite directions. Of
course, it would be significantly different if pure water layers were interacting.

A further halving of the length scale leads to the entire suppression of the jet
formation and of the air entrapment, as is shown by the sequence in figure 10. The
chord of the hydrofoil is 5.075 cm, the towing speed is 40 cm s−1 and Tr = 0.1269 s. In
this case, after the wave steepening, a bulge grows up about the crest until its weight
drives the body of water to slide down upon the forward face of the wave. During the
downslope motion of the bulge, a flow separation takes place at the toe and a strong
shear flow develops between the fluid into the bulge and the upslope flow incoming
from upstream. This shear flow rapidly propagates downstream, remaining close to
the free surface.

With the aim understanding better the free-surface evolution in this surface tension
dominated breaking wave, the time history of the free-surface profile for a long time
simulation is shown in figure 11. A vertical shift corresponding to the time delay is
applied among successive profiles for the sake of clarity. This sequence clearly displays
the initial wave steepening and subsequent bulge development. As time elapses, the
bulge slides down and, after reaching the foremost position, experiences a damped
oscillatory motion in the horizontal direction with a regular period.

Oscillations of the breaker toe have been experimentally observed by Duncan
(1981), Lin & Rockwell (1995) and Walker et al. (1996). In Duncan (1981), the
period of the breaker toe oscillations T BT is found to be about 4.4 times the period



Free-surface fluctuations behind microbreakers 329

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

–0.1

0

0.1

0.2

x2

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

–0.1

0

0.1

0.2

x2

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

–0.1

0

0.1

0.2

x2

x1

Figure 9. Vorticity contours at three different stages of the wave-breaking establishment for
the case We= 21.10. From top to bottom t = 13.8, 14.0, 14.2. Reference values for length and
time are 10.15 cm and 0.1794 s, respectively.

of the following waves T∞. This led Duncan to speculate that these low-frequency
oscillations are due to the wave components generated when the foil is started from
rest. As these wave components have a group velocity equal to the hydrofoil speed,
by linear theory their period is 4T∞. In Lin & Rockwell (1995), the ratio T BT /T∞
is measured in the range 4.89 to 6.12. In Walker et al. (1996), the low-frequency
component of the free-surface fluctuations is found to be about 2.95 rad s−1 which
corresponds to a period T BT = 2.13 s, that is T BT /T∞ =3.08.

Concerning the numerical results, from figure 11, it can be seen that the breaker toe
oscillates with a period which is about T BT = 8.25 units of time compared with the
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Figure 10. Vorticity contours at three different stages of the wave-breaking establishment for
the case We= 10.55. From top to bottom t = 12.7, 13.7, 14.7. Reference values for length and
time are 5.075 cm and 0.1269 s, respectively.

period of the following waves T∞ = 2πFr2/U∞ = 2.02. From these data, it follows that
T BT /T∞ = 4.08, a value that is within the range 3.08 to 6.12 experimentally measured.

3.4. Downstream-propagating free-surface fluctuations behind microbreakers

A more refined analysis of the profile history highlights some phenomena in the free-
surface evolution. Although the damped oscillatory motion appears smooth and the
free-surface profiles are highly regular, a closer inspection, shown in figure 12, reveals
the presence of small downstream-propagating surface fluctuations. Numerical results
show that these fluctuations are periodically induced on the free surface each time the
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Figure 11. Time sequence of the free-surface profiles for the case We= 10.55 and Re= 1000.
The time step between two successive profiles is 
t = 0.2. A vertical shift corresponding to the
actual time is applied at each free-surface configuration. For clarity, the free-surface elevation
is multiplied by a scale factor 10.

toe experiences its downslope motion, even though their amplitude diminishes from
time to time owing to the damped motion of the toe.

In order to investigate the nature of these fluctuations and the effects of the
Reynolds number on their generation mechanism, the same numerical simulation
is repeated at a higher Reynolds number, Re =2500. Note that this value is still
significantly smaller than the experimental values used in Duncan & Dimas (1996)
and in Walker et al. (1996), as reported in table 2. The resulting profile history,
shown in figure 13, clearly displays much larger free-surface fluctuations propagating
downstream with respect to those found in the case Re = 1000. At this Reynolds
number, free-surface fluctuations are generated independently of the toe motion,
with recurrence even when the toe is at rest or is experiencing an upslope motion.
Moreover, the first downslope motion of the bulge is much faster and pushes the
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Figure 12. Here a detailed view of the time sequence in figure 11 is shown to highlight the
presence of downstream propagating fluctuations on the free surface. In this case, the time
step between two successive profiles is 
t = 0.1 and the scale factor is 30.

Fr We Re Foil type

Walker et al. 0.625 69.70 328320. NACA 0015
Coakley & Duncan 0.571 31.40 − 62.81 103920 ÷ 293940 NACA 0012
Duncan & Dimas 0.45 − 0.75 29.92 − 49.87 108840 ÷ 181400 FX 63 − 137
Present calculations 0.567 10.55 2500 NACA 0012

Table 2. Flow conditions used in Walker et al. (1996), in Coakley & Duncan (1996),
in Duncan & Dimas (1996) and in the present numerical simulation.

toe further upstream. Finally, the subsequent oscillatory motion of the bulge appears
more irregular and its amplitude is damped more rapidly.

While an accurate description of the mechanisms responsible for the free-surface
fluctuations is postponed to the next section, where the flow field beneath them is
carefully analysed, in the following, the initial growth and the downstream propagation
are investigated on the basis of the free-surface profiles.

Figures 11 and 13 show a lack of capillary ripples in front of the bulge. Although,
as experimentally proved by Lin & Rockwell (1995), the capillary pattern is strongly
dependent on the Froude number, with small speed variations capable of reducing, or
even suppressing, the capillary wavetrain, we suspect that this lack in the numerical
results might be related to the thickness of the transition region. Hence, with the
aim of evaluating the limitations intrinsic to the use of such a numerical approach,
another simulation is carried out by using a halved value of thickness parameters
δT = δP = 0.01, and comparisons are established with the previous results. In figure 14,
a sequence of free-surface configurations at several stages of the wave-breaking
development is presented, showing that the use of a smaller thickness of the transition
region leads to the formation of a small-scale capillary pattern in front of the
bulge which, however, disappears during the fast downslope motion of the bulge.
From a close-up view (not shown) of the free-surface profiles obtained in the case
δT = δP = 0.01, two small capillary ripples can be identified having amplitudes 0.007
and 0.003 and wavelengths of about 0.05 and 0.0375. The fact that they disappear
when using a wider transition region has to be ascribed to the limit that the adopted
model has in describing waves of amplitude comparable to the thickness of the region
along which the density jump is spread.
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Figure 13. Time sequence of the free-surface profiles for the case We= 10.55 and Re= 2500.
Time step and scale factor are the same as adopted for figure 11.

Aside from a faster downslope motion of the bulge, the sequence obtained for
smaller δT and δP does not display a significant change in terms of the long time
evolution. In order to justify the last statement, free-surface profiles obtained by using
the two different thicknesses of the transition regions are compared at a later stage,
when free-surface fluctuations are fully developed (figure 15). In drawing the graph,
the faster dynamics characterizing the simulation with the smaller thickness of the
transition regions has been accounted for, so that the two profiles do not refer to the
same time instant. The comparison indicates that, but for a phase shift in their gener-
ation, no differences occur in terms of amplitude and wavelength of the fluctuations.
From figure 15 the size of the free-surface fluctuations can also be evaluated. The
crest-to-trough amplitude of the fluctuations is about 0.09 and their wavelength is
about 0.27. At full scale, these values correspond to 4.6 mm and 1.37 cm, respectively.

In order to analyse the downslope motion of the bulge, the velocity of the front
of the bulge uB , the toe height xT

2 and its time derivative dxT
2 /dt are calculated and
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Figure 14. Effect of the thickness of the transition region on the wave breaking establishment
(We=10.55). From top to bottom t = 11.5, 12, 12.5, 13, 13.5. The use of a smaller thickness of
the transition region (—, δT = δP = 0.01; - - -, δT = δP = 0.02) captures parasitic capillary waves
in front of the toe which, however, are entrapped by the bulge during its downslope motion.
The dynamics of the bulge motion is slightly faster in the former case.

their time histories are shown in figure 16 for the two different values of the thickness
of the transition region. Although the bulge motion appears somewhat faster when
using smaller values of δT and δP , the global behaviour looks essentially the same.
The velocity of the front of the bulge uB , evaluated as the horizontal velocity of the
foremost point of the bulge profile and shown in figure 16(a), displays an acceleration
phase followed by a region with a nearly constant velocity and, finally, a deceleration
stage which lasts up to the foremost position of the toe (see figure 13). The existence
of a central region with a nearly constant velocity is more evident in the simulation
with the smaller thickness, plotted with a solid line.

The downslope motion of the bulge has been analysed and discussed also in
Duncan et al. (1999) in the framework of gentle spilling breakers produced by the
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Figure 16. Comparison of the time histories of the horizontal velocity component uB , of the
toe height xT

2 and of its time derivative dxT
2 /dt , obtained by using two different values for the

thickness of the transition region, —, δT = δP =0.01 and - - -, δT = δP = 0.02. The velocity uB

is measured in the frame of reference attached to the hydrofoil.

wave-focusing technique. Therein, the downslope motion of the bulge is evaluated
in terms of the time history of the toe height xT

2 and it is found that, just after
the beginning of the toe motion, the toe height seems to follow a straight line with
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dxT
2 /dt ∼ 0.135U , where U is the carriage speed (i.e. the crest speed). With the aim of

establishing a comparison with the results reported in Duncan et al. (1999), the toe
height and its time derivative are extracted from the numerical results and plotted on
figures 16(b) and 16(c), respectively. Also in terms of toe height, after an acceleration
stage, a region with a nearly constant velocity value can be found with a maximum
non-dimensional value dxT

2 /dt ∼ 0.11. By comparing figure 16(c) with figure 16(a),
it can be seen that the region with a nearly constant dxT

2 /dt occurs before that in
terms of uB . This is probably because the bulge is sliding upon the forward face of
the wave which is not straight.

A detailed experimental study of the flow field beneath the free-surface fluctuations
developing behind spilling breakers has been provided by Duncan and his coworkers
for gentle spilling breakers produced through a dispersive focusing method (Duncan
et al. 1994, 1999; Qiao & Duncan 2001). These experiments clearly display the pre-
sence of a capillary wavetrain ahead of the toe, concurrent with the growth of the
bulge. Then, the toe begins to slide down along the forward face of the wave and,
during this downslope motion, a train of organized fluctuations develops between
the toe and the crest (Duncan et al. 1999).

Numerical results presented above exhibit strong similarities with what is experi-
mentally found. Free-surface fluctuations appear only after the toe has experienced
its downslope motion and propagates downstream afterward. However, a better
understanding of their nature can only be achieved by performing a more refined
analysis of the space–time behaviour of the free-surface fluctuations.

3.5. Spectral analysis of free-surface fluctuations behind microbreakers

Small-scale surface fluctuations taking place behind breaking waves has received
attention in quite distinct research frameworks, from naval hydrodynamics to
geophysical applications, with many papers primarily concerned with the remote
sensing, radar or infrared, of the ocean (see Banner & Fooks 1985; Siddiqui et al.
2001 for instance).

Among this body of literature, Walker et al. (1996) and Coakley & Duncan
(1996) analyse surface fluctuations generated behind small-scale wave-breaking flows
produced by submerged hydrofoils. With the aim of evaluating the main features of
the downstream propagation, spectral analyses in space and time are performed
on the basis of the instantaneous measurements of the free-surface elevation
immediately ahead of and behind the breaking region. The occurrence of free-surface
fluctuations behind breaking waves produced by a submerged hydrofoil has been
also experimentally studied by Duncan & Dimas (1996), although the generation
mechanisms and the shape of the spectra at fixed longitudinal positions behind the
breaker, either in terms of surface height and velocity fluctuations, are primarily
analysed therein.

The experimental analysis carried out in Walker et al. (1996), Coakley & Duncan
(1996) and Duncan & Dimas (1996), being essentially focused on the understanding of
the flow features in the quasi-steady regime, refer to a period of time much later than
that of the first downslope motion of the toe. In table 2, their experimental conditions
are summarized along with those used in the present numerical calculations. Several
values of the submergence and of the angle of attack of the hydrofoil are used in the
experiments leading to a rather broad range of wave-breaking intensities. The observed
space–time behaviour of the free-surface profiles reveals two distinct components: (i)
a low-frequency component, related to the surge motion of the toe; and (ii) a
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Figure 17. —, Average profile and - - -, r.m.s. fluctuation about the average. Owing to the
sharp front of the bulge, large vertical fluctuations take place about x1 = 1.15 as a result of
the horizontal oscillation of the breaking region.

higher-frequency component, due to the downstream propagating free-surface fluc-
tuations (Walker et al. 1996).

A similar spectral analysis is here performed on the numerical free-surface profiles.
The free-surface elevation obtained for the numerical simulation at Re =2500 is
sampled with 
t = 0.005 in the interval t = 37 to t = 56 and, in space, with 
x1 = 0.01
in the range x1 = 0.8 to x1 = 4. The horizontal extension of this window is chosen
as large as one and half wavelengths provided by the linear theory, λ∞ = 2πU 2

r /g,
which corresponds to λ∞ = 10.25 cm at full scale. The differences between the flow
conditions used in the numerical calculations and those used in the experiments
should be properly considered when comparing results (see table 2).

In figure 17, the averaged surface height η and the r.m.s. (root mean square) value

of the fluctuations,

√
(η − η)2, are shown. Owing to the stronger surface tension

and, presumably, to the much lower Reynolds number, the front of the bulge is
much sharper with respect to the experimental results, thus giving rise to the large
spike in the r.m.s. curve as a consequence of the horizontal oscillation of the toe
(low-frequency component). This effect rapidly decays behind the toe. Downstream,
the amplitude of fluctuations increases up to a maximum and then slightly oscillates
with higher values at the crest and lower values at the troughs, in agreement with
Duncan & Dimas (1996). It is shown later on that these fluctuations are mainly
composed of the high-frequency contributions.

In order to establish a more quantitative comparison, the r.m.s. values of the
free-surface fluctuations reported in Walker et al. (1996) and in Duncan & Dimas
(1996) are non-dimensionalized by using the wavelength provided by linear theory for
deep-water waves, that is λ∞ = 2πU 2

r /g, as a reference value for lengths. Correspon-
dingly, the r.m.s. value based on the numerical result, which is non-dimensionalized
by the chord of the hydrofoil, is divided by the non-dimensional wavelength λ∞ =
2πFr2 = 2.02.

In Walker et al. (1996), the maximum r.m.s. value of the fluctuations, found about
the toe (properly non-dimensionalized by the corresponding wavelength) ranges from
0.0074 to 0.0102. Downstream, the r.m.s. value of the fluctuations decays, reaching a
value which ranges from 0.0019 to 0.0033. For both quantities, higher values occur
for a larger angle of attack, that is for stronger breaker intensities. In Duncan &
Dimas (1996), the r.m.s. values of the fluctuations measured at the first and second
trough of the following wave system are provided. The non-dimensional r.m.s. value
of the fluctuations ranges from 0.0022 to 0.0040 and from 0.0020 to 0.0032 at the
first and second trough, respectively, thus indicating a reduction of the fluctuations as
they move downstream. From figure 17, the maximum r.m.s. value of the fluctuations
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Figure 18. Frequency spectrum of the numerical results shown in figure 13. Fourier transforms
are taken at different longitudinal positions in the frame of reference attached to the hydrofoil.
As a result of the rather sharp front of the bulge, a broad spectrum is found about x1 = 1.15.

taking place about the toe, divided by λ∞, is 0.0069 while downstream the value
decays up to 0.0015. The maximum value is in good agreement with that measured
in Walker et al. (1996) while the r.m.s. value downstream appears somewhat smaller
compared to those measured in Walker et al. (1996) and in Duncan & Dimas (1996).
However, taking into account the large scatter of the r.m.s. values measured with
different intensities of the breaker and the different flow conditions (namely profile
type, angle-of-attack, profile depth) used in the experiments and in the computations,
it is believed that differences are induced by a lower breaker intensity in the numerical
results.

A better comprehension of the propagation mechanisms of free-surface fluctuations
can be achieved by evaluating the Fourier transforms in time and space. Then, the
wavenumber–frequency spectrum is evaluated as follows:

S(kx1
, ω) =

∫ ∫
η(x1, t) exp(i(ωt − kx1

x1)) dω dkx1
.

In figure 18, the contours of the frequency components of the free-surface fluctuations
are shown versus the streamwise location. This graph clearly displays the existence of
the two distinct low- and high-frequency components. The low-frequency oscillation
is due to the back and forth motion of the toe while the high frequency oscillation,
centred about |ω| =16 rad per unit of time, is related to the downstream propagation
of the fluctuations. The vertical contour levels about x1 = 1.15 represent the broadband
frequency components associated to the motion of the sharp front of the bulge (see
figure 17).



Free-surface fluctuations behind microbreakers 339

kx1

t

–50 –25 0 25 50

38

40

42

44

46

48

50

52

54

56

Figure 19. Wavenumber spectra evaluated at different times of the free-surface evolution of
the numerical results shown in figure 13.

The high-frequency component is ascribed to the propagation of the free-surface
fluctuations since this contribution only appears behind the crest of the bulge, as
can be seen by comparing the graph in figure 18 with the average profile shown in
figure 17. The frequency components associated to the formation and propagation
of the fluctuations exhibit a rapid initial growth from x1 ∼ 1.4 to x1 ∼ 1.8. Further
downstream, but for a weak reduction in the amplitude taking place up to x1 ∼ 2.2,
they remain nearly constant. These results are in qualitative good agreement with
those of Walker et al. (1996). The larger decay rate observed in the experiments can
be attributed to the differences in the conditions, as reported in table 2, and to the
two-dimensional assumption made in the present numerical computations.

With the aim of establishing a quantitative comparison with data measured by
Walker et al. (1996) and by Duncan & Dimas (1996), the frequencies of the spectral
peaks are non-dimensionalized by the frequency of the following wave f∞ = g/(2πUr )
provided by linear theory. In Walker et al. (1996), the non-dimensional value is about
fp = 5.49 (at least for an angle of attack of 3◦) while in Duncan & Dimas (1996) it
is found in the range 3.884 to 5.406, with the lower value measured for the stronger
breaker intensities. From the numerical results reported in figure 18, the peak is
located about ω = 16 rad per unit of time, that is fp = 5.124, a value which appears
to be in good agreement with the experimental data. At full scale, the peak would
occur at at frequency of about 20 s−1.

With regard to the spatial Fourier transform, in figure 19, the wavenumber spectrum
is displayed versus time. This picture clearly shows that, periodically, components
at short wavelength appear about |kx1

| =25, which corresponds to a dimensional
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Figure 20. Wavenumber–frequency spectrum. The dispersion relation (3.3) is plotted in this
graph for —, U = 0; - - -, U = Ur . By comparing this graph with the frequency spectrum it can
be seen that the peaks about kx1

= 0 correspond to the vertical line in figure 18 and then are
related to the oscillation of the toe. The contribution due to the free-surface fluctuations is
instead the well-identified region inside the two dispersion curves.

wavelength of about 1.27 cm. As time elapses, that is during the downstream
propagation, the fluctuations’ wavelength grows, in agreement with the discussion
in Walker et al. (1996). The growth of the wavelength during the downstream
propagation can be unambiguously seen by comparing the (kx1

− t) graph and the
corresponding time history shown in figure 13. As an example, about t =43, the time
history clearly displays the generation of free-surface fluctuations. In the successive
stage, until t = 47, the time history indicates that fluctuations propagate downstream
growing in size and this is reflected in the shift of the wavenumber components from
higher to lower values. The phenomenon is then repeated from t = 49.

Although the fluctuations’ wavelength grows during their downstream motion, no
substantial changes occur in terms of frequency components. This led Walker et al.
(1996) to speculate that the behaviour is ‘consistent with the idea of waves propagating
on a spatially varying current’. In order to further support this idea, in Walker et al.
(1996), the dispersion relation given by linear theory

ω =
(
gkx1

+ σk3
x1

)1/2
+ Ukx1

, (3.3)

is plotted on the wavenumber–frequency spectra by assuming U = 0 and U = Ur . In
figure 20, the same graph is drawn on the basis of the present numerical results.
As already stated, the oscillating motion of the toe is associated with small frequen-
cies while high-frequency components at short wavelength are instead induced by
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the sharpness of the bulge front. Downstream-propagating free-surface fluctuations
manifest themselves at higher wavenumbers with ω ranging from 10 to 30.

As discussed in Walker et al. (1996), fluctuations are generated in the breaking
region where the fluid is almost at rest in the hydrofoil frame of reference (Lin &
Rockwell 1995) and the dispersion relation with U = 0 (solid line in figure 20) provides
a higher bound for their wavenumber. As they propagate downstream, thus reducing
the wavenumber components, the underlying current is accelerating and then the
dispersion relation with U = Ur is progressively approached (dashed line in figure 20).

On the basis of the above considerations, it follows that the main features of
the wavenumber–frequency spectrum derived from numerical results are in a good
agreement with that shown in Walker et al. (1996), starting from the experimental
data. This gives confidence in the capability of the numerical approach to predict
correctly the downstream propagation of free-surface fluctuations. However, as the
numerical results discussed so far have been obtained through a two-dimensional
model, an analysis of the inaccuracies related with this assumption should be made.

Free-surface profiles in the cross-stream direction have been measured in Coakley &
Duncan (1996). From their analysis, it appears that there is a strong component
aligned parallel to the wave crest, thus suggesting that the generation mechanism of the
free-surface fluctuations is essentially two-dimensional. Nevertheless, an unavoidable
limitation lying in the two-dimensional assumption is that vorticity structures cannot
experience a three-dimensional breakdown, thus lasting for a longer time. This can be
the reason why, in the numerical results, the r.m.s. value of the free-surface fluctuations,
shown in figure 17, does not exhibit a significant decay in the downstream direction,
in contrast to the x

−1/2
1 law experimentally found by Duncan & Dimas (1996).

With the aim of achieving a more complete comparison between the numerical
and the experimental results reported in Duncan & Dimas (1996), the free-surface
fluctuations taken at x1 = 1.75 are used for deriving the power spectral density P (ω)
as:

P (ω) =
|X(ω)|2

T
,

where X(ω) is the Fourier transform of the free-surface elevation and T is the time
interval of the computed signal. In the inertial range, the power spectral density,
plotted in figure 21, exhibits a decay which follows a −8 power law, which is much
faster than the −7/2 decay law found in Duncan & Dimas (1996).

This aspect agrees with Duncan & Dimas (1996) when using a two-dimensional
Euler solver to investigate the development of shear flow instabilities beneath the
free surface. Even in their result, the computed spectrum decays faster than the −7/2
power law experimentally found. In spite of this difference, however, they conclude
that the two-dimensional analysis correctly predicts the frequency of the spectral
peak.

3.6. Shear flow instabilities as a source of the free-surface fluctuations

With the purpose of investigating the initial formation and the propagation of the
fluctuations, a careful analysis of the flow field taking place beneath the free surface
is carried out in the following. As shown in Duncan et al. (1999) when analysing their
results, the generation of fluctuations does not appear until the toe motion begins its
downslope motion, thus allowing authors to speculate that they are generated by the
instabilities of the shear flow developing between the gravity-induced downslope flow
near the surface and the underlying upslope flow.
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Figure 21. Spectral power of the free-surface fluctuations at x1 = 1.75. The power laws
. . . , ω−7/2; - - -, ω−8 are also shown in the graph.

By following this consideration, in figure 22, for the simulation at Re =2500, a
sequence of vorticity fields is shown, from the initial downslope motion of the bulge
until the appearance of the fluctuations. The instantaneous vorticity fields clearly
display the initial growth of the instabilities of the shear flow developing between
the fluid inside the bulge, which is moving upstream, and the incoming upslope flow.
At a later stage, instabilities lead to the formation of separated coherent structures
that strongly interact with the free surface, giving rise to the free-surface fluctuations
which are traces of the vortex structure lying beneath. In particular, the interaction
of the vortex structure with the free surface leads to the formation of a scar, which
corresponds to the fluctuations’ troughs, just downstream of the vortex structure itself.

In the early stage after their appearance, free-surface fluctuations grow in amplitude
while the wavelength is essentially related to the distance between two adjacent
coherent structures. Hence, the wavelength grows during the downstream motion of
the vortex structures, owing to both the growing distance between adjacent structures
and the diffusion process of the single structure. At a later stage, the intense interaction
between vorticity and the highly curved free surface is responsible for the production
of secondary vorticity shed into the water, highlighted by the last three configurations
in figure 22.

For the sake of the clarity, an enlarged view is depicted in figure 23 where the
vorticity multiplied by density contours are plotted, aimed at emphasizing the vorticity
field in the water domain. From these graphs, it can be seen that the maximum
intensity of the secondary vorticity can be larger than that of the corresponding
primary structures. The generation of secondary vorticity displays strong similarities
with the dipole–free-surface interaction discussed in § 3.1. The velocity field developing
after secondary structures appear, acts to hold back the primary ones, thus leading
to the formation of vortex pairs. Owing to the self-induced velocity field, vortex pairs
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Figure 22. Sequence showing free-surface profiles and vorticity contours during the first down-
slope motion of the bulge, as seen in the hydrofoil frame of reference (We= 10.55,Re= 2500).
Configurations refer to the interval t =14 to t = 16.2 with a time step 
t = 0.2. The development
of shear flow instabilities and the corresponding formation of free-surface fluctuations is clearly
shown. Secondary vorticity also appears as a result of the interaction of primary coherent
structures with the highly curved troughs.

are ‘overtaken’ by the associated troughs which, therefore, experience a reduction of
their curvature.

The strong vorticity–free-surface interaction is responsible for the large asymmetry
of the profiles of the free-surface fluctuations with respect to the horizontal axis,
with smooth crests opposed to highly curved troughs. A relevant asymmetry of the
troughs with respect to the vertical axis is also evident, as shown in figure 23. It is
believed that the combined action of the gravity and of the surface tension prevents
the entrapment of air and the cusp formation at the troughs (Longuet-Higgins 1989).

In order to characterize the shear layer originating at the toe, profiles of the velo-
city field at different stages of the back and forth motion of the bulge are plotted
in figure 24. Vertical distributions of the horizontal velocity u1(x2) are evaluated
when: (i) the bulge is sliding down along the forward face; (ii) the bulge reaches its
maximum forward position; (iii) the bulge is moving backward; (iv) the bulge reaches
its maximum backward position. Velocity profiles are evaluated at the same horizontal
distance 
x1 from the toe and are plotted as a function of x2 − η(x1) and are used for
deriving an estimate of the shear-layer intensity as the ratio between the total velocity
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Figure 24. Plots of vertical cuts of the horizontal velocity component taken at a fixed dis-
tance from the toe (
x1 = 0.1). The four curves refer to different stages of the toe motion:
—, forward motion; - - -, maximum forward position; . . . , backward motion; -·-, maximum
backward position.

defect, 
u1 = u1 max − u1 min, and the wake half-thickness, b = x2(u1 mean) − x2(u1 min).
The above estimates are given in table 3 with regard to the four different stages
of the bulge motion. As expected, stronger shear-layer intensities correspond to the
downslope stage and to the rest at the foremost position.

4. Conclusions
In this paper, wave-breaking flows have been numerically studied with the help

of an unsteady domain decomposition approach. In the free-surface sub-domain a
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Phase 
u1/b

Forward motion 39.36
Maximum forward position 40.64
Backward motion 22.20
Maximum backward position 23.94

Table 3. Ratio between total velocity defect and the half-thickness of the wake relative to the
velocity profiles shown in figure 24, relative to the four different stages of the toe motion.

two-fluid Navier–Stokes solver has been employed to handle the complex interface
topologies taking place in the breaking and post-breaking regimes. The capability of
the level-set technique and of the continuum model adopted for the surface tension
contribution to predict accurately the interface motion in the presence of strong
vorticity–free-surface interaction has been investigated and a careful validation has
been performed on this. The accuracy and efficiency of the domain decomposition
approach has been also proved by numerically simulating the regular wavy flow
generated behind a submerged hydrofoil.

The proposed model has been applied to the investigation of scale effects on the flow
features in the breaking-wave establishment. At the shortest scale, the mechanisms
governing the wave-breaking development have been found to be substantially
different from those observed at the larger scales. Air entrapment is entirely suppressed
and the jet formation is replaced by a rounded bulge about the crest which slides
down along the forward face of the wave, giving rise to a shear-layer development.

At the shortest scale, numerical simulations have been carried out at two different
Reynolds numbers with the aim of investigating the role played by viscous effects.
Downstream-propagating fluctuations, scarcely visible at the lowest Reynolds number,
have been clearly identified at the higher one. Vorticity fields beneath the free surface
taken at several times during the bulge motion unambiguously indicate shear-layer
instabilities as being responsible for the free-surface fluctuations. Until now, this
phenomenon has only been observed experimentally.

This work was supported by the Office of Naval Research, under grant
N.000140010344, through Dr Pat Purtell and by the Ministero dei Trasporti e della
Navigazione in the framework of the INSEAN Research Plan 2000-02. The authors
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