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ABSTRACT

An airborne scanning lidar system acquires three-dimensional (3D) spatial topography of ocean surface waves.
From the spatial data, wavenumber spectra are computed directly. The spectral properties in terms of the spectral
slope and dimensionless spectral coefficient have been verified to be in very good agreement with existing data.
One of the unique features of the 3D spatial data is its exceptional directional resolution. Directional properties
such as the wavenumber dependence of the directional spreading function and the evolution of bimodal devel-
opment are investigated with these high-resolution, phase-resolving spatial measurements. Equations for the
spreading parameters, the lobe angle, and the lobe ratio are established from the airborne scanning lidar datasets.
Fourier decomposition of the measured directional distribution is presented. The directional parameters can be
represented by a small number (4) of the Fourier components. The measured directional distributions are compared
with numerical experiments of nonlinear wave simulations to explore the functional form of the dissipation
source term.

1. Introduction

The study of the directionality of a random wave field
is of great interest to the clarification of nonlinear wave
dynamics (e.g., Komen et al. 1984; Banner and Young
1994). Traditionally, the directional distribution of
waves has been considered unimodal. The most com-
monly used directional models include cos squared
[cos2s(u/2)] (Mitsuyasu et al. 1975; Hasselmann et al.
1980) and sech squared [sech2(bu)] functions (Donelan
et al. 1985; Banner 1990), where u is the wave prop-
agation angle and parameters s and b are functions of
wave frequency and possibly also wave age. These di-
rectional distribution models describe a minimal spread-
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ing near the peak frequency. Away from the spectral
peak, the spreading increases toward both higher and
lower frequencies. There are significant disagreements
in the wave age dependence among the proposed spec-
tral functions. Detailed comparisons of four distribution
models (Mitsuyasu et al. 1975; Hasselmann et al. 1980;
Donelan et al. 1985; Banner 1990) have been given in
Young (1994) and Ewans (1998) and will not be re-
peated here. It is generally considered that the charac-
teristics of the directional distribution function reflect
the interactive roles played by the source terms (wind
generation, breaking dissipation, nonlinear wave–wave
interaction) in the action density or spectral energy con-
servation equation that governs the wave dynamics
(Hasselmann et al. 1980; Komen at al. 1984; Donelan
et al. 1985). The accurate determination of the direc-
tional distribution function thus serves as a diagnostic
tool for the quantification of key mechanisms governing
the dynamics of ocean waves.

Recently, the existence of bimodal feature in the di-
rectional distribution has generated much interest (e.g.,
Banner and Young 1994; Young et al. 1995; Ewans
1998). Numerical experiments of Komen et al. (1984),
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Young and Van Vledder (1993), and Banner and Young
(1994) suggest that the directional spreading is con-
trolled mainly by nonlinear interactions. The numerical
experiments also reveal that the simulated directional
distribution function differs from the standard [cos
squared or sech squared] spreading functions, and that
bimodal directional distribution develops in the short
wave portion of the spectrum. Banner and Young (1994)
suggest that bimodal development is caused by the dif-
ference in the directional characteristics of wind input
and breaking dissipation terms. In particular, the wind
input function is more directional (the spreading factor
is narrower by a cosine factor) than the dissipation func-
tion. As a result, wave components oblique to the wind
direction have a net energy loss between the wind input
and breaking dissipation terms. Because the three major
source terms (wind input, breaking dissipation, and non-
linear interaction) are coupled, the more rapid decay in
those oblique components is made up by nonlinear in-
teraction that transfers energy into those components.
The issue, however, remains unsettled because disagree-
ment in the interpretation of the observational evi-
dence—the ‘‘existence’’ of the bimodal feature in a giv-
en dataset turns out to be very much dependent on the
processing procedure [e.g., see discussions in Young
(1994) and Ewans (1998)].

As mentioned at the beginning of this section, earlier
analyses of temporal measurements by wave gauge ar-
rays or directional buoys show unimodal distributions
(e.g., Mitsuyasu et al. 1975; Hasselmann et al. 1980;
Donelan et al. 1985). Bimodal features have been ex-
tracted from temporal measurements only recently, us-
ing a maximum likelihood method (MLM) or maximum
entropy method (MEM) (Young et al. 1995; Ewans
1998). These results highlight the major difficulty in
resolving directional distribution properties from a small
number of sensor elements. Depending on the chosen
method in the analysis procedure, significant quantita-
tive differences occur. For example, Young (1994) com-
pares the directional resolutions of the Fourier expan-
sion method and the MLM. Considerable broadening of
the bimodal feature using either method is illustrated
(e.g., Young 1994, Fig. 4). Ewans (1998, Fig. 8) shows
a comparison of the bimodal analysis using MLM and
MEM. The directional resolution of MEM is much
‘‘sharper,’’ although the method was known to produce
a false bimodal distribution in tests using synthetic data
(Ewans 1998, pp. 503–504; Lyger and Krogstad 1986).
Despite these shortcomings, significant progress has
been made from the Ewans (1998) MEM analysis. For
example, results of the lobe separation angle as a func-
tion of dimensionless wave frequency over a wide range
of wave age conditions are established from one year
of data collected in an offshore station with well-defined
fetch conditions. He also shows that the simulation re-
sults on the lobe angle based on the EXACT-NL model
are in excellent agreement with field data (Fig. 13 of
Ewans 1998).

Bimodal directional distribution has been observed
from spatial measurements using an aerial stereo pho-
tographic technique (Phillips 1958; Cote et al. 1960;
Holthuijsen 1983), airborne radar system (Jackson et al.
1985), and land-based imaging radar (Wyatt 1995). In
contrast to the analysis of temporal measurements from
wave gauge arrays or directional buoys, a standard two-
dimensional fast Fourier transformation procedure is
sufficient to bring out the multimodal feature in the
directional distribution from 3D spatial topographic im-
ages. Data quality of earlier stereophotography, how-
ever, was not very high. Holthuijsen (1983, p. 192) es-
timates the dynamic range in their spectral results to be
approximately 10 dB. Their data are also significantly
affected by the presence of nontrivial swell. The dy-
namic range of the spectra presented in Cote et al. (1960)
is much higher. Based on the contour plots such as those
shown in their Fig. 10.12, it is judged that the dynamic
range of that dataset is close to 20 dB.

Technology has advanced significantly since those
wave mapping missions. Specifically, the aircraft mo-
tion can be determined more accurately due to the ad-
vent of the kinematic GPS (Global Positioning System)
technology. As a result, the signal to noise ratio of the
measurement also improved considerably. An airborne
topographic mapper (ATM: an airborne scanning lidar
ranging system) has been deployed recently for mapping
surface waves (Hwang et al. 1998). The dynamic range
of the present measurements from the airborne lidar is
approximately 30 dB, that is, 10 to 100 times improved
over the earlier topographic datasets. In Part I (Hwang
et al. 2000), the data quality of the ATM measurements
is critically examined. The spectral properties in terms
of the spectral slope and the dimensionless spectral co-
efficient are in excellent agreement with existing results
based on the analyses of several decades of frequency
spectral data. The ATM measurements are also com-
pared with data measured by an offshore buoy deployed
in the same region. The agreement is also quite satis-
factory. These comparisons have established our con-
fidence in the ATM data. In this paper, we proceed with
the data analysis aiming to quantify the wavenumber
dependence of the directional distribution from the
ocean surface topography obtained by the ATM. The
measurement technique and environmental conditions
of the field experiment have been described in Part I.
A brief summary is given in section 2. In that section,
we also present a short discussion on the directional
resolution of the 2D spectrum computed form 3D to-
pography. The analysis of the spectral directional dis-
tributions is described in section 3. Functional forms of
several key parameters of the distribution function (the
spreading factor in terms of the moments of the direc-
tional distribution and bimodal features in terms of the
lobe angle and lobe ratio) are established from the 2D
wavenumber spectra. Polynomial fitting to the Fourier
components of the distribution functions is performed
and the coefficients for the leading nine components are
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FIG. 1. A sketch illustrating the wavenumber dependence of the di-
rectional resolution of the 2D spectrum.

tabulated. The results are also compared with four es-
tablished directional distribution models (Mitsuyasu et
al. 1975; Hasselmann et al. 1980; Donelan et al. 1985;
Banner 1990). We also compare the measured direc-
tional distributions with those derived from numerical
experiments using a nonlinear wave model (Banner and
Young 1994) to investigate the frequency dependence
of the dissipation function. Finally, the ATM results are
compared with the directional information derived from
MEM and MLM processing of buoy data. It is found
that although bimodal feature can be extracted from
MEM processing, the quantitative results on the integral
properties such as the spreading factor, lobe angle, and
lobe amplitude are not accurately determined. The root
mean square differences between MEM and ATM re-
sults are not better than the counterparts between MLM
and ATM results. A summary is given is section 4.

2. Measurement technique and directional
resolution

The measurement technique and data processing pro-
cedure using the ATM have been presented in Hwang
et al. (2000, hereafter Part I); a brief summary is pre-
sented here. The ATM measures the distance between
the aircraft and the surface of the ground or ocean using
a scanning laser beam. Designed for Greenland Icecap
monitoring as a part of the global warming project (Kra-
bill et al. 1995a,b), the laser beam scans a circular pat-
tern with a fixed incident angle of 158. Carried on an
aircraft, the system achieves the goal of 2D mapping to
produce 3D surface topography. The aircraft altitude is
typically 500 m and the flight speed is approximately
60 m s21. The dispersion angle of the laser beam is 1
mrad and the footprint of the laser spot on the ocean
surface is 0.5 m. The swath of the image is 250 m. The
scanning pattern repetition rate is 10 Hz and the data
sample rate is 5000 Hz; therefore, each scanning circle
is divided into 500 segments. The coarsest spacing be-
tween neighboring image pixels is 1.6 m in the cross-
track direction and 6 m in the along-track direction. The
circular-scan data are subsequently resampled into rect-
angular grids referenced to the flight track direction.
Through some experimentation, square grids with 3-m
grid size are chosen for the data presented here. Because
the Nyquist wavenumber, kNy, is dictated by the coarsest
spacing of the original data, the computed spectral com-
ponents in the range of k # kNy are emphasized. The
data processing procedures have been discussed in Part
I. Key spectral properties in terms of the spectral slope
and the dimensionless spectral coefficient have been
shown to be in good agreement with existing results
derived from time series (frequency domain) measure-
ments.

One of the unique features of the 3D topographic data
is its exceptional directional resolution in the resulting
2D wavenumber spectrum. With reference to Fig. 1, the
area of the ring with a width Dk and radius k is

p k1Dk /2

A 5 k dk du 5 2pkDk. (1)E E
2p k2Dk /2

The number of rectangular wavenumber ‘‘pixels’’ with-
in the ring is

A 2pkDk
N 5 5 . (2)

dk dk dk dk1 2 1 2

The directional resolution is calculated by

2p dk dk1 2Du 5 5 . (3)
N kDk

With Dk 5 dk1 5 dk2 5 k0, (3) becomes

k 57.3280Du 5 rad 5 . (4)
k k/k0

For the data presented in this paper, k0 5 2p/(128Dx)
5 0.016 rad m21 for Dx 5 3 m, and the peak wave-
number kp 5 0.098 rad m21 ø 6 k0 (Part I). For k $
kp, the directional resolution is better than 108. Figure
2 shows a comparison of the measured N and Du with
the analytical solutions [Eqs. (2) and (4)]; the agreement
is very good.

The same results on the directional resolution can be
derived from equating the integration ‘‘area elements’’
of the rectangular and polar coordinates; that is, dk1dk2

5 kdkdu. With the substitution of dk1 5 dk2 5 dk 5
Dk 5 k0, du 5 k0/k [rad], which is identical to (4).

3. Directional distribution of the wavenumber
spectrum

On 24 September 1997, the ATM acquired 4 hours
(from 1200 to 1600 UTC) of data near Duck, North
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FIG. 2. A comparison of the measured N and Du with the analyti-
cal solutions, Eqs. (2) and (4), respectively.

FIG. 3. Examples of the computed 2D wavenumber spectra. (a) Contour plot in (k1, k2) representation (same as polar repre-
sentation). Wavenumber vectors for the dominant wind wave and the swell components are indicated by arrows. (b) Contour plot
in orthogonal (k, u) representation. (c) Contour plot in orthogonal (v, u) representation. Semicircles in (a) correspond to k 5 0.2,
0.4, and 0.6 rad m21. The intervals are 6 dB apart (i.e., 0.6 in logarithmic scale) for the thick contours, and 1.5 dB apart for the
thin contours. [Reproduced from Fig. 5 in Hwang et al. (2000).]

Carolina. A front passed through the area the night be-
fore. Wind speed increased from 4 to 12 m s21 within
a 2-h period (0230–0430 UTC 24 September) and the
wind direction shifted from westerly to northerly. Wind
speed was quasi-steady at approximately 9.5 m s21 from
0600 to 1300 UTC 24 September, and then decreased
from 9.5 m s21 at 1300 UTC to 5.5 m s21 at 1600 UTC.
Wave records show that the wave conditions (significant
wave height and peak wave period) were quasi-steady
during the first 2 hours of the flight. During the last 2
hours, the wave conditions decayed slowly. More in-
formation on the environmental conditions and spectral
analysis procedures are given in Part I.

An example of the resulting 2D wavenumber spec-
trum, presented as C(k1, k2), C(k, u), and C(v, u), is
shown in Fig. 6 of Part I. (This figure is reproduced as
Fig. 3 here.) It is observed that the directional distri-
bution is generally symmetric with respect to the dom-
inant wave direction (the wavenumber vector k 5 0.098
rad m21, u 5 458 is plotted in Fig. 3a). The peak wave-
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FIG. 4. Directional distributions of the spectral intensities at 27 discreet wavenumber components. Three distributions are plotted in each
panel (a)–(i). The wavenumber spacing of the distributions is k0 5 0.0164 rad m21 (k0 5 2p/128Dx, where Dx 5 3 m). The starting
wavenumber for the three curves in each panel is printed at the top of the panel. The line thickness decreases with increasing wavenumber
in each panel.

number, kp 5 0.098 rad m21, is determined from the
integrated omnidirectional spectrum (see Part I). The
2D spectrum displayed in Fig. 3 shows that the direc-
tional spreading becomes broader as wavenumber in-
creases. Bimodal distribution starts to develop for wave-
number slightly greater than ;2kp. The angular sepa-
ration of the distribution lobes increases toward higher
wavenumber or wave frequency. More quantitative anal-
ysis of the directional distribution is presented below.
For a reference of the data processing coordinates and
the geographic orientations, Fig. 1 of Part I displays the
flight tracks superimposed on the map of the experi-
mental site and a sketch showing relevant directions.

a. Fourier decomposition

Significant variations in the directional distribution in
different wavenumber ranges can be deduced from in-
specting the 2D wavenumber spectra such as those
shown in Fig. 3. Most interesting of all, it is noticed

that a unimodal distribution occurs only in a narrow
wavenumber range near the spectral peak, kp 5 0.098
rad m21. Outside of this small range, the directional
distribution becomes more uniform and a bimodal dis-
tribution becomes prominent. The spacing of the two
lobes increases as wavenumber increases. To illustrate
the evolution of the directional distribution with wave-
number, C(k, u) versus u for 27 wavenumbers are plot-
ted in Figs. 4a–i. In each panel of the figure, three dis-
tributions are displayed. The line widths of the three
curves decrease with increasing wavenumber. The
wavenumber spacing k0 is 0.0164 rad m21 (k0 5
2p/128Dx where Dx 5 3 m; see Part I for details of
the spectral processing procedure). The starting wave-
number for the three curves in each panel is printed at
the top of the panel. The direction shown is shifted by
2458 to align with the dominant wave direction. The
new direction is denoted by u9 (u9 5 u 2 up). [Note
that the angular range of p/2 $ u9 $ p/4 corresponds
to the original direction range of 3p/4 $ u $ p/2, which
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is in the ‘‘discarded half-plane’’ of the 2D spectrum (due
to a 1808 ambiguity of the 2D spectrum from plane
image; see Fig. 3a).] For display purposes, the data with-
in the original range of 2p/2 $ u $ 2p/4 are shifted
into this range, which explains the apparent disconti-
nuity at u9 5 p/4. As shown in section 2, the directional
resolution is dependent on wavenumber because the
number of ‘‘pixels’’ in the (k1, k2) space increases lin-
early with k (Fig. 2b). The results shown in Fig. 4 have
the directional resolution degraded to 108 uniformly for
k . kp. In general the directional distribution function
is reasonably symmetric. Because data in the region near
u9 5 p/4 (u 5 p/2) may be affected by the 1808 spectral
ambiguity typically occurring in the processing of still
images, for Fourier decomposition analysis, C(k, u9) in
the range 2p/2 $ u9 $ 0 is mirrored to the range p/2
$ u9 $ 0. The distribution function for each wave-
number is then linearly interpolated to 32 equally spaced
angular bins and its Fourier components computed.

Extensive discussions of the analysis method have
been presented in earlier publications (e.g., Cote et al.
1960; Longuet-Higgins et al. 1963). From this point on,
the prime in u9 will be dropped and all references to
the direction are with respect to the dominant wave
direction. The directional spectrum can be written in the
form

C(k, u) 5 k21x(k)D(k, u), (5)

with D(k, u) $ 0 and

p /2

D(k, u) du 5 1. (6)E
2p /2

The integration limits in (6) are from 2p/2 to p/2. As
discussed in Cote et al. (1960), the Fourier decompo-
sition of such a directional distribution function is given
by

N1
D(k, u) 5 1 1 A (k) cos2nu 1 B (k) sin2nu ,O n n[ ]p n51

2p /2 # u # p /2. (7)

If the distribution function is symmetric with respect to
u, the odd function terms [Bn sin(2nu)] vanish and the
distribution function is fully represented by

N1
D(k, u) 5 1 1 A (k) cos2nu ,O n[ ]p n51

2p /2 # u # p /2. (8)

Alternatively, the direction distribution can be extended
to the full range of 2p to p, by extrapolation, for ex-
ample. Denoting the extrapolated directional distribu-
tion as D2(k, u), the corresponding Fourier decompo-
sition is

N1
D (k, u) 5 1 1 a (k) cosnu 1 b (k) sinnu ,O2 n n[ ]2p n51

2p # u # p. (9)

Again, for a symmetric function, bn terms vanish:

N1
D (k, u) 5 1 1 a (k) cosnu ,O2 n[ ]2p n51

2p # u # p. (10)

In practice, (8) converges much faster than (10) and
requires significantly less number of terms to represent
the directional distribution. The price paid is that the
data in the range of |u| . p/2 are discarded. In the case
of the analysis of 2D wavenumber spectra from 3D
topographic data, this is not a loss as the directional
information in the range |u| . p/2 is not available in
the first place. Figure 5 compares the two different de-
compositions of the function

u
20D(u) 5 cos , 2p # u # p. (11)

2

The Fourier coefficients An (circles) and an (pluses) are
shown in Fig. 5a. The comparison of the original wave-
form (11) with the Fourier summations computed by
(8) and (10) are shown in Figs. 5b and 5c, respectively.
In both panels, circles represent the original waveform
(11), solid curves represent summations with N 5 2 and
dotted curves are for N 5 maximal number of decom-
posed components, 16 for Figs. 5b and 32 for Fig. 5c.
The typical output from directional buoys is the first
two terms of the Fourier series in (10); thus the solid
curves represent a realistic approximation from buoy
measurements. The more speedy convergence using (8)
is clearly illustrated from these comparisons; the curves
for N 5 2 and 16 are essentially identical in Fig. 5b.
In contrast, the two-term solution using (10) is a poor
representation of the original waveform (Fig. 5c) and
the directional spreading of the resulting approximation
is much wider than the original waveform. We also com-
puted the variance fractions of 2-, 3-, 4-, and 6-term
summations using (8) and (10) for the function cosp(u/2)
with p varying from 1 to 40. The variance fraction as
a function of p is shown in Fig. 5d. In all cases, the
two-term summations using (8) produce better result
than four-term summations using (10). Also, using (8),
the four-term summation recovers almost the total var-
iance, even for a very narrow directional distribution
close to cos40(u/2).

The wavenumber dependence of the first four Fourier
coefficients of the measured directional distributions
computed with (8) is illustrated in Fig. 6. The spectrum
is obtained from averaging the first half (2 h) of the
experiment when the wave condition was quasi-steady.
Separate computation is performed for the second half
when the wave field was decaying (Part 1). Little dif-
ference in the directional distributions is found between
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FIG. 5. A comparison of two Fourier decompositions [Eqs. (8) and (10)] of the function specified by (11). (a) The spectral
coefficients are circles: calculated by (8) and pluses: calculated by (10). (b) Comparison of the original data (circles) with 2-term
(solid curve) and 16-term (dotted curve) summations using (8). (c) Comparison of the original data (circles) with 2-term (crosses)
and 32-term (pluses) summations using (10). (d) Variance fractions of 2-term (circles), 3-term (squares), 4-term (crosses), and
6-term (pluses) summations of the Fourier components. Connected symbols are computed by (8) and symbols only are computed
by (10).

the spectra from the two half-periods. The coefficients
of the third-order polynomial fitting to the leading nine
Fourier coefficients for both quasi-steady and decaying
wave fields are given in Table 1.

The directional distributions reconstructed using the
Fourier components regenerated by the polynomial co-
efficients (Table 1) are plotted in Fig. 7. The distribution
functions are normalized such that the magnitude at the
dominant wave direction is unity. Other normalization
schemes can also be used and will be discussed in the
next section. Results using two, four, six, and eight Fou-
rier components are illustrated in panels a, b, c, and d,
respectively. Development of the bimodal feature as k/kp

increases can be reproduced with as little as two Fourier
components but four Fourier components are needed to
give sufficient representation of the lobe amplitude and
to avoid negative values in the directional distribution.
The directional distribution constructed with four Fou-

rier components will be denoted as Dk,FFT4(u) in sub-
sequent discussions.

b. Global properties

Here we present a few global properties of the di-
rectional distribution as analyzed using the 3D surface
topography. The integration of the directional distri-
bution function is calculated by

p /2

I (k) 5 D (u) du, (12)D E k

2p /2

where ID(k) and Dk(u) are related by

D (u)kD(k, u) 5 (13)
I (u)D

to assure that (6) is satisfied. Two normalization meth-
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FIG. 6. The (normalized) wavenumber dependence of the first four
Fourier components of the directional distributions. Symbols are cir-
cles, crosses, pluses, and squares for the first to the fourth compo-
nents, respectively, Curves are third-order polynomial fitted. The co-
efficients of fitting for the leading nine Fourier coefficients are listed
in Table 1.

TABLE 1. Third-order polynomial fitting (y 5 c1x3 1 c2x2c3x 1 c4, where y is A1, A2, . . . , A9, and x is k/kp) of the Fourier coefficients
of the directional distribution.

c1 c2 c3 c4

(a) Quasi-steady wave field
A1

A2

A3

A4

A5

A6

A7

A8

A9

26.83 3 1024

22.66 3 1023

21.44 3 1023

21.13 3 1023

27.22 3 1024

29.04 3 1024

5.92 3 1024

21.10 3 1023

4.33 3 1024

2.20 3 1022

5.32 3 1022

3.29 3 1022

2.15 3 1022

1.09 3 1022

1.21 3 1022

28.34 3 1023

1.57 3 1022

25.93 3 1023

22.42 3 1021

23.82 3 1021

22.08 3 1021

21.01 3 1021

24.70 3 1022

24.92 3 1022

2.75 3 1022

27.13 3 1022

2.06 3 1022

9.87 3 1021

7.83 3 1021

3.26 3 1021

1.17 3 1021

5.96 3 1022

7.40 3 1022

29.78 3 1023

9.80 3 1022

21.52 3 1022

(b) Decaying wave field
A1

A2

A3

A4

A5

A6

A7

A8

A9

26.83 3 1024

23.57 3 1023

22.78 3 1023

26.52 3 1024

8.30 3 1024

27.68 3 1024

1.33 3 1024

6.82 3 1024

22.50 3 1025

2.09 3 1022

6.99 3 1022

4.91 3 1022

1.20 3 1022

21.38 3 1022

9.12 3 1023

21.89 3 1023

29.91 3 1023

4.58 3 1024

22.42 3 1021

24.49 3 1021

22.55 3 1021

25.09 3 1022

7.02 3 1022

23.13 3 1022

4.18 3 1023

3.86 3 1022

22.70 3 1023

9.69 3 1021

8.17 3 1021

3.39 3 1021

3.08 3 1022

21.00 3 1021

3.94 3 1022

5.97 3 1023

23.58 3 1022

1.83 3 1023

ods are applied. The first method obtains Dk(u) from
normalizing C(k, u) by the maximum value of the array;
that is,

C(k, u)
D (u) 5 . (14)k,1 max[C(k, u)]

The integration is denoted as ID,1(k). This is one of the
most common ways of displaying the directional dis-
tribution. The results of ID,1(k) are shown in Fig. 8a,
and can be approximated by the following function

 21k k
0.85 , , 1.31 21.3k kp p 0.8k k kI 5D,1 (15)0.85 , 1.3 # , 51 2k 1 2p 1.3k kp p

k2.5, $ 5.
k p

These results show that the smallest directional spread-
ing occurs at 1.3kp, denoted as kn in the following dis-
cussions. Equation (15) is plotted as the solid curve in
Fig. 8a. Interestingly, the rate of increase of the mea-
sured ID,1(k) versus k/kp decreases and appears to ap-
proach an asymptotic value between 2.4 and 2.8 (Fig.
8a). The asymptotic value is very close to I(0.5) 5

cos0.5u du (Part I), which is 2.3963. Through dy-p/2#2p/2

namic and statistical arguments, Phillips (1985) has
reached the conclusion that the integrated directional
distribution of gravity waves in the equilibrium range
is best represented by I(0.5). The data shown in Fig. 8a
provide direct support for Phillips’ conclusion.

The integration of the directional distribution function
is closely related to the spreading function. For example,
ID,1(k) is related to the spreading parameter b in the sech
squared (sech2bu) directional distribution function sug-
gested by Donelan et al. (1985), b(k) 5 2/ID,1(k). The
results reported in Donelan et al. [1985, Eq. (8.4)] are
plotted as a dashed curve in Fig. 8a. The curve is shifted
toward low wavenumber because their results show that
the narrowest spreading occurs at km 5 0.90kp (vn 5
0.95 vp). Also, in the data of Donelan et al. (1985), the
calculated b in the high-frequency region (v . 1.6vp)
appears to be rather noisy, which created the artificial
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FIG. 7. The directional distributions computed with Fourier coefficients generated by the polynomial fitting coefficients (Table 1). (a) Two-
component summations, (b) four-component summations, (c) six-component summations, and (d) eight-component summations. The di-
mensionless wavenumber k/kp varies from 1 to 5 in steps of 0.5 rad m21 for the sequence of curves represented by solid, dashed, dashed–
dotted, dotted, dots, circles, crosses, pluses, and asterisks.

flattening of their curve (dashed line) for the region k/kp

$ 2.56. Banner (1990) revised the b values in the high
wavenumber region and proposed a modified direction
model [Eq. (2.9) of Banner (1990)] which is plotted as
dashed-and-dotted curve in the figure. The modified
model is in excellent agreement with the present data
in the wavenumber range k . ;3kp.

The directional distribution can also be normalized by
the spectral value at the dominant wave direction; that is,

C(k, u)
D (u) 5 . (16)k,2 C(k, u )p

This representation is more convenient for the construc-
tion of bimodal distribution models, such as the double
Gaussian distribution proposed by Ewans (1998), or for
describing the generation of directional wave compo-
nents from a nonlinear wave–wave interaction mecha-
nism, such as the numerical experiments described in
Banner and Young (1994). The integration will be de-

noted as ID,2(k). The results are shown in Fig. 8b. The
data can be approximated by two branches

 21k k
0.91 , , 1.31 2 1.3k kk p pI 5  (17)D,21 2kp k k
0.91 , 1.3 # , 5. 1 21.3k kp p

The directional spreading factor can be quantified by
the moment of the directional distribution,

p /2 1/m 
mu D (u) duE k 0

 u (k) 5 , m 5 1, 2, · · · . (18)b,m p /2

D (u) du E k

0 

The first two moments are shown in Fig. 9. Computed
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FIG. 8. The integrated directional distribution ID,1 (a) From solid curve: Eq. (15), dashed curve: Donelan et al. (1985), dashed–
dotted curve: Banner (1990), and ID,2 (b) From solid curve: Eq. (17).

results based on the directional distribution functions of
Mitsuyasu et al. (1975), Hasselmann et al. (1980), and
Donelan et al. (1985) for the present Cp/U10 condition
are also superimposed on Figs. 10a and 10b as dashed,
dashed–dotted, and solid curves, respectively. The di-
rectional distribution functions of Mitsuyasu et al.
(1975) and Hasselmann et al. (1980) are of the cos
squared form [cos2s(u/2)], with s expressed as functions
of wave age, Cp/U10. Donelan et al. (1985) and Banner
(1990) use a sech squared function [sech2(bu)]. Detailed
comparisons of these four distribution functions have
been presented in Young (1994) and Ewans (1998) and
will not be repeated here. In the region close to the
spectral peak, the calculated spreading factor is smallest
(narrowest beamwidth) using the Donelan et al. (1985)
formulation, and followed in sequence by Mitsuyasu et
al. (1975) and Hasselmann et al. (1980). The exponents
2s of the cos squared distribution models of Mitsuyasu
et al. (1975) and Hasselmann et al. (1980) are 25 and
14, respectively, at the spectral peak. The b value of the
sech squared model of Donelan et al. (1985) is 2.28 at
the spectral peak, and sech2(2.28u) is very close to
cos40(u/2). In the long-wave region (k/kp , 1), the in-
crease of spreading toward low wavenumber is steeper
than for the three directional models. In the region k .
kp, most of the measured data fall below the model
prediction. The apparent broader spreading of the model
prediction is expected since those models are construct-
ed based on measurements from sensor systems that
provide either two or three Fourier components of the
distribution function using Fourier expansion (10). As
illustrated in Fig. 5c and 5d, the two- and three-term
Fourier approximations using (10) produce only me-
diocre agreement with the true waveform.

The coefficients of the polynomial fitting to the mea-
sured directional moments are listed in Table 2. Two
sets of fittings are performed for the quasi-steady and
decaying wave conditions (Tables 2a and 2b). For each
set, the data in the ranges of 0.5 , k/kp , 1.3 and 1.3
# k/kp , 5 are listed separately. The fitted curves are
plotted as solid lines in Figs. 10c and 10d. The distri-
butions moments (in radian) can also be approximately
by two linear segments (shown as dashed–dotted curves
in Figs. 10c and 10d),


k k

0.35 1 1.05 1 2 , , 1.051 2 k kk p p
u 5 b,11 2kp k k

0.30 1 0.087 2 1 , 1.05 # , 5, 1 2k kp p

(19a)
and


k k

0.52 1 1.05 1 2 , , 1.051 2 k kk p p
u 5 b,21 2kp k k

0.47 1 0.079 2 1 , 1.05 # , 5. 1 2k kp p

(19b)

Computations using the polynomial fitting of four Fou-
rier components [Dk,FFT4(u)] are shown as dashed curves
(this is done only for data in the higher wavenumber
range, k/kp . 1). The four-component solution for the
directional distribution yields excellent representation
of the measured spreading factor expressed in terms of
the moments of the directional distribution.
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FIG. 9. Directional spreading represented by (a, c) the first moment, and (b, d) the second moment, of D(k, u). In (a) and (b),
solid curves: Donelan et al. (1985) and Banner (1990), dashed curves: Mitsuyasu et al. (1975), dashed–dotted curves: Hasselmann
et al. (1980); in (c) and (d), solid curves: from polynomial fitting (coefficients listed in Table 2), dashed curves: computed by
Dk,FFT4(u), dashed-and-dotted curve: computed by Eqs. (19a) and (19b), respectively.

c. Bimodal properties

Although the integrated properties of distribution
functions calculated from sech squared or cos squared
functions (Mitsuyasu et al. 1975; Hasselmann et al.
1980; Donelan et al. 1985) are in reasonably good agree-
ment with measurements, these functions are unimodal
and do not represent the true directional distributions
such as those shown in Fig. 4. The most distinctive
feature of these directional distributions is the bimodal
structure, which can be characterized by the locations
of the two lobes and the lobe amplitudes. Assuming
symmetric distribution with respect to the dominant
wave direction, the lobe angle, ulobe, can be determined
by the angular location of the maximal Dk(u) using the
data in the range 2p/2 # u # 0. The results of the
quasi-steady wave field are plotted as a function of k/kp

in Fig. 10a. The coefficients of polynomial fitting to the
measured data, divided into two groups of k/kp . 1.5
and k/kp , 1.3, are listed in Table 2, and the fitted curves

are plotted as solid curves in the figure. The corre-
sponding results derived from Dk,FFT4(u) are plotted as
dashed curves. The agreement between measurements
and the Fourier approximation is very good.

The sidelobe amplitude can be expressed by the ratio
of the maximal Dk(u) to its value at the dominant wave
direction, Dk(up). The ratio is termed lobe ratio, rlobe,
by Banner and Young (1994), and is shown in Fig. 10b.
The coefficients of polynomial fitting are listed in Table
2 and the fitted curves are plotted as solid curves in the
figure. The corresponding results calculated with
Dk,FFT4(u) are shown as dashed curves. The approxi-
mation by four Fourier components is in very good
agreement with data.

The directional resolution of the distribution data used
in Figs. 11a and 11b have been degraded to have uni-
form directional resolution (32 bins between 2p/2 to
p/2) for different wavenumbers, as done for the Fourier
decomposition. This explains the stepwise appearance
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FIG. 10. The lobe angle (a, c) and the lobe ratio (b, d) of the bimodal distribution. In (a) and (b), the directional resolution is degraded
to have a uniform resolution as done for the Fourier decomposition procedure. Solid curves: from polynomial fitting (coefficients listed in
Table 2), and dashed curves: computed by Dk,FFT4(u). In (c) and (d), the directional resolution is not degraded. The dashed-and-dotted curves
are computed from Eqs. (20) and (21). Numerical results of Banner and Young (1994) on the effect of dissipation functions are shown with
stars: quadratic, triangles: cubic, and square: quartic frequency dependence. Quasi-steady wave field.

of ulobe in Fig. 10a. Using the original directional dis-
tribution data without degrading, the results of ulobe and
rlobe are plotted in Figs. 11c and 11d, respectively. The
polynomial fitting coefficients are tabulated in Table 2.
The data can also be approximated by linear segments
(shown as dashed–dotted curves in the figure). For the
lobe angle,


k k

150 1 2 , , 11 2k kp pk k
u 5 60, 1 # , 1.5 (20)lobe1 2k kp p

k k9.3 2 1 , 1.05 # , 5.1 2k kp p

For the lobe ratio,


k k

1 1 0.8 1 2 , , 11 2k kp p

k
1, 1 # , 1.5k kpr 5 lobe1 2k k kp
1 1 0.07 2 1.5 , 1.5 # , 31 2k kp p

k k1.1 1 0.2 2 3 , 3 # , 5.1 2k kp p

(21)

The lobe angle and the lobe ratio of the decaying
wave field are shown in Fig. 11. Comparing Figs. 10
and 11, it is found that the wavenumber dependencies
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TABLE 2. Polynomial fitting (y 5 c1x3 1 c2x2 1 c3x 1 c4, where y is the quantities listed in the first column, and x is k/kp) of the
directional parameters (ub,1, ub,2, ulobe and rlobe).

c1 c2 c3 c4

(a.1) Quasi-steady wave field, lower-wavenumber branch
Direction moments (k/kp , 1.3)

ub,1

ub,2

3.78 3 100

3.75 3 100

28.53 3 100

28.56 3 100

5.09 3 100

5.20 3 100

23.45 3 1022

8.94 3 1022

Lobe angle and ratio, directional resolution not degraded (k/kp , 1.3)
ulobe

rlobe

—
—

28.06 3 1022

2.45 3 1021

7.34 3 1021

27.80 3 1021

27.39 3 1021

1.61 3 100

Lobe angle and ratio, directional resolution degraded (Du 5 5.68)
ulobe

rlobe

—
—

29.83 3 1021

0.96 3 100

2.20 3 100

21.99 3 100

21.28 3 100

2.02 3 100

(a.2) Quasi-steady wave field, higher-wavenumber branch
Direction moments (k/kp , 1.3)

ub,1

ub,2

29.46 3 1023

5.60 3 1023

8.52 3 1022

4.90 3 1022

21.46 3 1021

24.66 3 1022

3.95 3 1021

4.57 3 1021

Lobe angle and ratio, directional resolution not degraded (k/kp , 1.65)
ulobe

rlobe

3.99 3 1023

21.03 3 1022

23.46 3 1022

1.47 3 1021

28.50 3 1022

24.79 3 1021

2.35 3 1021

1.51 3 100

Lobe angle and ratio, directional resolution degraded (Du 5 5.68)
ulobe

rlobe

27.90 3 1024

24.37 3 1023

1.27 3 1022

7.06 3 1022

22.85 3 1021

22.12 3 1021

4.21 3 1021

1.18 3 100

(b.1) Decaying wave field, lower-wavenumber branch
Direction moments (k/kp , 1.3)

ub,1

ub,2

2.96 3 100

3.12 3 100

26.55 3 100

26.99 3 100

3.67 3 100

4.02 3 100

2.44 3 1021

3.29 3 1021

Lobe angle and ratio, directional resolution not degraded (k/kp , 1.3)
ulobe

rlobe

—
—

4.33 3 1021

1.10 3 100

22.57 3 1021

22.60 3 100

0.33 3 1021

2.59 3 100

Lobe angle and ratio, directional resolution degraded (Du 5 5.68)
ulobe

rlobe

—
—

21.72 3 1022

1.00 3 100

3.92 3 1021

22.21 3 100

24.88 3 1021

2.22 3 100

(b.2) Decaying wave field, higher-wavenumber branch
Direction moments (k/kp , 1.3)

ub,1

ub,2

24.87 3 1023

27.04 3 1024

3.79 3 1022

21.74 3 1023

9.03 3 1023

1.22 3 1021

2.62 3 1021

3.04 3 1021

Lobe angle and ratio, directional resolution not degraded (k/kp , 1.5)
ulobe

rlobe

22.70 3 1023

23.30 3 1024

5.38 3 1022

22.67 3 1022

24.28 3 1021

3.15 3 1021

5.74 3 1021

5.74 3 1021

Lobe angle and ratio, directional resolution degraded (Du 5 5.68)
ulobe

rlobe

29.90 3 1024

21.40 3 1024

3.50 3 1022

21.23 3 1022

23.69 3 1021

1.87 3 1021

5.09 3 1021

6.94 3 1021

of the lobe angle in quasi-steady and decaying wave
fields are essentially identical. There are quantitative
differences in the lobe ratio of a quasi-steady wave field
and a decaying wave field. In the quasi-steady case, the
rate of increase of lobe ratio is approximately constant
for the range 7 . k/kp . 2 (Fig. 10d). For the decaying
case, the lobe ratio in the range 4 . k/kp . 2 is higher
than the corresponding numbers in a quasi-steady con-
dition. In the range 7 . k/kp . 4, the trend is opposite,
and the rate of increase of the lobe ratio with respect
to k/kp is much less than that of the quasi-steady case.
The linear-segment approximation of the lobe ratio for
the decaying case is


k k

1 1 0.8 1 2 , , 11 2k kp p

k
1, 1 # , 1.5k kpr 5 lobe1 2k k kp
1 1 0.16 2 1.5 , 1.5 # , 31 2k kp p

k k1.1 1 0.067 2 3 , 3 # , 5.1 2k kp p

(22)
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TABLE 3. Comparison statistics of ATM and buoy directional
distributions.

Parameter k/kp range

Root-mean-square difference

ATM vs
MLM

ATM vs
MEM

ATM vs
(MEM 1
MLM)/2

ID,1 0.5–1.3
1.3–3.0
3.0–4.76
0.5–4.76

0.67
0.19
0.17
0.31

0.42
0.25
0.79
0.55

0.56
0.14
0.43
0.37

ID,2 0.5–1.3
1.3–3.0
3.0–4.76
0.5–4.76

1.73
0.19
0.78
0.86

1.20
0.31
0.58
0.64

1.41
0.24
0.42
0.64

ub,1 0.5–1.3
1.3–3.0
3.0–4.76
0.5–4.76

4.65
5.13
1.97
4.07

5.38
3.35
2.50
3.47

3.67
3.40
2.17
3.02

ub,2 0.5–1.3
1.3–3.0
3.0–4.76
0.5–4.76

2.61
3.78
2.67
3.20

4.93
4.08
5.61
4.88

1.68
1.80
4.07
2.92

d. Comparison with numerical experiments

Accurate determination of the directional distribution
function can be used for the verification of nonlinear
wave models. For example, Banner and Young (1994)
perform numerical experiments to investigate the func-
tional forms of the wind input and wave dissipation
source terms. One of the test series examines the dis-
sipation term, which is formulated with a frequency
dependence of v2, v3, or v4 based on the study of
Komen et al. (1984) and Hasselmann (1974). The results
show that the directional distribution function is very
sensitive to the specification of the dissipation function.
In all cases, the lobe angle increases with k/kp, but the
lobe ratio behaves very differently. For the v2 case, it
appears to increase monotonically with k/kp [this con-
clusion is tentative because results for only three dif-
ferent wavenumbers, k/kp 5 1, 4, and 9, were shown
in Fig. 13 of Banner and Young (1994)]. For the other
two dissipation functions, the lobe ratios at k/kp 5 9
are less than those at k/kp 5 4. Their model results are
also plotted in Figs. 11c,d and 12c,d.

The ATM data shown in Figs. 10d (quasi-steady case)
and 12d (decaying case) suggest a monotonic increase
of the lobe ratio in the wavenumber range 1 # k/kp #
7. The data beyond k/kp . 7 are quite scattered. We
emphasize that, although the ATM data shown here ex-
tend to k/kp 5 10, our conservative estimate of the Ny-
quist wavenumber is kNy/kp 5 5 (based on the coarsest
along-track data spacing of 6 m). The spectral results
in the range of 10 . k/kp . 5 are essentially ‘‘push
processed’’ due to our choice of using square grids of
3-m size to resample the circularly scanner dataset (Part
I). With this caution in mind, it is commented that the
comparison of numerical results with ATM data at k/kp

5 9 is only tentative, more solid comparisons can only

be made at a later stage when datasets extending to
higher k/kp range become available. The comparison at
k/kp 5 4, however, should be reliable. Several conclu-
sions can be reached at this stage. (i) The lobe angle
based on the numerical simulation overpredicts the lobe
spacing at k/kp 5 4 but it is in excellent agreement with
ATM measurement at k/kp 5 9. (ii) Both numerical
simulations and ATM measurements show that the lobe
angle of the directional distribution is not sensitive to
the wave conditions. Specifically, the lobe angle derived
from a quasi-steady and active-growing wave field is
not very different from the lobe angle obtained from a
decaying wave field. (iii) In a quasi-steady wave field,
the lobe ratio computed from an v2 dissipation function
is less than the ATM observation. On the other hand,
cubic and quartic dissipation functions overpredict the
lobe ratio. The frequency dependence of the dissipation
function appears to be between quadratic and cubic. The
lobe ratios computed from the numerical model at k/kp

5 9 with all three frequency dependencies are signifi-
cantly lower that the ATM measurements. As noted in
the last paragraph, ATM data quality at k/kp . 5 in this
dataset is unknown and further quantitative assessment
is not warranted. (iv) In the decaying case, the com-
putation using quadratic dissipation function again un-
derestimates the lobe ratio. Results based on cubic and
quartic dissipation functions are in excellent agreement
with ATM data at k/kp 5 4. Based on these limited data,
it seems to suggest that the frequency dependence of
the dissipation function is close to v2.5 for a quasi-steady
and active-generation wave field. For a decaying wave
field, the frequency dependence is stronger. The limited
data available at this stage are not sufficient to discrim-
inate the difference between cubic and quartic compu-
tations.

Komen et al. (1984) design a sequence of numerical
experiments to investigate the existence of fully devel-
oped windseas. The analysis concludes that the dissi-
pation function with v2-dependence yields the most sat-
isfying results. Both sets of numerical experiments point
out that the simulated directional distributions differ
from cos squared and sech squared spreading function.
These numerical experiments indicate that the investi-
gation of directional distribution enhances our under-
standing of the key mechanisms governing the wave
dynamics, and that the information on the directional
distribution serves to verify the performance of nonlin-
ear ocean wave models.

e. Comparison with buoy measurements

Most studies on the directional distribution of ocean
waves are based on temporal measurements by wave
gauge arrays or directional buoys. The directional dis-
tributions derived from temporal measurements vary
significantly depending on the selected analysis meth-
ods, which are quite numerous (e.g., Benoit et al. 1997).
This method-dependent variation has caused significant
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FIG. 11. As in Fig. 10 but for the decaying wave field.

difficulties in the interpretation of the directional spread-
ing characteristics of multimodal cases. Due to the lack
of independent in situ spatial measurements, compari-
sons and verifications of various directional analysis
methods applying to temporal measurements can only
be done using laboratory or numerically simulated data.
These simulated data are usually quite simplified in
comparison to the real ocean data.

It is of interest to compare the estimated directional
distributions from buoy wave data with those derived
from the 3D ocean surface topography measured by the
ATM. The buoy directional distributions are extracted
from the archive of the offshore NDBC pitch-roll buoy
(station ID 44014). As shown in Part 1, the wind and
wave conditions in the region were quasi-homogenous
during the four hours of aircraft measurements. Every
hour, the frequency-dependent Fourier coefficients of
the first two harmonic terms in (9) are estimated from
measurements of buoy heave, pitch, and roll motions.

Details of buoy measurements and data processing are
described in Earle (1996). For the comparison with
ATM data, buoy measurements from 1300 and 1400
UTC are averaged and the Fourier coefficients are cal-
culated from the average data. This period corresponds
to the quasi-steady wave condition in the ATM data.
The directional distribution at each frequency is esti-
mated from the Fourier coefficients using the MEM (Ly-
gre and Krogstad 1986) and the MLM (Oltman-Shay
and Guza 1984). The computational resolution of the
MEM and MLM directional distribution is 18, but in
reality the directional resolution of buoy measurement
is considerably coarser.

The MEM has a much better directional resolving
power than the MLM. It is also known that the MEM
tends to overpredict the magnitude of the directional
peaks and may sometimes create artificial bimodal dis-
tributions on (simulated) unimodal cases (Benoit et al.
1997; Lygre and Krogstad 1986). In addition, an em-
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FIG. 12. Comparisons of the directional distributions from offshore buoy measurements, processed by MEM (dashed curves),
MLM (dashed–dotted), and EMP (dotted), with those obtained by the ATM measurements (solid curves). Cases at nine different
wavenumbers (shown on top of each panel) are illustrated.

pirical distribution defined as the average of the MEM
and MLM results is used to compare with the ATM
data. The empirical function is denoted as EMP. Figure
12 shows the comparison of the directional distribution
of ATM data (solid line) and the estimates by MEM
(dashed line), MLM (dash-dotted line), and EMP (dotted
line) at nine selected normalized wavenumbers (k/kp)
from 0.8 to 4.5. The direction has been shifted such that
the dominant wave direction is at 08. At k/kp , 3, there
is no noticeable bimodal feature in the ATM data. The
MLM estimate agrees well with the ATM data while
the MEM estimate has a sharper and narrower peak than
the ATM data and the MLM estimate. At k/kp . 3, the
bimodal feature of ATM data becomes more visible as
wavenumber increases. The MEM estimate starts to
show the two peaks of bimodal distribution. The peaks,
however, are much sharper and higher than the ATM
data. The MLM estimate remains very broad and fails
to display the bimodal feature. For the bimodal cases,
the EMP appears to provide a reasonable compromise

between the overprediction of MEM and the coarse di-
rectional resolution of MLM.

To further quantify the comparison, the wavenumber-
dependent directional parameters, ID,1, ID,2, ub,1, and ub,2,
are computed from the directional distributions of the
MEM, MLM, and EMP to compare with the ATM data.
Figures 13a and 13b show the computed ID,1 and ID,2,
respectively. In the region where bimodal feature is not
dominant (k/kp , 3), all estimates from MEM, MLM,
and EMP show similar trends to the ATM data. The
lowest values of the integrated distributions are consis-
tently at around k/kp 5 1.3. In this region of unimodal
distribution, both MEM and MLM estimates generally
follow the ATM data. For ID,1, the MLM estimate is
slightly higher, and the MEM estimate is slightly lower
than the ATM results. For ID,2, the MLM estimate is in
fact in excellent agreement with the ATM data. The
MEM estimates show large fluctuation. When bimo-
dality becomes apparent (k/kp . 3), MEM estimates of
ID,1 differ significantly from the ATM data. The agree-
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FIG. 13. ATM and buoy comparison of the integrated directional distribution (a) ID,1 and (b) ID,2. Solid curves: ATM, connected circles:
MEM, connected pluses: MLM, and connected crosses: EMP.

ment of the MLM estimate of ID,1 with ATM data is
very good in this range, but as commented earlier, MLM
fails to identify the bimodal feature in the directional
distribution (Fig. 12). For the integral ID,2, the estimates
by MEM and MLM diverge from the ATM data, the
agreement clearly deteriorated compared to that in the
lower wavenumber range (Fig. 13b). The rms differ-
ences between ATM and MEM, MLM, or EMP esti-
mates are listed in Table 3. Statistics in the wavenumber
range (k/kp) from [0.5, 1.3], [1.3, 3.0], [3.0, 4.76], and
[0.5, 4.76] are calculated separately to provide a more
detailed comparison in different wavenumber ranges.
Overall, the rms differences of ID,1 and ID,2 between
ATM and MEM data are not better than the rms dif-
ferences between ATM and MLM.

Comparisons of ub,1 and ub,2 are shown in Fig. 14.
All estimates show that the spreading width is narrowest
at k/kp, slightly larger than 1. Around k/kp 5 1, ub,1 and

ub,2 of the ATM data are larger than the MEM estimates
and smaller than the MLM estimates. For ub,1 (Fig. 14a)
the MEM estimates agree well with the ATM data. The
MLM estimates have a wider spreading width than the
ATM data at k/kp , 3, and then become slightly nar-
rower than the ATM data at k/kp . 3. For ub,2 (Fig. 14b)
the MEM estimates are generally smaller than the ATM
data. The MLM estimates indicate a broader spreading
width compared to the ATM data in the range k/kp ,
3, the trend is reversed for higher k/kp. The rms statistics
on ub,1 and ub,2 are listed in Table 3 also. Again, the
overall agreement between ATM and MEM results is
not better than the agreement between ATM and MLM
results. Interestingly, the empirical distribution (EMP)
calculated by simply averaging the MEM and MLM
results seems to provide much better overall agreement
with ATM measurement.

The lobe ratio and lobe angle of MEM and EMP
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FIG. 14. ATM and buoy comparison of the directional moments (a) ub,1 and (b) ub,2. Solid curves: ATM, connected circles: MEM, con-
nected pluses: MLM, and connected crosses: EMP.

estimates are compared with the ATM data (Fig. 15).
The MLM estimates are not included in this comparison
due to its lack of any noticeable bimodal feature. The
comparisons are carried out for both the quasi-steady
(Figs. 15a,b) and decaying wave fields (Figs. 15c,d).
The lobe angles of both MEM and EMP estimates in-
crease as k/kp increases, which are consistent with the
trend of the ATM data. Quantitatively, the lobe angles
of the MEM and the EMP estimates are approximately
108 larger than the ATM data. The lobe ratios estimated
using the MEM show very large fluctuations, especially
in the region of k/kp . 3, where the bimodal feature
becomes prominent as observed from the ATM data.
The bimodal distributions of MEM processing tend to
have significant variations and the two lobes are usually
unequal in magnitude and shape. They are often not
symmetric with respect to the dominant wave direction.
These sensitive variations are possibly MEM artifact

rather than true reflection of the directional properties
of wind-generated wave. The EMP, as an empirical fix,
produces estimates that have a much better agreement
with the ATM data.

An extensive analysis is carried out on the directional
data during two active wave growth periods at two buoy
stations in the Lake Michigan using the EMP method
(Wang and Hwang 1999, submitted to J. Phys. Ocean-
ogr.). Each growth period is longer than 12 h. The anal-
ysis shows that the bimodal directional distribution is
distinctive and persistent through the wave growth pro-
cess. The directional bimodality is characterized by the
parameters of lobe separation angle ulobe and lobe ratio
rlobe. The values of the two parameters show a depen-
dence on the normalized frequency f/ f p. Both ulobe and
rlobe are smallest at the peak frequency. The values of
ulobe and rlobe increase as wave frequency moves to both
lower and higher frequencies. They also made extensive
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FIG. 15. ATM and buoy comparison of the lobe angle and lobe ratio for the quasi-steady wave field (a, b) and decaying wave
field (c, d). The lobe angles are shown in (a) and (c), and the lobe ratios are shown in (b) and (d). Circles: ATM, pluses: MEM,
and crosses: EMP.

comparisons with the results obtained from the ATM
measurements, the field study of Ewans (1998) and re-
sults from nonlinear numerical model simulations (Ban-
ner and Young 1994; Young et al. 1995).

4. Summary

An airborne scanning lidar acquires high-resolution
spatial measurements of the 3D topography of ocean
surface waves. From these spatial data, 2D wavenumber
spectra can be calculated in a straightforward fashion.
These 2D wavenumber spectra have excellent direc-
tional resolution, better than 108 for wave components
above kp in the present dataset (Fig. 2). The analysis of
the resulting directional distribution shows that the
spreading factor is narrowest near the spectral peak
wavenumber (kn 5 1.3kp), and broadens toward both
higher and lower wavenumbers from kn (Figs. 9 and
10). These results are consistent with those derived from
measurements using directional buoys and wave gauge

arrays although the value of kn of each dataset differs:
kn 5 0.9kp in Donelan et al. (1985), 1.0kp in Mitsuyasu
et al. (1975), and 1.1kp in Hasselmann et al. (1980).

The development of bimodal distribution is clearly
shown in the 2D wavenumber spectrum obtained from
the 3D surface topography. The wavenumber depen-
dence of the lobe angle and lobe ratio is established
from the present dataset (Table 2 and Figs. 10–12). Fou-
rier decomposition of the directional distributions is per-
formed [Eq. (8) and Fig. 6]. Coefficients of the third-
order polynomial fitting of the leading nine Fourier co-
efficients are listed in Table 1. Compared with measured
data, it is found that major features of the directional
distributions such as the beamwidth (spreading factor),
lobe angle, and lobe ratio can be sufficiently represented
by four Fourier components of the distribution function
(Figs. 7b, 7d, 8, 10, and 11).

Numerical experiments (e.g., Komen et al. 1984; Ban-
ner and Young 1994) demonstrate that the directional
distribution function is sensitive to different formula-
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tions of the source terms. Accurate determination of the
directional distribution is needed to enhance our un-
derstanding of ocean wave dynamics and to validate the
performance of nonlinear ocean wave models. The ATM
results are compared with numerical experiments of
Banner and Young (1994) to investigate the frequency
dependence of the dissipation function. From the limited
data available, it is suggested that in an active wind-
generated wave field, the frequency dependence of the
dissipation function is close to v2.5. In a decaying wave
field, the frequency dependence is stronger. Available
data are not sufficient to distinguish between results
calculated from v3 and v4 dissipation functions.

Finally, the ATM data are also used to investigate the
performance of the MEM and MLM directional reso-
lution. In general, the resolution of MLM is relatively
poor in the case with multimodal directional distribu-
tion. On the other hand, the modal structure detected
by MEM is exaggerated and the resulting spreading fac-
tor (beamwidth) is in general smaller than the ATM
measurement (Figs. 13–15, Table 3). For application
purposes, it is found that the empirical average (EMP)
of MLM and MEM represents a working solution that
results in improved agreement with the measured di-
rectional distribution from 3D surface topography.
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