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ABSTRACT 
 
A wave prediction model including data assimilation method was 
improved to estimate the appropriate sea surface drag coefficient in 
high speed wind. In the present study, the accuracy of the estimated 
coefficients was evaluated for several observation stations that changes 
the distance from the strong wind area. As a result, it was clarified to be 
able to deduce drag coefficient if waves were propagated from strong 
wind region even if the strong wind had not been generated in the 
observation station. 
 
KEY WORDS:  Inverse estimation; sea surface drag coefficient; 
adjoint method; WAM; identical twin experiment; wave model.  
 
INTRODUCTION   
 
The third generation wave models, particularly WAM, SWAN and 
Wave Watch III, are widely used in many countries. These models 
describe wave status more accurately than the previous models, and 
have been applied to various practical applications. In the wave models 
however, the sea surface drag coefficient, an important factor of the 
energy transfer process from winds to waves, is generally described as 
a linear function of wind speed such as Wu (1980) or Mitsuyasu & 
Honda (1982) as shown in Fig.1.  
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Fig.1 Drag coefficients proposed by Wu (1980) and Mitsuyasu & 
Honda (1982) 
 
These functions were deduced from the observational and the 

experimental data under wind conditions slower than 25m/s at the 
fastest and were extrapolated to faster wind speed conditions. 
Accordingly, accuracy of the computed wave height under strong wind 
conditions seems to be unreliable. Actually, the recent report of an 
aerodynamic observation suggested that the sea surface drag coefficient 
declines when wind speed exceeds about 30m/s (Zhang et al, 2006; 
Powell et al, 2003; Andreas, 2003). 
 
To investigate this fact, theoretical approach for clarifying the 
mechanism of the energy transfer under strong wind is difficult due to 
complicated physical processes such as wave breaking and spray 
generated by the strong wind. As an alternative method in such case, 
inverse estimation method that presumes the internal structure through 
model is considered to be effective (Hashimoto et al, 2004; Hashimoto 
et al, 2007). For the purpose of clarifying the optimum value of the sea 
surface drag coefficients in high wind speed, the wave prediction model 
including data assimilation method was improved to deduce the sea 
surface drag coefficients as its control variables. 
 
The validity of the new model was already examined through identical 
twin experiments that use the wave data observed in strong wind 
condition. However, it seems difficult to carry out wave observation 
that aims at strong wind condition. On the other hand, the sea surface 
drag coefficient in high wind speed may be inversely estimated by 
assimilating the wave data propagated from strong wind area even if 
the strong wind had not been generated in the wave observation station.  
 
In this paper, the accuracy of the estimated coefficients was evaluated 
for several observation stations that changes the distance from the 
strong wind area. As a result, it was clarified that deduced drag 
coefficient is accurate if waves were propagated from strong wind 
region even if the strong wind had not been generated in the 
observation station. It is also confirmed that the accuracy of the sea 
surface drag coefficient tends to decrease with the increase of the 
distance between wave observation station and typhoon track.  
 
INVERSE ESTIMATION METHOD  
 
Sea Surface Drag Coefficients 
 
First of all, the expression of the energy transfer term in WAM Cycle4 
was modified by replacing Cd with Mitsuyasu & Honda’s equation 



expressed by Eq.1 from Janssen’s method (Janssen, 1991). 
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After that, in order to deduce the sea surface drag coefficient Cd as an 
arbitrary function with respect to wind speed, it was assumed as a 
piecewise-constant function over the wide wind speed range as shown 
in Fig.2. In this paper, range of wind speed is defined from 0 to 50 m/s 
and the number of the unknown parameter is fixed as 50 (1m/s interval). 
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Fig.2 Drag coefficients assumed as a piecewise-constant function 
 
Adjoint Method 
 
The adjoint method, one of the data assimilation methods, is considered 
to be a kind of remote sensing that utilizes observation data to connect 
the model with the reality when we try to reproduce natural phenomena 
by a model. The adjoint method can presume the optimum value of 
unknown parameter including nonlinearity by using the maximum 
likelihood estimation method. Hersbach (1998) applied the adjoint 
method to the WAM and developed the ADWAM to get a better 
prediction by correcting several model parameters in the WAM. In the 
ADWAM, the most suitable parameters are automatically estimated 
from initial values by minimizing the cost function )(xJ  composed of 
the sum of the error margin of estimation and observed values, 
expressed by Eq.2 
 

∑
=

− −−=
T

t
ttttt yXHyXHxJ

0

1T ))(())((
2
1)( R                                              (2) 

 
where X  is the vector of model parameters, and  is the vectors of 
observations,  is the matrix of the operator that converts the model 
state

ty

tH

X  into ,  is the covariance matrix of the observation errors.  ty tR
 
In order to obtain the optimum value of X , the minimization of the 
cost function must be performed. Generally, analytical approach is 
difficult for the minimization. Instead, a method of descent is usually 
applied, which requires the following descendent value of the cost 
function ( ). xJg ∂∂= /
 

∑
=

− −Η=
Τ

t
tttt yXHXg

0

1T ))(()( R                                                                  (3) 

To compute g , the transpose of the operator matrix,  , has to be 

computed. This matrix corresponds to the adjoint operator  of the 
tangent liner operator of .  
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In the actual computation of Eq.3, it is directly computed through the 
adjoint run with the adjoint model code. For constructing the adjoint 
code of WAM, we used AMC (Adjoint Model Compiler, Giering, 

1995). For the minimization of Eq.2, a descent method with Quasi-
Newton Method was used. 
 
The procedure of data assimilation with adjoint WAM is almost the 
same as that of Hersbach (1998). For normal applications of wave 
hindcasting, the WAM code is used and the energy balance equation is 
integrated in the forward direction of time t (forward run), while for 
data assimilation, the ADWAM code is used and the equation is 
integrated in the reverse direction of time t (adjoint run) to obtain the 
information with respect to the control parameters to be modified for 
data assimilation. When nonlinearities are included in the forward run, 
the nonlinearities at each integration time step have to be stored. To 
avoid the storage problem in the computations for realistic applications, 
a ‘check-point’ method has been implemented same as WAM Cycle 5 
(Hersbach, 1998). 
 
A Priori Condition 
 
In this new adjoint WAM, the larger the assumed division number is, 
the more difficult and unstable the inverse estimation of parameters 
become, since the division number of wind speed in the assumed 
piecewise-constant function is equal to the number of unknown 
parameters in the model. This is namely an ill-conditional inverse 
problem and the minimization of the cost function composed of only 
the observation errors leads to unstable and unreliable computation. To 
solve this problem, a priori condition that the sea surface drag 
coefficient is continuous and smooth between the adjoining pieces of 
wind speeds was added as a background error term to the cost function 
in the adjoint model of WAM, as expressed by Eq.4.  
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where   is the model parameters, is the covariance matrix of the 
background errors, and W is a weighting coefficient between the 
observation error and the background error. 

nx tΒ

 
The most reasonable and suitable parameters are inversely estimated by 
minimizing the cost function assumed as the summation of observation 
error (the difference between observed wave data and the hindcasted 
wave data) and background error (the degree of satisfaction of the a 
priori condition). In this paper, the weighting coefficient W is assumed 
to be constant as 104.  
 
NUMERICAL EXPERIMENTS 
 
Experiment Method 
 
Accuracy of the inverse estimation was examined by confirming that 
unknown drag coefficients are corrected to the vicinity of the target 
value from initial value by assimilating the time series of computed 
significant wave height. Fig.3 shows the flow of the experiment. 
First, the target drag coefficients were assumed as a function of wind 
speed. In this study, Eq.5 is assumed as a target function which declines 
in high wind speed faster than 30m/s. 
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Fig.3 Flow of experiment 
 
Then, the time series of significant wave heights were computed with 
the target function. These time series data were used as the wave 
observation data in the numerical experiments. Next, the unknown 
parameters were inversely estimated from initial values by assimilating 
the wave observation data. In this study, Eq.1 was assumed as the 
initial function and iterated assimilation process 25 times at each case. 
Finally, the estimated parameters were compared with the target values.  
 
Fig.4 compares the time series of computed wave height, where the 
initial values, the target values and the deduced values are expressed by 
the broken line, the solid line and white circles respectively. Although 
the wave height computed with the initial parameter overestimate the 
peak wave height compared with the observed (target) data, the wave 
height computed with the inversely deduced parameter shows good 
agreement with the observed (target) data.  
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Fig.4 Comparison of the time series data  
 
Simulation Condition 
 
The condition of the numerical simulation is that a typhoon passes 
through the area from the south toward the north as seen in Fig.5. The 
size of computational area is 10 degrees for all sides and grid interval is 
0.5 degree. The computation for sea surface winds was carried out 
using typhoon model. To reproduce strong wind condition faster than 
30m/s, the condition of the typhoon was assumed as the central 
atmospheric pressure of 850hPa, the maximum wind speed radius of 
100km and migration velocity of 50km/h. In addition, for the purpose 
of examine the possibility of inverse estimation with propagated wave 
data, northern part of the area, latitude of 30.5 degree to 35 degree, was 
assumed as the calm (wind speed of 0m/s) area. An example of the 
wind field (t=24h) is also shown in Fig.5. In this study as shown in 
fig.5, four observation stations (d2, d3, d4, d5) in the calm area that 
changes the distance from the wind area and seven observation stations 
(a, b, c, d, e, f, g) in wind area that changes the distance from the 
typhoon track (1.5 degree interval) were examined. As the examples, 
the time series of wind speed at “a”, “b”, “c” and “d” are shown in 

Fig.6. As seen in the figures, the maximum wind speed exceeds 40m/s 
at the station ”d” while the maximum wind speed at the station “a” is 
about 20m/s. 

 

 
Fig.5 Example of wind field (t=24h) 
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Fig.6 Time series of wind speed 
 
Fig.7 compares the time series of wave height computed with the target 
value at the stations in the calm area and the station d in wind area. As 
seen in figure, the maximum wave height at the observation station 
becomes small by dissipation as the distance from wind area becomes 
large. In this study, experiments were carried out with these time series 
wave data as observation data. The number of the observation is 65 (1 
hour interval)  
 

0

5

10

15

0 10 20 30 40 50 60

d
d2
d3
d4
d5

w
av

e 
he

ig
ht

 H
s(m

)

time (h)  
Fig.7 Comparison of the time series of wave height 

 



 
Characteristics of the Deduced Values  
 
Fig.8 compares the deduced value with the target value where the 
computations were carried out for several observation stations at the 
calm area that changed the distance from the wind area. Because the 
maximum wind speed generated in this typhoon is approximately 
45m/s, the values in the wind speed higher than 45m/s do not corrected 
to the target values but change according to a priori condition. At the 
station “d” where the maximum wind speed exceeds 40m/s, the values 
in the wind speed of higher than 30m/s (where the initial values were 
intentionally separated from the target values) were corrected to the 
vicinity of the target values from the initial values and were almost 
agree with the target values. Moreover, the deduced values estimated 
by the inversion method in the wind speed of less than 40m/s were 
accurate enough at all the other stations in calm area. From these results, 
it can be said that the deduced drag coefficient is accurate if waves 
were propagated from strong wind region even if the strong wind had 
not been generated in the observation station. Also it can be said that 
the dissipation due to the propagation is not so critical to the inverse 
estimation accuracy.   
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Fig.8 Deduced drag coefficients where distance from wind area is 
different 

 
Fig.9 in the next page compares the deduced value with the target value 
where the computations were carried out for several observation 
stations that changed the distance from the typhoon track. The left side 
panels assumes the initial value as Eq.1 and right side panels assumed 
the initial values as constant value given by 1*10-3. The arrow shown in 
each panel indicates the maximum wind speed generated in each 
observation station. In all stations, the deduced values were quite 
accurate in the wind speed range slower than maximum wind speed at 
each station. In addition, the deduced values have a tendency to decline 
in high speed wind range. However, the accuracy of the sea surface 
drag coefficient tends to decrease with the increase of the distance 
between wave observation station and typhoon track. Especially, the 
accuracy of the inverse estimation at the stations “a”, “b”, “f”, and “g” 
are insufficient. It may be due to the influence of winds or waves from 
several directions during the propagation. 
 
The lower panel in Fig.10 compares the computed wave heights at the 
station “d” where the examination was carried out for the station “a” as 
the observation station while the upper panel compares the wave 
heights at the station “a” for the same case. Because the deduced values 
at the station “a” are not accurate, the wave heights computed with the 
deduced value in lower panel are not agree with those of the target 
values. On the other hand, the wave heights computed with the deduced 
values at the station “a” are agree with the wave heights computed with 
the target value. Namely, it can be said that the target value was not 
estimated among two or more solutions that satisfy cost function since 
observation data was insufficient. In addition to the significant wave 
height as the observation data, the use of the wave period and the wave 
direction may be effective to improve the accuracy of the inverse 
estimation in such case. 
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Fig.10 Comparison of computed wave heights at the station “a” and “d” 
where the examination was carried out for the case of the station “a” 
as the observation station.  
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Fig.9 Deduced drag coefficients where distance from typhoon track is different
 

 



 
 
CONCLUSIONS 
 
In this study, the accuracy of the deduced parameter was evaluated for 
several observation stations that changes the distance from the strong 
wind area. As results, it can be said that the deduced drag coefficient is 
accurate if waves were propagated from strong wind region even if the 
strong wind had not been generated in the observation station. It is also 
confirmed that the accuracy of the sea surface drag coefficient tends to 
decrease with the increase of the distance between wave observation 
station and typhoon track. From these results, it can be said that the 
dissipation due to the propagation is not so critical to the inverse 
estimation accuracy. 
 
The wave prediction accuracy in severe sea conditions may be 
improved if the drag coefficients are clarified by applying the method 
to the actual wave data measured under severe sea conditions. We will 
therefore try to apply the proposed method to the actual wave 
observation data. 
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