
Hashimoto, Haagsma and Holthuijsen 1

 
 
 
 
 
 
 
 
 
 
 

FOUR-WAVE INTERACTIONS IN SWAN 
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Abstract:  Several methods for computing the non-linear energy transfer due 
to resonant wave-wave interactions are implemented in an experimental 
version of the SWAN wave model. These methods and their mutual 
relationships (illustrating their evolution from one to the other) are described. 
Of these methods, two are addressed in some detail. Of the first, an 
approximate method called the modified SRIAM method, the accuracy and 
efficiency are numerically demonstrated for various directional spectra. The 
second, an exact method called the FD-RIAM, is up-graded from an earlier 
version (Hashimoto et al., 1998) on the basis of Komatsu and Masuda (2000) 
to solve an instability problem caused by singularities in the Boltzmann 
integral. The accuracy and stability of this exact method too are numerically 
investigated. This FD-RIAM, supplemented with all other processes of 
generation and dissipation (and triad wave-wave interactions) in SWAN, is 
applied to the shallow water Lake George in Australia. 
 

INTRODUCTION 
 Waves at the surface of the deep ocean can be well predicted with spectral wave 
models that are driven by predicted wind fields. These models are based on the discrete 
spectral energy balance equation of individual wave components. In deep water this 
equation represents the effects of great circle propagation and all processes of 
generation, dissipation and wave –wave interactions. Amongst these, the non-linear 
wave-wave interactions dominate the evolution of the wave spectrum. This mechanism 
causes the energy transfer among an infinite number of component waves. Hasselmann 
(1962) formulated this mechanism in the form of a Boltzmann integral. The Boltzmann 
integral, however, includes a complicated coupling coefficient and a singular point, 
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which makes the numerical integration difficult, unstable and time-consuming. With the 
ever increasing computer power, new attempts can be made to introduce this 
mechanism into a wave model as accurately and as efficiently as possible. 
 
 The third-generation wave model WAM that is used in many countries, adopts the 
Discrete Interaction Approximation (DIA; Hasselmann and Hasselmann, 1985), to 
compute the quadruplet wave-wave interactions. Introducing the DIA into third-
generation wave modelling has greatly improved the response of wave models to 
complex variations of wind field compared with previous (first- and second-generation) 
wave models. However, the DIA has a drawback in that it gives a poor approximating 
of the interactions in the case of narrow spectra such as the JONSWAP spectrum 
although it gives good results for broad spectra such as the Pierson-Moskowitz 
spectrum.  
 
 A shallow-water version of WAM has been developed for the simulation and 
prediction of waves in a variety of near-shore, shallow water conditions with ambient 
currents (Booij et al., 1999). This model, SWAN (Simulating WAve Nearshore) 
accounts for wave generation by wind, shoaling, refraction due to current and depth, 
frequency shifting due to currents and non-stationary depth, three- and four-wave 
interactions, whitecapping, bottom friction, depth-induced breaking; wave-induced set-
up, transmission through and reflection from obstacles, etc. The deep-water 
formulations are taken from WAM, including the DIA. In shallow water the quadruplet 
interactions are approximated by multiplying the deep-water interactions with a depth 
dependent scaling (in SWAN as in WAM) which is rather a crude approximation.  
 
In the present paper, we introduce several methods that have been implemented into 
SWAN for computing the quadruplet wave-wave interactions  
for deep water:  
 - one exact method (the RIAM method; Masuda,1980; Komatus and Masuda, 

1997) and 
 - two approximate methods (the multiple DIA and the modified SRIAM method; 

Komatsu and Masuda, 1996, Hashimoto and Kawaguchi, 2001) and 
for finite-depth water:  
 - one exact method (an up-graded FD-RIAM; Hashimoto, et al., 1998; Komatsu 

and Masuda, 2000).  
 
 Although some of the methods have been published and others not, we will briefly 
explain all these methods. We will examine their accuracy and efficiency through 
numerical computations and we will give an example of a real 2D-case with 
observations in finite-depth water.  
 
QUADRUPLET WAVE-WAVE INTERACTIONS 
 Probably the best known derivation of the four-wave interactions is due to 
Hasselmann (1962) who showed that three wave components of the wave action density 
spectrum of random, short-crested waves can interact with a fourth component. The 
equation is known as the Boltzmann integral and is expressed by the following 
equation: 
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where, )( in k  is the action density, k  is the wave number vector,   is the angular 

frequency, satisfying the dispersion relationship: hkgk iii tanh2  , and G  is the 

coupling coefficient. The delta functions in the integration represent the resonant 
conditions among four wave components  
 
 4321 kkkkk  a   and  4321   a . (2) 
 
 This implies transfer of action across the spectrum such that the spectrum evolves to 
lower and lower frequencies and that under active wind conditions, its shape tends to 
evolve towards a JONSWAP spectrum (Hasselmann et al., 1973). 
 
 The expression that represents the four-wave interactions is rather complicated. It 
involves a six-fold integral in spectral space with resonant conditions where the wave 
components interact. These resonant conditions (based on the linear dispersion 
relationship of ocean surface waves) allow the reduction of the six-fold integral to a 
three-fold integral. The result of this reduction depends on which choice is made as to 
which of the independent variables are eliminated. In the past, several attempts have 
been made for deep- and finite-depth conditions, resulting in different approaches in the 
numerical codes (e.g., the EXACT-NL code of Hasselmann and Hasselmann, 1981; or 
the WRT code of Webb, 1978 and Tracy and Resio, 1982). The DIA technique in 
WAM and SWAN is essentially a reduction of the approach of the EXACT-NL code 
from a very large number of sets of four waves (quadruplets) to only one such 
quadruplet and its mirror image (in k-space). In finite-depth water the same approach as 
in deep water could be taken but to the best of our knowledge that has not been done yet. 
 
 In the present study, we describe an exact method for deep water (the RIAM code; 
Masuda, 1980: Komatsu and Masuda, 1996) and an exact method for finite-depth water 
(the FD-RIAM; Hashimoto et al., 1998; Komatsu and Masuda, 2000). The RIAM 
method is reduced to an approximate method (the SRIAM) in a way similar to the DIA 
which has been expanded to obtain higher accuracy in deep water (Komatsu, 1996). 
 
 The basic difference with the RIAM on the one hand and EXACT-NL and the WRT 
codes on the other is that the frequency and directions ),,( 331   are taken as 
independent variables where EXACT-NL and the WRT codes take other independent 
variables.  
 
DEEP WATER 
 
The RIAM method (exact method) 
 The methods described in this paper were all developed from the initial work of 
Masuda (1980). Masuda (1980) derived a reduction of the six-fold Boltzmann integral 
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to a three-fold integral by taking the independent parameters ),,( 331   as expressed by 
the following equation; 
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where, | |k1  | |k 2  (or  1 2 ) is assumed without loss of generality from the symmetry 
of Eq. (1). The variables are non-dimensionalised by 
 

a  11

~
,  a  22

~
,  433

~   ,  411 /~   ,  422 /~   ,  433 /~   , 

 and   3
~ln

~  . 
 
The denominator S arising from )( 4321    is given by 
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2121 aaS   k  (4) 

 
 Fig. 1 shows schematically the domain of integration in the )

~
,

~
,

~
( 31    space. It is an 

infinitely long rectangular prism exclusive of a lower region resulting from the 
condition 21   . This excluded volume is bounded by three planes  3

~
, 0

~
 , 

0
~

1  , and a curved surface )
~

,
~

(
~

31   . The singular points caused by the 

denominator S –1 are located along a curve 02|| 2/112/1  
aa  k  on the plane 0

~
1  .  

 
 As Masuda noted, a numerical instability in the integration of Eq. (3) is caused 
mainly by inappropriate treatment of singular points. Masuda hence solved this 
instability problem by analytically deriving an approximate solution of Eq. (3) around 
the singular points.  
 

 
 
Fig. 1 A schematic graph of the region over which the integration (Eq. 3) is performed 

(left figure) and a schematic graph of a cross section ( 3

~ =constant) of the left 
rectangular prism, at which the singular point P exists (right figure) (Masuda, 
1980). 
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 In order to improve the performance of wave models with the above technique of 
Masuda and to gain better physical understanding of the spectral evolution, Komatsu 
and Masuda (1996) developed a new scheme called the RIAM method (RIAM = 
Research Institute for Applied Mechanics, Kyushu University, Japan) for calculating 
the non-linear energy transfer on the basis of the rigorous method of Masuda (1980). 
This new scheme was developed by taking advantage of the symmetry of the integrand 
as in Hasselmann and Hasselmann (1981) or Resio and Perrie (1991), and by truncating 
less significant configurations of resonance to achieve shorter computational time 
without loss of accuracy. 
 
 As Komatsu and Masuda (1996) mentioned, there are two kinds of symmetries in the 
resonant interaction. The first is based on the well-known nature of non-linear resonant 
interactions among gravity waves expressed by Eq. (1). As explained in Hasselmann 
and Hasselmann (1981), tdn ii  )(  kk  ( i =1, 2, 3, 4) have the following relationship: 
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where tn  )(  k  indicates the action transfer that is due to this particular resonance 
combination.  As shown in Equation (5), tdn ii  )(  kk  ( i =1, 2, 3, 4) are of equal 
magnitude but are different in sign. Accordingly, if we calculate tn  )(  k  for one 
component of the resonant four waves, then we immediately know tn  )(  k  for the 
other three components. The other type of symmetry is associated with the geometrical 
similarity of resonance configurations. One is the mirror image of a resonance 
combination that has the same interaction coefficient as the original one.  The other is a 
rotation of a resonance combination that also gives the same interaction coefficient. 
 
 Now, we specify a particular wave number vector 4k  (with 4  and 4 ) at which the 
non-linear energy transfer is to be evaluated, and then assume the sequence of 
frequencies as follows, considering the first kind of symmetry of the non-linear wave-
wave interaction so as to eliminate the overlap computations. 
 
 4213    (6) 
 
For the computation of realistic continuous energy transfer of tn  ),(  , the 
computation must be carried out with the loops of frequency 4  and direction 4 . The 
computation of the configuration of resonant interactions are to be performed in 
advance with the computation of variables such as G

~
, S , in the Boltzmann integral 

for both regular and singular points. The details of the computation procedure are 
explained in Masuda (1980) and Komatsu and Masuda (1996).  
 
The SRIAM method (approximate method) 

The RIAM method turned out to have the same degree of accuracy as Masuda’s 
rigorous method. Although the RIAM method is 300 times faster than Masuda’s method, 
it is still a few thousands times slower than the DIA, simply because the RIAM method 
processes thousands of resonance configurations. 
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Hence, Komatsu (1996) developed a new scheme of practical efficiency with a 

slightly lower level of accuracy than the RIAM method. The method is called the 
Simplified RIAM (SRIAM) method, which processes 20 representative configurations 
chosen by some optimisation. The SRIAM method can be expressed by the following 
equation. 
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~   SGKi , and iC , )20,1( i are the coefficients. 

 
 Komatsu (1996) listed the optimum 20 combinations of the resonant configurations 
as well as the optimum positive coefficients iC  tuned by some optimisation, where 7 
configurations are chosen for singular points and the other 13 configurations are chosen 
for regular points from )

~
,

~
,

~
( 31    space (Fig. 1). 

 
 It is noted that in the method of Komatsu (1996) the optimum resonant configurations 
and the coefficients iC  depend on how many configurations we choose as well as how 
many directional and frequency bins constitute the directional spectrum in the model. 
That is, the optimum resonant configurations and the coefficients iC  have to be re-
determined for each different computation conditions. For these reasons, a simpler 
method is preferable to determine the optimum configurations and the coefficients iC .  
 
 We therefore simply applied a least square method for Eq. (7) with the exact values 
of ),( 44 T  (obtained with RIAM) so as to estimate the optimum coefficients iC , and 
examined the accuracy and efficiency of the method. We call this simplified method the 
modified SRIAM method to distinguish it from the original SRIAM method.  
 
 Fig. 2 is an example of the computations of the non-linear energy transfer for various 
directional spectra. The upper panels in the figure show the exact values computed by 
the RIAM method, the middle panels show approximate values computed by the 
modified SRIAM method. These panels express the non-linear energy transfer as a 
function of frequency and direction, where the solid and the dotted lines show negative 
and positive values, respectively. The values of the upper and middle panels were 
integrated with respect to the direction and shown as the function of frequency in the 
lower panels. The values in these figures were normalized by the maximum absolute 
value of the exact value of the non-linear energy transfer. As shown in Fig. 2, the 
modified SRIAM shows good agreement with the exact values of the RIAM regardless 
of the shape of the directional spectra. 
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Fig. 2 Comparison of the deep-water quadruplet interactions computed by the exact 

RIAM method and the approximate modified SRIAM method for various 
directional spectra. 

 
 
The MULTIPLE-DIA method (approximate method)   

Whereas the original DIA simplifies the computation by adopting one single 
configuration of the resonant four wave components, the SRIAM method adopts 20 
configurations by selecting effective configurations that contribute significantly to the 
Boltzmann integral. The SRIAM method has demonstrated that it makes the 
computation 100 times faster than RIAM while retaining most of RIAM’s accuracy in 
computing the non-linear energy transfer. The SRIAM is thus almost perfect with 
respect to accuracy and versatility to compute the non-linear energy transfer for deep-
water waves. However, it requires a computation time 20 times longer than the DIA 
which is still considered to be impractical for operational wave models. 
 

On the other hand, Hashimoto and Kawaguchi (2001) examined the validity and the 
effectiveness of the original DIA on the basis of the accuracy of the computations for 
several directional spectra. They also demonstrated that the accuracy of the 
approximation generally improves as the number of the configurations in the DIA 
increases and that such a version with only a few configurations (the extended DIA) can 
well approximate the non-linear energy transfer for a normal directional spectrum 
having a single energy peak. Introducing more coefficients and thus more freedom in 
the EDIA resulted in the multiple DIA (MDIA; Ueno and Ishizaka, 1997). 
 

The EDIA and the MDIA are expressed by the following equations, respectively: 
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where F is the spectrum, ),( FF  , ),(   FF , ),(   FF , and   is the 
parameter controlling the interaction configurations. 
 

Hasselmann and Hasselmann (1985) adopted the value of 25.0  in the original 
DIA. When   is specified, the four wave configurations are determined by the 
following equations, 
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As seen in these equations, the EDIA was developed by increasing the number of 

configurations, each of which has different parameters i and iC . The MDIA was 

developed by introducing additional parameters 1,iC  and 2,iC  into the EDIA. The 

optimum parameters iC , 1,iC  and 2,iC  included in the EDIA and the MDIA were 

determined by minimizing the errors between the exact values (RIAM) and their 
approximate values for several directional spectra. The efficiency and accuracy of the 
EDIA and the MDIA were examined for several directional spectra and computational 
conditions. The resulting optimum parameters i  and iC  for the EDIA and i , 1,iC  and 

2,iC  for the MDIA are listed in Hashimoto and Kawaguchi (2001). 

 
FINITE-DEPTH WATER 
 
The FD-RIAM method (exact method) 
 Although the RIAM method, the SRIAM method, and the multiple DIA method, 
compute the non-linear energy transfer accurately compared with the DIA, they only 
apply to deep-water waves. The non-linear quadruplet interactions for finite depth in 
WAM and the public -domain SWAN are approximated by multiplying the deep-water 
transfer rate (computed with the DIA) with a depth dependent scaling factor R. 
Although this approximation provides a convenient, first-order representation of the 
change in magnitude of the non-linear energy transfer, this does not capture the 
frequency shift and the spectral shape changes that occur as water depth decreases.  
 
 Hashimoto et al. (1998) proposed a computational method for calculating the non-
linear energy transfer in finite-depth gravity wave spectra, by extending the exact 
methods for deep water of Masuda (1980) and Komatsu and Masuda (1996; i.e., the 
RIAM method). It involves reducing the Boltzmann integral for finite-water depth as 
follows, 
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 Comparing the difference between the deep- and finite-depth results of Hashimoto’s 
method and those of EXACT-NL (Hasselmann and Hasselmann, 1981), Hashimoto’s 
method seems to have an equivalent or better accuracy than those of EXACT-NL since 
EXACT-NL's results include unstable “zigzag” shapes even for the case of deep-water 
waves. Hashimoto’s results, however, still include some instability for the case of finite-
depth waves even though he used an analytical solution around the singular points of 
the Boltzmann integral, in the same way as Masuda (1980) for deep-water waves.  
 
 Recently, Komatsu and Masuda (2000) pointed out that these instabilities originate in 
the nature of the four wave resonance interactions in finite-water depth. That is, the 
shape of the resonance interaction contour lines becomes flatter in finite-water depth 
compared with that of deep-water depth as shown in Fig. 3. Accordingly, a small 
change of 1

~
  on the resonance interaction contour lines of finite-water depth causes 

great differences in the magnitude of 1  as well as the integrand of the Boltzmann 
integral compared with those of deep-water depth, and this results in unstable 
computations. Therefore, in order to eliminate the instability of the computations, 
Komatsu and Masuda (2000) changed the sequence of frequencies of Eq. (6) in 
integrating Eq. (11) as follows, 
 

 2431    (13) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Resonance interaction charts for deep-water waves (left figure) 
and intermediate-water waves (right figure). 
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It is noted that by introducing this modification, the special treatment of the integration 
around the singular points is no longer necessary. That is, in the RIAM computations, 
the integration area of the Boltzmann integral with respect to 1

~  and 3

~  was reduced to 
the area B in Fig. 4 by assuming the order of Eq. (6), which was originally assumed to 
eliminate the overlap computations and successfully reduced the computation time. 
Unfortunately, in this case, the singular point exists in the area B, and a careful 
treatment is necessary to integrate around the singular point. 
 

On the other hand, by assuming the order of Eq. (13) instead of Eq. (6), the 
integration area with respect to 1

~  and 3

~  becomes the area A instead of the area B in 
Fig. 4. Although the area A is larger than area B and requires a longer computation time 
for the integration, there is fortunately no singular point in the area A, which makes the 
integration stable and accurate. Note that the difference of the rectangular prism in Fig. 
1 and Fig. 4 is due to the difference of sequence of 3  and 4 . In Masuda (1980), 

43    is assumed in Fig. 1. 
 

In addition, in the RIAM method for deep-water waves, the values on the resonant 
wavenumber vectors are simply replaced with the values on the nearest wavenumber 
grid points without loss of accuracy (Komatsu and Masuda, 1996). However, this does 
not apply to finite-depth water computations where interpolated values of the 
surrounding four wave numbers are needed (Komatsu and Masuda, 2000). The method 
thus developed is called the Finite-Depth RIAM (FD-RIAM). It is obviously also 
applicable for deep water as a special case of finite-depth water. 
 
 Fig. 5 shows the examples of the computations of the FD-RIAM for deep- and finite-
water wave spectra. As shown in Fig. 5, the intensity of the non-linear energy transfer 
increases and the positive peak frequency moves toward lower frequency side as the 
relative water depth hk p  decreases (this cannot be achieved with the depth scaling of 

the DIA). 
 

 
 

Fig. 4 A schematic graph of a cross section (=constant) of the rectangular prism 
 in Fig. 1. 
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Fig. 5 Examples of the computations of the non-linear energy transfer for finite-water 

wave spectra. (The solid lines in the lower panels show the non-linear energy 
transfer for deep-water wave spectrum. The dashed lines show those of finite-
water wave spectra. The values in these figures were normalized by the 
maximum absolute value of the non-linear energy transfer for deep-water wave 
spectrum.) 

 
 
 The implementation of the FD-RIAM code in SWAN allows us to compute real 2-D 
field cases with highly accurate computations of the four-wave interactions, 
supplemented with all other processes of generation and whitecapping (and triad wave-
wave interactions). This is probably the first time that this has been done. It may be 
emphasized that for shallow water the code computes the interactions without depth-
scaling deep water computations. One of the cases that we have considered is a near-
ideal 2-D case of wave generation in the shallow water Lake George in Australia 
(Young and Verhagen, 1998). Fig. 6 gives wave spectra in Lake George as observed by 
Young and Verhagen (1996) and as computed by SWAN with the DIA and the FD-
RIAM. The results with the FD-RIAM obviously improve the computed shape of the 
spectrum as shown in Fig. 6. During the growth phase of the waves the improvement in 
the calculations due to the FD-RIAM method is most notable at the low frequency end 
of the spectrum In this finite depth case the low frequency part of the (positive) non-
linear energy transfer is much larger than when a uniform depth-scaling is applied. 
Further research is necessary to draw more general conclusions with respect to this 
effect. However, the FD-RIAM method is still very expensive in terms of computer 
effort and we will therefore have to develop a new method with a reduced approach in 
the very near future.  
 
CONCLUSIONS  
 We implemented several methods for computing the quadruplet wave-wave 
interactions: for deep water the exact method of RIAM and the approximate methods of 
the multiple DIA and the (modified) SRIAM and for finite-depth water the exact 
method of FD-RIAM. These methods can provide accurate and reliable values of the 
non-linear energy transfer, which are useful not only for operational purposes but also 
for scientific purposes to gain better understanding of the physics of spectral evolution.  
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Fig. 6 The wave spectra in Lake George as observed by Young and Verhagen (1996; 

dash-dot lines) and as computed by SWAN with the DIA approximation (dashed 
lines) and the exact FD-RIAM (solid lines) for finite-water depth. 
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